Published on in Vol 6, No 5 (2019): May

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/9766, first published .
An Approach for Data Mining of Electronic Health Record Data for Suicide Risk Management: Database Analysis for Clinical Decision Support

An Approach for Data Mining of Electronic Health Record Data for Suicide Risk Management: Database Analysis for Clinical Decision Support

An Approach for Data Mining of Electronic Health Record Data for Suicide Risk Management: Database Analysis for Clinical Decision Support

Journals

  1. Schriver E, Lieblich S, AlRabiah R, Mowery D, Brown L. Identifying risk factors for suicidal ideation across a large community healthcare system. Journal of Affective Disorders 2020;276:1038 View
  2. Wulff A, Montag S, Rübsamen N, Dziuba F, Marschollek M, Beerbaum P, Karch A, Jack T. Clinical evaluation of an interoperable clinical decision-support system for the detection of systemic inflammatory response syndrome in critically ill children. BMC Medical Informatics and Decision Making 2021;21(1) View
  3. Le Glaz A, Haralambous Y, Kim-Dufor D, Lenca P, Billot R, Ryan T, Marsh J, DeVylder J, Walter M, Berrouiguet S, Lemey C. Machine Learning and Natural Language Processing in Mental Health: Systematic Review. Journal of Medical Internet Research 2021;23(5):e15708 View
  4. Lejeune A, Le Glaz A, Perron P, Sebti J, Baca-Garcia E, Walter M, Lemey C, Berrouiguet S. Artificial intelligence and suicide prevention: A systematic review. European Psychiatry 2022;65(1) View
  5. Arowosegbe A, Oyelade T. Application of Natural Language Processing (NLP) in Detecting and Preventing Suicide Ideation: A Systematic Review. International Journal of Environmental Research and Public Health 2023;20(2):1514 View
  6. Morgiève M, Yasri D, Genty C, Dubois J, Leboyer M, Vaiva G, Berrouiguet S, Azé J, Courtet P. Acceptability and satisfaction with emma, a smartphone application dedicated to suicide ecological assessment and prevention. Frontiers in Psychiatry 2022;13 View
  7. Klimis H, Shaw T, Von Huben A, Charlston E, Usherwood T, Jennings G, Messom R, Thiagalingam A, Gunja N, Shetty A, Chow C. Can existing electronic medical records be used to quantify cardiovascular risk at point of care?. Internal Medicine Journal 2022;52(11):1934 View
  8. Rubeis G. iHealth: The ethics of artificial intelligence and big data in mental healthcare. Internet Interventions 2022;28:100518 View
  9. Sánchez-Teruel D, Robles-Bello M, Sarhani-Robles A. Suicidal vulnerability in older adults and the elderly: study based on risk variables. BJPsych Open 2022;8(3) View
  10. DEMİRCİ Ş, İÇEN D. Karar Ağaçları ve Bayes Ağları ile OECD Ülkelerindeki İntiharların Değerlendirilmesi. İstanbul Gelişim Üniversitesi Sosyal Bilimler Dergisi 2023;10(1):128 View
  11. Herp J, Braun J, Cantuaria M, Tashk A, Pedersen T, Poulsen M, Krogh M, Nadimi E, Sheikh S. Modeling of Electronic Health Records for Time-Variant Event Learning Beyond Bio-Markers—A Case Study in Prostate Cancer. IEEE Access 2023;11:50295 View
  12. Xu Y, Chan C, Chan E, Chen J, Cheung F, Xu Z, Liu J, Yip P. Tracking and Profiling Repeated Users Over Time in Text-Based Counseling: Longitudinal Observational Study With Hierarchical Clustering. Journal of Medical Internet Research 2024;26:e50976 View
  13. Nente Chávez F, Díaz Rodríguez M. Bioética en la salud mental. Dilemas actuales ante nuevas condiciones emergentes. Psiquiatría Biológica 2024;31(4):100508 View
  14. Mazeau L, Berrouiguet S. Droit et intelligence artificielle en psychiatrie. Éthique publique 2021;(vol. 23, n° 2) View