Published on in Vol 6, No 7 (2019): July
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/13946, first published
.
Journals
- Balcombe L, De Leo D. An Integrated Blueprint for Digital Mental Health Services Amidst COVID-19. JMIR Mental Health 2020;7(7):e21718 View
- Jones C, Smith-MacDonald L, Miguel-Cruz A, Pike A, van Gelderen M, Lentz L, Shiu M, Tang E, Sawalha J, Greenshaw A, Rhind S, Fang X, Norbash A, Jetly R, Vermetten E, Brémault-Phillips S. Virtual Reality–Based Treatment for Military Members and Veterans With Combat-Related Posttraumatic Stress Disorder: Protocol for a Multimodular Motion-Assisted Memory Desensitization and Reconsolidation Randomized Controlled Trial. JMIR Research Protocols 2020;9(10):e20620 View
- Tarekegn A, Ricceri F, Costa G, Ferracin E, Giacobini M. Predictive Modeling for Frailty Conditions in Elderly People: Machine Learning Approaches. JMIR Medical Informatics 2020;8(6):e16678 View
- Reyes A, Serafica R, Sojobi A. College student veterans' experience with a mindfulness- and acceptance-based mobile app intervention for PTSD: A qualitative study. Archives of Psychiatric Nursing 2020;34(6):497 View
- Worthington M, Mandavia A, Richardson-Vejlgaard R. Prospective prediction of PTSD diagnosis in a nationally representative sample using machine learning. BMC Psychiatry 2020;20(1) View
- Schultebraucks K, Sijbrandij M, Galatzer-Levy I, Mouthaan J, Olff M, van Zuiden M. Forecasting individual risk for long-term Posttraumatic Stress Disorder in emergency medical settings using biomedical data: A machine learning multicenter cohort study. Neurobiology of Stress 2021;14:100297 View
- Wani A, Aiello A, Kim G, Xue F, Martin C, Ratanatharathorn A, Qu A, Koenen K, Galea S, Wildman D, Uddin M. The impact of psychopathology, social adversity and stress-relevant DNA methylation on prospective risk for post-traumatic stress: A machine learning approach. Journal of Affective Disorders 2021;282:894 View
- Opoku Asare K, Terhorst Y, Vega J, Peltonen E, Lagerspetz E, Ferreira D. Predicting Depression From Smartphone Behavioral Markers Using Machine Learning Methods, Hyperparameter Optimization, and Feature Importance Analysis: Exploratory Study. JMIR mHealth and uHealth 2021;9(7):e26540 View
- Baumeister H, Bauereiss N, Zarski A, Braun L, Buntrock C, Hoherz C, Idrees A, Kraft R, Meyer P, Nguyen T, Pryss R, Reichert M, Sextl T, Steinhoff M, Stenzel L, Steubl L, Terhorst Y, Titzler I, Ebert D. Clinical and Cost-Effectiveness of PSYCHOnlineTHERAPY: Study Protocol of a Multicenter Blended Outpatient Psychotherapy Cluster Randomized Controlled Trial for Patients With Depressive and Anxiety Disorders. Frontiers in Psychiatry 2021;12 View
- Warner E, Nannarone M, Manuel D, Lashewicz B, Patten S, Schmitz N, Wang J. Self-help behaviors partially mediate the relationship between personalized depression risk disclosure and psychological distress: A mediation analysis using data from a randomized controlled trial. Journal of Psychiatric Research 2021;140:7 View
- Gooding P, Kariotis T. Ethics and Law in Research on Algorithmic and Data-Driven Technology in Mental Health Care: Scoping Review. JMIR Mental Health 2021;8(6):e24668 View
- Shiba K, Daoud A, Kino S, Nishi D, Kondo K, Kawachi I. Uncovering heterogeneous associations of disaster‐related traumatic experiences with subsequent mental health problems: A machine learning approach. Psychiatry and Clinical Neurosciences 2022;76(4):97 View
- Rastpour A, McGregor C. Predicting Patient Wait Times by Using Highly Deidentified Data in Mental Health Care: Enhanced Machine Learning Approach. JMIR Mental Health 2022;9(8):e38428 View
- Mukherjee S, Rintamaki L, Shucard J, Wei Z, Carlasare L, Sinsky C. A Statistical Learning Approach to Evaluate Factors Associated With Post-Traumatic Stress Symptoms in Physicians: Insights From the COVID-19 Pandemic. IEEE Access 2022;10:114434 View
- Mentis A, Lee D, Roussos P. Applications of artificial intelligence−machine learning for detection of stress: a critical overview. Molecular Psychiatry 2024;29(6):1882 View
- Karstoft K, Eskelund K, Gradus J, Andersen S, Nissen L. Early prediction of mental health problems following military deployment: Integrating pre- and post-deployment factors in neural network models. Journal of Psychiatric Research 2023;163:109 View
- Qasrawi R, Vicuna Polo S, Abu Khader R, Abu Al-Halawa D, Hallaq S, Abu Halaweh N, Abdeen Z. Machine learning techniques for identifying mental health risk factor associated with schoolchildren cognitive ability living in politically violent environments. Frontiers in Psychiatry 2023;14 View
- Aich K, Kashyap S, Tyagi K, Verma I, Chauhan A, Jain C. Understanding the Potentiality of Artificial Intelligence in Psychological Disorders Detection and Diagnostics. OBM Neurobiology 2023;07(04):1 View
- Singh A, Gupta S, Goel L, Agarwal A, Dargar S. Archimedes optimization-based Elman Recurrent Neural Network for detection of post-traumatic stress disorder. Biomedical Signal Processing and Control 2024;90:105806 View
- Lee S, Kim J. Testing the bipolar assumption of Singer-Loomis Type Deployment Inventory for Korean adults using classification and multidimensional scaling. Frontiers in Psychology 2024;14 View
- Lamb R, Firestone J, Kavner A, Almusharraf N, Choi I, Owens T, Rodrigues H. Machine learning prediction of mental health strategy selection in school aged children using neurocognitive data. Computers in Human Behavior 2024;156:108197 View
- Wójcik Z, Dimitrova V, Warrington L, Velikova G, Absolom K. Using Machine Learning to Predict Unplanned Hospital Utilization and Chemotherapy Management From Patient-Reported Outcome Measures. JCO Clinical Cancer Informatics 2024;(8) View
- Horwitz A, McCarthy K, House S, Beaudoin F, An X, Neylan T, Clifford G, Linnstaedt S, Germine L, Rauch S, Haran J, Storrow A, Lewandowski C, Musey Jr. P, Hendry P, Sheikh S, Jones C, Punches B, Swor R, Hudak L, Pascual J, Seamon M, Harris E, Pearson C, Peak D, Domeier R, Rathlev N, Sergot P, Sanchez L, Bruce S, Joormann J, Harte S, Koenen K, McLean S, Sen S. Intensive longitudinal assessment following index trauma to predict development of PTSD using machine learning. Journal of Anxiety Disorders 2024;104:102876 View
- Wang J, Ouyang H, Jiao R, Cheng S, Zhang H, Shang Z, Jia Y, Yan W, Wu L, Liu W. The application of machine learning techniques in posttraumatic stress disorder: a systematic review and meta-analysis. npj Digital Medicine 2024;7(1) View
- Razavi M, Ziyadidegan S, Mahmoudzadeh A, Kazeminasab S, Baharlouei E, Janfaza V, Jahromi R, Sasangohar F. Machine Learning, Deep Learning, and Data Preprocessing Techniques for Detecting, Predicting, and Monitoring Stress and Stress-Related Mental Disorders: Scoping Review. JMIR Mental Health 2024;11:e53714 View
- Jiang T, Dutra S, Lee D, Rosellini A, Gauthier G, Keane T, Gradus J, Marx B. Toward Reduced Burden in Evidence-Based Assessment of PTSD: A Machine Learning Study. Assessment 2021;28(8):1971 View
- Karchoud J, Hoeboer C, Piwanski G, Haagsma J, Olff M, van de Schoot R, van Zuiden M. Towards accurate screening and prevention for PTSD (2-ASAP): protocol of a longitudinal prospective cohort study. BMC Psychiatry 2024;24(1) View
- Patel J, Hung C, Katapally T. Evaluating predictive artificial intelligence approaches used in mobile health platforms to forecast mental health symptoms among youth: a systematic review. Psychiatry Research 2024:116277 View
Books/Policy Documents
- O’Leary B, Shih C, Chen T, Xie H, Cotton A, Xu K, Morey R, Wang X. Brain Informatics. View
- Trousset V, Lefèvre T. Artificial Intelligence in Medicine. View
- Trousset V, Lefèvre T. Artificial Intelligence in Medicine. View
- Liubchenko V, Komleva N, Zinovatna S. Information and Communication Technologies in Education, Research, and Industrial Applications. View
- Mubassira T, Hasan M, Sharmin S. Mobile and Ubiquitous Systems: Computing, Networking and Services. View
- Guerrache F, Brown D, Mahmud M. Applied Intelligence and Informatics. View