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Abstract

Background: A majority of adults in the United States are exposed to a potentially traumatic event but only a handful go on to
develop impairing mental health conditions such as posttraumatic stress disorder (PTSD).

Objective: Identifying those at elevated risk shortly after trauma exposure is a clinical challenge. The aim of this study was to
develop computational methods to more effectively identify at-risk patients and, thereby, support better early interventions.

Methods: We proposed machine learning (ML) induction of models to automatically predict elevated PTSD symptoms in
patients 1 month after a trauma, using self-reported symptoms from data collected via smartphones.

Results: We show that an ensemble model accurately predicts elevated PTSD symptoms, with an area under the curve (AUC)
of .85, using a bag of support vector machines, naive Bayes, logistic regression, and random forest algorithms. Furthermore, we
show that only 7 self-reported items (features) are needed to obtain this AUC. Most importantly, we show that accurate predictions
can be made 10 to 20 days posttrauma.

Conclusions: These results suggest that simple smartphone-based patient surveys, coupled with automated analysis using
ML-trained models, can identify those at risk for developing elevated PTSD symptoms and thus target them for early intervention.

(JMIR Ment Health 2019;6(7):e13946) doi: 10.2196/13946
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Introduction

Background
Posttraumatic stress disorder (PTSD) is a psychiatric condition
that leads to significant disability and impairment [1]. Early
interventions administered shortly after a traumatic event can
reduce the onset of PTSD and associated long-term impairment
[2]. Given the costs associated with early intervention, it is not
feasible or necessary to intervene with everyone exposed to
these events—rather, a screen-and-treat approach is
recommended in which those at high risk for PTSD are
identified and treated. A key barrier to providing early
intervention is an inability to accurately identify those at high
risk for PTSD in this acute posttrauma period (<30 days
following an event). The limited ability to detect those at risk
stems from a limited understanding of how PTSD symptoms

develop and, thus, what factors are most helpful in determining
risk for the disorder.

A diagnosis of PTSD requires symptoms to be present for at
least 30 days. Previous studies suggest that symptoms first
appear in the days and weeks after a traumatic event and
gradually increase over time [3,4]. Therefore, it may be possible
to identify those at risk for PTSD by monitoring the progression
of symptoms during this early period. Other previous studies
have shown that effective monitoring and data collection can
be implemented via smartphone surveys [5,6]. We hypothesized
that predictive models based on statistical correlations between
observable symptoms shortly after a traumatic event and
eventual PTSD symptomology can be developed. Such
predictive models would allow individuals at elevated risk for
more severe psychopathology to be identified and provided with
an early intervention.
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In this paper, we take the initial steps toward such a predictive
model. We investigated whether correlations exist between
PTSD symptoms present shortly after trauma and at 1 month
after an event and whether these correlations can be discovered
by supervised machine learning (ML) approaches. Previous
studies have shown that ML techniques are effective for
predictive modeling in a medical setting, for example, to predict
cancer prognoses [7]. However, such models have yet to be
regularly implemented in psychiatric conditions. Furthermore,
models induced by ML can be thoroughly vetted by techniques
such as cross-validation, increasing confidence in their
relevance.

The study presented here uses data collected during a clinical
study involving 90 individuals who experienced a criterion A
traumatic event and who were recruited from the critical care
service of a level-1 trauma center in Northern New England
[6]. PTSD symptoms were assessed using validated clinical
scales. For this study, we prepared disjoint training, testing, and
cross-validation datasets from the provided data for ML analysis.
Our dataset is described in further detail in the Dataset section.

In this study, we took a comparative approach to investigating
not only whether predictive ML-induced models may exist but
also which are the best approaches to model the induction. The
development of PTSD symptoms among those who go on to
have severe PTSD symptoms follows a complex course, which
may be nonlinear [3,8]. Hence, we considered nonlinear ML
techniques, in particular, support vector machines (SVMs) with
nonlinear kernels and random forest (RF). We also emphasized
ensemble techniques that combine predictions from multiple
models to obtain an improved prediction.

Specifically, this study considered 4 research hypotheses:

• Hypothesis 1: ML can demonstrate significant statistical
correlations between observable symptoms and elevated
PTSD 1 month after trauma.

• Hypothesis 2: ML can identify the relevance of early
symptoms used to predict PTSD by care providers.

• Hypothesis 3: ML can identify the number of days needed
to predict elevated PTSD 1 month after trauma.

• Hypothesis 4: ML-induced models can be used to predict
elevated PTSD 1 month after a trauma, given that symptoms
are displayed between 10 and 20 days posttrauma.

Dataset
In this section, we describe the dataset we used for our study,
which was collected during a clinical study involving 90
individuals who experienced a criterion A traumatic event and
were recruited from the critical care service of a level-1 trauma
center in Northern New England [6]. We also describe our data
preprocessing methods and feature correlation and feature
importance analyses on the preprocessed data.

Data Collection
To recruit participants in the cited study [6], a trained research
assistant approached the prospective participants at the bedside
in the hospital and administered an initial assessment battery
to determine if the trauma they experienced met the criterion A
for a diagnosis of PTSD. Participants were met bedside by a

care provider within a mean of 4.88 days and an SD of 5.22
days after their traumatic event. Participants then downloaded
a mobile app to their device that administered the assessment
surveys. The app used for this study was Metricwire [9], a
platform that allows the administration of self-reported surveys
on a mobile device over a predefined period. Metricwire was
available for download for free from the respective app stores.

Participants (N=90) were aged mean 35 (SD 10.41) years, were
a majority of males (n=57), and had completed college (n=36).
The sample was predominately white (n=80). The most common
type of injury was motor vehicle accident (n=45). Cell phone
ownership included 52 iPhones and 35 Android devices. In
addition, 3 participants identified having another type of device
but had access to an Android or iPhone device. PTSD symptoms
were assessed with the PTSD checklist-5 at 1-month posttrauma

[10]. According to the Diagnostic and Statistics Manual 5th

Edition (DSM-5) criteria, the PTSD checklist for DSM-5
(PCL-5) is a 20-item self-reported measure that assesses PTSD
symptoms experienced over the last month. Items assess
symptoms across 4 symptom clusters of PTSD (re-experiencing,
negative mood, avoidance, and hyperarousal) on a 0- to 4-point
Likert scale. Total scores range from 0 to 80. A score of 33 or
higher is associated with a likely diagnosis of PTSD [11].

Each mobile assessment consisted of 10 items. These included
the 8 items (items 1, 4, 6, 7, 9, 12, and 18) of the abbreviated
PCL-5 [8] and an additional item from the PCL-5 assessing
sleep (PCL-5 item 20). The abbreviated PCL was used to
minimize the burden to participants in that they had to complete
10 items as opposed to 21. The tenth item assessed pain on a
scale of 0 to 10. Preliminary testing suggested it took
approximately 5 min to complete each assessment. Each day
for 30 days following initial assessment, the participants
received a local notification on their mobile device to complete
a survey. Participants had 10 hours to complete a survey
regarding the symptoms for that day and were allowed to skip
questions. Responses were uploaded immediately upon
completion of each survey. After 30 days, participants received
a notification that they no longer had to complete assessments
but could continue to use the system for an additional 60 days
at their discretion. Participants were compensated US $1 for
each assessment completed within the first 30 days. The overall
response rate for the combined sample was 78.0% (mean 23.33,
SD 16.36 assessments). A majority of the sample (46/90, 51.1%)
completed 75.0% or more of the assessments, resulting in 4312
assessments distributed over different days of the study. The
rate of responding was compared with the mean rates reported
in previous studies (mean 65.34%) [5,12,13]. Our study aimed
to determine if elevated symptoms could be predicted solely
based on these data collected via mobile phones as other input
variables may not be available in certain clinical settings.

Data Selection
Data, in the form of 11 main features, were collected from each
patient, namely, Days.since.trauma, Reexp1, Reexp2, Avoid1,
Avoid2, NACM1, NACM2, AAR1, AAR2, Sleep, and Pain, shown
and described in Table 1. To build the labels, a target variable
was created for each row, Target33, based on the following
conditions:
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Target 33=1, when PTSD.Severity ≥33.

Target 33=0, otherwise.

The experiments were conducted using a score of 33, which
corresponds to a clinical cutoff for likely PTSD [11]. These
cutoffs allow for the research to be conducted as a classification
problem with a target value of either 0 or 1.

Although the features shown in Table 1 have been recommended
by medical experts, in this study, we determined the feature
relevance based on a given feature's ability to predict PTSD
within the context of ML algorithms. The role of feature
selection in this context is to ultimately reduce the number of
symptoms that need to be assessed for accurate prediction.
Proper feature selection should reduce overfitting and, therefore,
increase accuracy as well as reduce model training and inference
time [14].

Data Preprocessing
After determining the relevant features and target binary
classification labels (PTSD or no PTSD at threshold value 33),

the resulting data still contained a nontrivial amount of missing
data. Specific patient response instances with missing values
were not removed as they could potentially retain relevant
information. Instead, missing values were replaced with an
average calculated from the associated patient’s previous entries.
Figure 1 shows the missing value distribution for each feature.

Standardization or normalization of features is a common
preprocessing step in ML, producing features centered around
a zero mean with unit variance. Feature standardization is a
requirement for gradient descent–based ML algorithms (such
as SVMs and logistic regression) for faster convergence and
better performance. The general method for calculating
standardized features is:

where for a given feature x is the original value, is the

normalized value, is the mean value, and σ is the SD.

Table 1. Dataset table (higher values signify more severe pathology).

RangeNonnull valueDescriptionAttribute (feature)

0-80975Posttraumatic stress disorder symptoms 1-month posttraumaPTSD.Severity (1 month)

1-491144Days since trauma occurredDays.since.trauma

0-4651Distress related to trauma-related intrusive thoughtsReexp 1

0-4649Emotional reactivity to trauma cuesReexp 2

0-4650Avoidance of thoughts about traumaAvoid 1

0-4651Avoidance of environmental trauma-related remindersAvoid 2

0-4651Negative beliefs about self and the worldNACM 1

0-4649Loss of interest in activitiesNACM 2

0-4650Exaggerated startle reactionAAR 1

0-4650Difficulty in concentratingAAR 2

0-4650Sleep difficultySleep

0-10646Self-reported painPain

JMIR Ment Health 2019 | vol. 6 | iss. 7 | e13946 | p. 3http://mental.jmir.org/2019/7/e13946/
(page number not for citation purposes)

Wshah et alJMIR MENTAL HEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. (a) Missing feature value distribution across all data input vectors. Yellow signifies missing values. (b) Missing feature percentage.
PTSD.Severity: posttraumatic stress disorder symptoms. Days.since.trauma: days since trauma occurred. Reexp1: distress related to trauma-related
intrusive thoughts; Reexp2: emotional reactivity to trauma cues; Avoid1: avoidance of thoughts about trauma; Avoid2: avoidance of environmental
trauma-related reminders; NACM1: negative beliefs about self and the world; NACM2: loss of interest in activities; AAR1: exaggerated startle reaction;
AAR2: difficulty in concentrating; Sleep: sleep difficulty; Pain: self-reported pain.

Feature Correlation
To identify both feature relevance and potential duplication of
information surrounding early symptoms used to predict PTSD,
we measured the correlation between all pairs of features. The
correlation is statistically calculated between each feature
variable and another using the average of the products between
the standardized values of each sample. This process summarizes
the relationship between features, known in statistics as the
covariance method.

In general, removing correlated features will not always enhance
model performance but can aid in data preparation for ML
algorithms. More importantly, this process can reduce the
number of symptoms needed to predict PTSD. Figure 2 shows
the correlation between features in our dataset. The aim of this
correlation study was to reduce features in the event that 2
features are highly correlated. In particular, we noticed that
Reexp1, Reexp2, Avoid1, and Avoid2 were highly correlated.
Thus, Reexp2 was retained, whereas Reexp1, Avoid1, and Avoid2

were removed from our input feature set. Later, in the Results
section, we discuss in detail the effect of this feature selection
on model performance.
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Figure 2. Correlation between features in our dataset, prior to feature selection. PTSD.Severity: posttraumatic stress disorder symptoms. Days.since.trauma:
days since trauma occurred. Reexp1: distress related to trauma-related intrusive thoughts; Reexp2: emotional reactivity to trauma cues; Avoid1: avoidance
of thoughts about trauma; Avoid2: avoidance of environmental trauma-related reminders; NACM1: negative beliefs about self and the world; NACM2:
loss of interest in activities; AAR1: exaggerated startle reaction; AAR2: difficulty in concentrating; Sleep: sleep difficulty; Pain: self-reported pain.

Feature Importance
Feature importance methods score each feature by providing a
quantitative measurement surrounding its relevance. The RF
algorithm is capable of providing an importance score for each
feature. RF can score the relevance of each feature through
either statistical permutation tests or the Gini impurity index,
which is used in this study, as shown in Figure 3. In the RF, a
Gini impurity index is calculated at each node split using 1
feature variable to measure the quality of the split across classes
at the considered node. The Gini impurity index is computed
via the following equation:

where c is the number of classes in the feature and pi is the
fraction of samples labeled with class i.

To calculate feature importance, we sum the Gini impurity index
values for each feature in the dataset over RF trees. These sums

are then normalized and ranked to indicate the feature
importance index. For more details on the Gini variable
importance approach, see the study by Garcia-Lorenzo et al
[15].

Features with smaller importance values can be removed from
the dataset, thus, further reducing the number of relevant early
symptoms to be used for PTSD prediction. Figure 3 shows that
AAR2, Avoid2, and Reexp1 are less important than others.
Furthermore, although the Days.since.trauma feature has a low
score, this is an expected result, and this feature is, therefore,
retained to provide important temporal information to the model.

In the Results section of this study, we discuss the effect of
removing AAR2, Avoid2, and Reexp1 as they are low in
importance, as well as Reexp1, Avoid1, and Avoid2, which are
highly correlated with Reexp2, as discussed above. Notice that
Reexp1 and Avoid2 are both low in importance and highly
correlated with other features.
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Figure 3. Ranked feature importance determined using the Gini method. PTSD.Severity: posttraumatic stress disorder symptoms. Days.since.trauma:
days since trauma occurred. Reexp1: distress related to trauma-related intrusive thoughts; Reexp2: emotional reactivity to trauma cues; Avoid1: avoidance
of thoughts about trauma; Avoid2: avoidance of environmental trauma-related reminders; NACM1: negative beliefs about self and the world; NACM2:
loss of interest in activities; AAR1: exaggerated startle reaction; AAR2: difficulty in concentrating; Sleep: sleep difficulty; Pain: self-reported pain.

Methods

In this paper, we studied multiple classifiers—logistic
regression, naive Bayes, SVM, and RFs—to classify PTSD
versus non-PTSD cases. In addition, we proposed ensembles
of all these classifiers. It is known that ensembles of classifiers
can form a better classifier than individual classifiers [16].
Ensemble methods combine predictions from several classifiers,
or from a single classifier with different hyperparameters, to
ultimately improve robustness as compared with a single
estimator.

Machine Learning Algorithms
Multiple binary classifiers were chosen for use in this study
because of their established predictive power.

Logistic Regression
We applied logistic regression because it is widely used for
binary classification problems. We built a linear classifier
without performing any nonlinear transformation on the features.
For more information about logistic regression classifiers, refer
to the study by Held [17].

Naive Bayes
The naive Bayes classifier is simple, fast, and reliable and is
derived from the Bayes theorem. The naive Bayes classifier
assumes independent features with conditional independence,
making the computation simpler (hence, naive). For more
information about naive Bayes, refer to the study by Chan [18].

Support Vector Machines
SVMs are known for their generalization power, where the SVM
kernel trick is used to implicitly enforce a nonlinear
transformation on input features. In this study, we used linear,

Gaussian Radial basis function (RBF), and polynomial kernels.
We expect the results of the linear SVM to have similar or close
results to the logistic regression classifier. For more information
about the SVM algorithm, refer to the study by Burges [19].

Random Forests
RFs are an ensemble learning approach made up of multiple
small decision trees, which are trained on a subset of data and
features at each node split. In this study, we used RFs because
of their predictive power and ability to work despite missing
data (in light of missing data in our dataset). We did not replace
missing data with associated average values for training RFs
and, instead, we changed the relevant entries to be −1. For more
information about RFs, refer to the study by Breiman [20].

Ensemble Methods
Ensemble methods work by combining several weaker classifier
predictions, thus improving overall robustness. In this study,
we ensembled the single classifiers: SVM (linear, Gaussian,
and polynomial kernels), logistic regression, naive Bayes, and
RF algorithms. We investigated 2 main techniques.

Hard Voting (Majority Voting)

In the case of hard voting, the final predicted class is taken to
be the majority class label, as predicted by each individual
classifier.

Weighted Average Probabilities (Soft Voting)

In the case of soft voting, the class label is calculated by
summing the predicted probabilities across each class label and
classifier and subsequently selecting the class with the highest
probability. For this ensemble method, we used a uniform weight
distribution.
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Prediction Performance Versus Days Posttrauma
To study the effect of time posttrauma on prediction
performance, we trained the proposed classifiers on several
different cutoff days. Specifically, we evaluated our models on
data over 7, 10, 15, 20, 25, 30, 35, and all days posttrauma.
Through comparative analysis, our aim was to determine how
long surveys need to be performed to accurately predict elevated
PTSD symptoms 1-month posttrauma.

Reducing Features
We also studied the effect of reducing the number of indicators
(features) based on the feature correlation and feature importance
methods discussed above. On the basis of these, we modeled
without the features AAR2, Reexp1, Avoid1, and Avoid2, as
they are highly correlated with other features or low in
importance.

Evaluation
Standard scoring metrics for ML models include accuracy (or
error rate), true positive rate (TPR), false positive rate (FPR),
true negative rate (TNR), false negative rate (FNR),
recall-precision curves, and receiver operating characteristics
(ROC) curves. These metrics provide a simple and effective
way to measure the performance of a classifier [21]. In our
evaluation, we focus on accuracy, confusion matrices, and ROC
curves.

These scoring methods have been evaluated using 2 main
methods: the holdout method [22] and the cross-validation
method [23].

Holdout Method
For the implementation of the ML algorithms, our dataset was
partitioned randomly into 70.0% and 30.0% for training and
testing, respectively. The training set is used to train the models
and to find the model hyperparameters, whereas the testing set
is used to evaluate the model performance and its ability to
generalize to new unseen data. The hyperparameters used for
all the classifiers were manually assigned, and then
hyperparameter tuning was performed using random search, as
described in the study by Bergstra and Bengio [24].

Accuracy
Accuracy is a common metric to evaluate the performance of
ML algorithms. It gives the ratio of correct predictions over the
total number of predictions. In the case of imbalanced datasets,
classification accuracy alone is insufficient to determine if the
model is robust. For example, in a notable degenerative case,
a model can predict only the majority class label and still achieve
high classification accuracy.

K-Fold Cross-Validation
Models trained using a holdout technique might overfit or
underfit depending on the distribution of the data split. To
overcome this issue, K-fold cross-validation was performed on
the dataset. This technique divides data into equal disjoint
subsets of size K. The model being evaluated is then trained on
all folds except one, which is reserved for testing. This process
is then repeated K−1 times, selecting each fold to be used for
testing one time. Finally, the results from each of the testing

folds are averaged and returned as the final results. In this study,
we used 10 folds, each fold is used once in testing and 9 times
in training. This 10-fold cross-validation reduces the variance
in the results by averaging over 10 different partitions, providing
more reliable and generally accurate methodology than the
Holdout method.

Confusion Matrix
Confusion matrices offer a comprehensive evaluation of the
quality of an ML algorithm. In contrast to the singular
dependence on 1 number from the accuracy metric, a confusion
matrix provides a method of evaluating performance across all
of the classes. For binary classification, the confusion matrix
is simplified to 2 classes as follows:

[ TP FP FN TN]

where, TP is the number of true positives, FP is the number of
false positives, FN is the number of false negatives, and TN is
the number of true negatives. TP and TN represent the number
of correctly predicted labels, whereas FP and FN are those that
are mislabeled by the classifier. The higher true values in the
confusion matrix the better, indicating more correct predictions.

Receiver Operating Characteristics Curve
The ROC curve is a simple graphical representation and
powerful methodology to evaluate binary classifiers. It has
become a popular method because of its ability to evaluate
overall performance [25].

The ROC space is built and plotted using TPR and FPR from
the equation TPR and FPR as the y-axis and x-axis, respectively.
Each point (FPR, TPR) represents a classifier at a different
threshold applied to the predicted labels’ probability [26] as
shown by the following equations:

Independent of class distribution and error costs, the ROC curve
connects the points in the ROC space. ROC curves describe the
predictive performance and characteristics of a classifier at
different probability levels. The area under the ROC curve,
denoted as area under the curve (AUC), can be used to rank or
compare the performance of classifiers [25]. AUC has been
proven to be more powerful than accuracy in experimental
comparisons of several popular learning algorithms [27], and
in fact, we treat this as our gold standard evaluation method.

Results

Machine Learning Algorithms
For RFs, we used the Gini [28] algorithm to measure the quality
of a split and 11 estimators. For logistic regression and SVMs,
hyperparameter tuning was performed based on the random
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search technique described in the study by Bergstra and Bengio
[24]. Results obtained after 50 random searches were as follows:

• Logistic regression, Lambda=0.02380
• SVM-linear kernel, C=62
• SVM-RBF kernel, C=57, Sigma =0.004
• SVM-polynomial kernel C=44, Sigma =0.017, degree=3

Where C and Lambda are the regularization terms and Sigma
is the Gaussian kernel parameter. For ensemble methods, we
investigated 2 main techniques: hard voting (majority voting)
and weighted average probabilities (soft voting). For soft voting,
we equally weighted the predicted probabilities from each
classifier. We ensembled all the classifiers, that is, logistic
regression, naive Bayes, SVM with linear kernel, SVM with
Gaussian kernel, SVM-polynomial kernel, and RF.

Accuracy
Table 2 shows the accuracy of various models in both the
train-test split (holdout) and cross-validation methods. As shown

in the table, the cross-validation can deal with the drawbacks
of train-test split (holdout) technique, and therefore, it is a more
reliable and generalized accuracy method than the holdout
method. Thus, for the rest of our experiments, we exclusively
used cross-validation.

Receiver Operating Characteristics Curves
Figure 4 and Table 3 show the ROC curves for singular and
ensemble models and the AUC.

Reduced Features Analysis
We reduced the use of AAR2, Reexp1, Avoid1, and Avoid2 features
because of their high correlation and low predictive power, as
discussed in the Feature Correlation and Feature Importance
dataset subsections. Figure 5 and Table 4 show the ROC curve
and the AUC for singular and ensemble models, respectively,
with those features eliminated.

Table 2. Accuracy results.

Cross-validation accuracyTrain-test accuracyMachine learning method

.82110961.8735236Logistic regression

.82210961.8711414Naive Bayes

.76406263.8349277SVMa-linear kernel

.81908724.8632561SVM-Gaussian kernel

.81857010.8682245SVM-polynomial kernel

.77888143.8212457Random forest

.82045190.8798578Voting classifier-soft

.80702013.85919181Voting classifier-hard

aSVM: support vector machine.

Figure 4. Receiver operating characteristics graphs for single and ensemble models. SVM: support vector machine; RBF: Radial basis function.
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Table 3. Area under the curve results.

Receiver operating characteristics area under the curveMachine learning model

.8325350Logistic regression

.8422145Naive Bayes

.8179543SVMa-linear kernel

.8465576SVM-Gaussian kernel

.8337800SVM-polynomial kernel

.7844874Random forest

.8559346Voting classifier-soft

.8357976Voting classifier-hard

aSVM: support vector machine.

Figure 5. Receiver operating characteristics graphs for single and ensemble models with difficulty in concentrating, distress related to trauma-related
intrusive thoughts, avoidance of thoughts about trauma, and avoidance of environmental trauma-related reminders features eliminated. SVM: support
vector machine; RBF: Radial basis function.

Table 4. Receiver operating characteristics area under the curve for reduced features models.

Receiver operating characteristics area under the curveMachine learning model

.87685409Logistic regression

.88154251Naive Bayes

.87553263SVMa-linear kernel

.88182758SVM-Radial basis function kernel

.88158036SVM-polynomial kernel

.85092592Random forest

.88920514Voting classifier-soft

.88145900Voting classifier-hard

aSVM: support vector machine.
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Prediction Performance Versus Days Posttrauma
Figure 6 shows the AUC of ROC curves for the ensemble model
trained using the reduced features settings from the first 7, 10,

15, 20, 25, 30, and 35 days or all 45 days of patient data. These
results demonstrate that an ensemble model has the same
predictive power with 30 days of symptom reporting as it does
with 45.

Figure 6. Area under the curve for the system trained and evaluated on different numbers of days. ROC: receiver operating characteristics.

Discussion

Principal Findings
As discussed in the Results section, Figure 4 and Table 3 show
that the SVM with a Gaussian kernel outperformed other single
classifiers. SVMs usually generalize better than other ML
algorithms as they maximize the margin between classes. It is
also interesting to see that RFs performed comparatively poorly
as it is a very powerful classifier and usually works well in case
of missing data. Ensemble methods showed slightly better
performance than single classifiers.

In addition, as shown in Figure 5 and Table 4, our results show
significant performance enhancement by reducing features,
indicating a high-variance system and suggesting that
simplifying self-reporting questionnaires may yield better
results. Reducing more features beyond AAR2, Reexp1, Avoid1,
and Avoid2 did not improve the performance, indicating that
these features might be considered noise and could be eliminated
from the study. This reduction eliminated symptoms from the
avoidance cluster of PTSD. Although these results suggest that
the removal of these symptoms did not impact prediction,
replication is needed before firm conclusions can be made about
the role these symptoms play in PTSD prediction. Allowing for
a shorter survey by removing these items reduces the burden of
each assessment and is likely to increase survey compliance,
which will provide a more accurate assessment of recovery.

Finally, as a key result, Figure 6 shows that the ensemble model
can be used to predict elevated PTSD 1 month after a trauma,
given that symptoms are displayed between 10 and 20 days
posttrauma, with only a (5.0/100)% drop in performance. Each
experiment in Figure 6 has been conducted independently. Thus,
patients who are correctly classified using data from fewer days

have no guarantee to be correctly classified by giving data from
more days, even though it is very likely.

In summary, our results shed light on our research hypotheses
stated in the Introduction section, as follows.

Results for Hypothesis 1
An ML-induced ensemble model is able to demonstrate
significant statistical correlations between observable symptoms
and elevated PTSD 1 month after trauma with an AUC of 0.85,
as shown in Table 3 and Figure 4. In addition, we have
demonstrated that an SVM with Gaussian kernel outperformed
other single ML algorithms.

Results for Hypothesis 2
As detailed in the Results section, under the Reduced Features
Analysis subsection, we have demonstrated that a subset of 7
standard early symptoms used to predict PTSD by care providers
is adequate to predict elevated PTSD 1 month after a trauma.

Results for Hypothesis 3
In the Results section, under the Prediction Performance Versus
Days After Posttrauma subsection, we showed that an ensemble
model has the same predictive power between 30 days and the
full 45 days of the study period.

Results for Hypothesis 4
In the Results section, under the Prediction Performance Versus
Days After Posttrauma subsection, we showed how an ensemble
model can be used to predict elevated PTSD 1 month after a
trauma, given that symptoms are displayed between 10 and 20
days posttrauma, with only a (5.0/100)% drop in performance,
as compared with a prediction at 30 days.
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Conclusions
Our experimental results are quite promising in that they suggest
the potential for using a combination of self-reported symptoms
and ML-induced models to automatically predict elevated PTSD
in a manner that supports earlier interventions by care providers
for 10 to 20 days posttrauma. These results were obtained using
only data collected with a mobile device, suggesting that this
method of symptom tracking is widely disseminable.
Furthermore, our results suggest that smartphone surveys for
self-reporting symptoms can be simplified more than previously
understood.

We also explored various techniques for building predictive
models. Although nonlinear learners did not outperform linear
learners, an ensemble method with nonlinear models performed
marginally better than single-linear models and will form the
basis of our ongoing work in this area. In future studies, we
plan to explore the application of these tools in a real clinical
setting as a means to provide better care for at-risk patients. The
prediction algorithm might also be improved if additional data
were incorporated, such as baseline PTSD symptoms,
demographic variables, and trauma histories, which is also an
interesting topic for future studies.
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