Published on in Vol 6, No 2 (2019): February

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/9819, first published .
Mobile Phone and Wearable Sensor-Based mHealth Approaches for Psychiatric Disorders and Symptoms: Systematic Review

Mobile Phone and Wearable Sensor-Based mHealth Approaches for Psychiatric Disorders and Symptoms: Systematic Review

Mobile Phone and Wearable Sensor-Based mHealth Approaches for Psychiatric Disorders and Symptoms: Systematic Review

Review

1Center for Life Course of Health Research, University of Oulu, Oulu, Finland

2Department of Mental and Substance Use Services, Eksote, Lappeenranta, Finland

3Ab.Acus srl, Milano, Italy

4Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland

5Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland

6Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland

7The Gertner Institute for Epidemiology and Health Policy Research, Tel Aviv, Israel

8Department of Psychiatry, Biomedical Research Institute Sant Pau (IIB-SANT PAU), Hospital Sant Pau, Barcelona, Spain

9Universitat Autònoma de Barcelona (UAB), Barcelona, Spain

10CIBERSAM, Madrid, Spain

11Fundació TIC Salut Social, Barcelona, Spain

12m-RESIST, Barcelona, Spain

*these authors contributed equally

Corresponding Author:

Maria Bulgheroni, MSc

Ab.Acus srl

Via Francesco Caracciolo 77

Milano,

Italy

Phone: 39 89693979

Email: mariabulgheroni@ab-acus.com


Background: Mobile Therapeutic Attention for Patients with Treatment-Resistant Schizophrenia (m-RESIST) is an EU Horizon 2020-funded project aimed at designing and validating an innovative therapeutic program for treatment-resistant schizophrenia. The program exploits information from mobile phones and wearable sensors for behavioral tracking to support intervention administration.

Objective: To systematically review original studies on sensor-based mHealth apps aimed at uncovering associations between sensor data and symptoms of psychiatric disorders in order to support the m-RESIST approach to assess effectiveness of behavioral monitoring in therapy.

Methods: A systematic review of the English-language literature, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, was performed through Scopus, PubMed, Web of Science, and the Cochrane Central Register of Controlled Trials databases. Studies published between September 1, 2009, and September 30, 2018, were selected. Boolean search operators with an iterative combination of search terms were applied.

Results: Studies reporting quantitative information on data collected from mobile use and/or wearable sensors, and where that information was associated with clinical outcomes, were included. A total of 35 studies were identified; most of them investigated bipolar disorders, depression, depression symptoms, stress, and symptoms of stress, while only a few studies addressed persons with schizophrenia. The data from sensors were associated with symptoms of schizophrenia, bipolar disorders, and depression.

Conclusions: Although the data from sensors demonstrated an association with the symptoms of schizophrenia, bipolar disorders, and depression, their usability in clinical settings to support therapeutic intervention is not yet fully assessed and needs to be scrutinized more thoroughly.

JMIR Ment Health 2019;6(2):e9819

doi:10.2196/mental.9819

Keywords



mHealth (ie, mobile health) is the intersection of electronic health and mobile devices for medicine and public health administration [1]. Many studies have actively exploited mHealth to provide questionnaires and qualitative feedback to facilitate treatment accessibility and participant retention or to monitor symptoms and treatment progress in a qualitative way. This is widely done using ecological momentary assessment (EMA) performed through e-diaries recording participants’ behavior. EMA collects self-report data through a variety of change-sensitive questionnaires [2-6]. However, self-monitoring has not always been shown to be a valid measurement of behavior. For example, a systematic review pointed out that electronic self-monitoring of mood among depression sufferers appeared to be a valid measure of mood in contrast to self-monitoring of mood among mania sufferers [7].

The rapid growth of smart-sensor integration in mobile phones and wearable devices has opened the prospect of increasing access to evidence-based mental health care. Mobile devices allow the collection of quantitative behavioral and functional markers in a transparent and unobtrusive way, providing an estimation of physiological and mental state [8-11]. A mobile phone-based approach may be valuable in gathering long-term objective data, aside from self-ratings, to predict changes in clinical states and to investigate causal inferences about state changes in patients (eg, those with affective disorders) [12].

In this review, the term sensor-based data includes the quantitative information supplied by the mobile phone and its embedded sensors. Information may range from acceleration to temperature and from light to pressure, but also from number of exchanged short message service (SMS) text messages to number of incoming and outgoing calls. Indeed, the variety of personal data, easily acquirable in this way, offers a unique opportunity to describe the person in terms of his or her lifestyle and behavior at the physical, cognitive, and environmental level [13,14].

Even if the evidence of association between sensor-based data and psychiatric disorder status and/or severity of psychiatric symptoms is limited and scattered [15-17], it is expected that appropriate management of these data may initiate a new trend in health care provision characterized by tailored and timely interventions [18].

Substantial treatment improvements have been achieved for several psychiatric disorders in the past decades. Nevertheless, the functional recovery of patients with schizophrenia is still low [19]. Treatment-resistant schizophrenia (TRS), especially, has a wide impact on the humanistic burden, which concerns patients and caregivers and involves several dimensions, such as quality of life, treatment side effects, caregiver burden, social impairment, suicide, violence, and healthy lifestyle [20]. Moreover, TRS patients show poor adherence to treatment-as-usual (TAU) intervention programs, which, in turn, cannot ensure continuity of assistance, immediacy of attention, tailored treatment, and caregivers’ integration [21]. In this context, the Mobile Therapeutic Attention for Patients with Treatment-Resistant Schizophrenia (m-RESIST) project [22] addresses patients with TRS by allowing caregivers and professionals to utilize mobile technology as part of the care process. These interventions determine a personalized flow of information based on a “Need 4 Help” scale and the stratification of patients depending on their risk level. m-RESIST is composed of three main parts: (1) a mobile phone connected to a smartwatch for patients and caregivers; (2) a Web-based dashboard for follow-up and monitoring by clinicians; and (3) a back-end system for managing data, interventions, and interactions between users [23].

The aim of this paper is to systematically review original studies on sensor-based data collection, targeting correlations between objective measurements of personal data and symptoms of psychiatric disorders to support the m-RESIST clinical approach. The main goal is to assess the perspective of integrated sensor-based mHealth interventions to deliver highly personalized mental care, monitoring the individual and his or her own modification along the way.


Overview

This systematic review has been performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [24]. Accordingly, strict eligibility criteria were applied in order to identify journal articles and reviews addressing the collection of sensor-based data in mental health and to investigate the association between sensor-based data and mental state. For a detailed description, see the PRISMA checklist in Multimedia Appendix 1.

Eligibility Criteria

Eligibility criteria are listed in Textbox 1.

Textbox 1. Eligibility criteria of papers to be included in this review.
  • Types of participants: papers that studied participants with mental disorder diagnoses or symptoms of mental disorders (eg, depression, anxiety, sleep disorders, psychotic disorders, stress, and panic disorders) were included; papers that studied participants without mental disorder diagnoses, but that analyzed participants to identify mental disorders or symptoms (eg, depression, anxiety, sleep disorders, and stress) were also included.
  • Types of methods: studies reporting transparent and unobtrusive monitoring using commercially available wearable sensors (eg, wristbands, bracelets, smartwatches, and mobile phones) were included. Studies describing Internet-based interventions, interactive voice-response technologies, and self-reporting interventions based on questionnaires without a sensor-based mobile app component were excluded. Furthermore, studies using obtrusive monitoring devices (eg, chest band and helmets) were also excluded.
  • Types of outcomes: studies reporting results associating mental health status and sensor-based data were included. Papers providing a description of the mobile app, but no statistical outcomes, were excluded.
  • Language and time frame: English-language full-text articles, reviews, and conference abstracts were included in the review. Considering the trend of technology evolution, papers published between January 1, 2009, and September 30, 2018, were included.

Information Sources, Search Strategy, and Study Selection

The search for papers was performed using the following electronic databases: Scopus, PubMed, Web of Science, and the Cochrane Central Register of Controlled Trials. The following combinations of search terms were used: (“mental health” OR “mental disorder” OR depression OR anxiety OR psychosis OR schizophrenia OR “treatment resistant schizophrenia” OR bipolar OR insomnia OR stress) AND (mobile OR smartphone) AND (monitor OR sensing OR sensor).

Results of the search were made available in Excel files and included the title, authors, source, date, and abstract for study selection. Duplicated studies were removed before starting the selection. An eligibility check was performed on the title, keywords, and abstract of each study. Full-text copies of all potentially relevant papers, or papers where there was insufficient information in the abstract to determine eligibility, were obtained.

Study selection, according to the eligibility criteria described in Textbox 1, was performed independently by two reviewers: one with a clinical background and one with technological background. There were no cases of disagreements between the two reviewers.

The extracted information consisted of the following: (1) sensors that were used; (2) computed parameters; (3) participants (ie, number and state of health); and (4) relation to clinical outcomes.


As summarized in Figure 1, a total of 345 unique records were found from PubMed, 1038 from Scopus, 1358 from Web of Science, and 385 from the Cochrane Central Register of Controlled Trials, for a total number of 3126 hits. In all, 522 duplicates among the four databases were identified and removed.

A total of 1967 additional records were excluded because they reported on other technologies and/or other scientific fields. Another 226 were excluded because they did not report on suitable wearable sensors or did not report on sensors at all. An additional 234 were excluded because they described mainly methodological issues (eg, protocols of analyses, mobile phone-based monitoring, and treatment apps) without suitable testing of subjects. Another 110 were excluded because they addressed pathologies, symptoms, and disorders outside of the mental health domain.

Altogether, 67 full-text papers were read; of these, 16 were excluded because they did not relate sensor data to health status assessment [25-40], while another six were feasibility studies with no relation to health status assessment [41-46].

In all, 35 articles were included in this review; two of them were complete reviews. One complete review addressed the association between a collection of behavioral features from mobile phones and wearable sensors with depressive mood symptoms in patients with affective disorders [47]. The other complete review addressed the use of digital health technology in the wider domain of serious mental illness [48]. Association of depressive mood symptoms with social behavior assessed through phone usage, physical activity measured through accelerometer and gyroscope, location measured by GPS, and overall device usage was not consistent across all studies [47,48]. The other 33 original papers are summarized in Table 1 [49-81].

Figure 1. Flowchart of study selection process.
Table 1. Summary of original papers.
SourceSample descriptionCollected dataRelated clinical measuresResults
Ben-Zeev et al [49]47 healthy subjectsGPS, accelerometer, gyroscope, microphone, and light sensorPHQ-9a, PSSb, and revised UCLAc loneliness scaleSpeech duration, sleep duration, and geospatial activity relate to PHQ-9; kinesthetic activity relates to UCLA loneliness scale.
Osmani V et al [50]9 subjects with bipolar disordersAccelerometer and gyroscopeHAMDd and YMRSePsychiatric assessment scores relate to physical activity level at specific time intervals of the day.
Chow P et al [51]72 healthy subjectsGPSSIASf and DASS-21gSocial anxiety and depression relate to time spent at home in specific time intervals of the day.
Boukhechba et al [52]54 healthy subjectsGPS, phone calls, and messagesSIASSocial anxiety relates to limited social life and reduced mobility.
Staples et al [53]17 subjects with schizophreniaAccelerometer and gyroscopePSQIhModerate correlation between sleep estimate and PSQI.
Sano et al [54]66 healthy subjectsAccelerometer, gyroscope, skin temperature, skin conductance, phone calls, messages, and screen on/offPSQI, Big Five Inventory Personality Test, MEQi, PSS, and MCS for mental healthjPSQI and stress relate to phone usage.
Sano et al [55]18 healthy subjectsGPS, accelerometer, gyroscope, skin conductance, phone calls, messages, and screen on/offPSS, PSQI, and Big Five Inventory Personality TestStress relates to phone usage and physical activities at specific time intervals of the day.
Stutz et al [56]15 healthy subjectsAccelerometer, gyroscope, light, app usage, and screen on/offPSSPSS relates mainly to phone usage.
Difrancesco et al [57]7 subjects with schizophreniaGPSBirchwood’s Social Functioning ScaleLocations detected through GPS relate well to the activities identified in the social functioning scale.
Osmani V [58]12 subjects with bipolar disordersGPS, accelerometer, gyroscope, and microphoneMental scale (not specifically defined)Physical activity and voice features relate to the patient’s state.
Renn B et al [59]600 subjects with depressionGPSPHQ-2kLimited association between mobility and depressive symptoms rating.
Mehrotra et all [60]25 healthy subjectsPhone notification management (eg, clicks, decision, and response time), phone calls, and app usagePHQ-8lModerate correlation between depression state and notification management as well as phone and app usage in a 14-day period; limited correlation on shorter periods of time.
Grunerbl et al [61]10 subjects with bipolar disordersGPS, accelerometer, gyroscope, microphone, and phone callsHAMD and YMRSGood relationship between sensor data and the patient’s state.
Saeb et al [62]28 healthy subjectsGPS and phone usagePHQ-9Good relationship between phone usage (ie, calls and duration) and depression symptoms as well as GPS processed data and depression symptoms.
Guidi et al [63]1 patient with bipolar disorderMicrophoneQIDm and YMRSNo clear relationship between voice features and clinical assessment.
Beiwinkel et al [64]13 subjects with bipolar disordersGPS, phone calls, and messagesHAMD and YMRSPhone usage relates positively to depression state while activity relates negatively to manic symptoms.
Wahle et al [65]126 healthy subjectsGPS, accelerometer, and phone usagePHQ-9Depression symptoms relate to mobile phone extracted features.
Shin et al [66]61 patients with schizophrenia, DSM-IVnFitbit (ie, activity tracker)PANSSoPsychiatric symptoms relate to lower activity level.
Palmius et al [67]29 subjects with bipolar disorders and 20 controlsGPSQIDLocation recordings relate to depressive episodes.
Abrantes et al [68]20 subjects with alcohol use disordersFitbit (ie, activity tracker)PHQ-9Physical activity correlates with reduction in the level of depression and anxiety.
Saeb et al [69]48 healthy subjectsGPSPHQ-9GPS correlates with depression differently on weekdays and weekends.
Place et al [70]73 subjects with at least one symptom of depressionGPS, accelerometer, gyroscope, phone calls, messages, microphone, and screen on/offSemi-structured clinical interviewPhysical activity and phone usage relate to depression symptoms.
Saeb et all [71]206 healthy subjectsGPS, accelerometer, gyroscope (Android activity-recognition APIp), light sensor, microphone, screen on/off, phone calls, and messagesPHQ-9 and GAD-7qNo consistent relationship between GPS-based semantic location and depression or anxiety.
Faurholt-Jepsen et al [72]61 subjects with bipolar disordersPhone calls and messagesHAMD and YMRSSignificant correlation between depressive and manic symptoms and phone usage.
Sabatelli et al [73]7 subjects with bipolar disordersWi-Fi-based positionHAMD and YMRSWeak negative correlation between staying in clinics and self-reported state.
Rabbi et al [74]8 healthy subjects (elders)Accelerometer, gyroscope, barometer, and microphoneFriendship Scale, SF-36r, CES-Ds, and YPAStNo clear relationship between sensor data and administered assessment scales.
Doryab et al [75]3 healthy subjectsGPS, accelerometer, gyroscope, microphone, and light sensorCES-DCorrelation between depression scales and sensor data.
Farhan et al [76]60 healthy subjectsGPS, accelerometer, gyroscope, microphone, phone lock and unlock, light sensor, and phone call durationPHQ-9Correlation between PHQ-9 scores and all the sensor data is pointed out.
Canzian et al [77]28 healthy subjectsGPSPHQ-8Significant correlation between mobility patterns and depressive mood.
Zulueta et al [78]16 subjects with bipolar disordersPhone keyboard usageHAMD and YMRSAccelerometer activity while typing, number of exchanged messages, and typing errors correlate with depression and mania scores.
Sano et al [79]201 healthy subjectsSkin conductance, skin temperature, accelerometer, ambient light, GPS, phone calls, messages, app usage, and phone lock and unlockPSS and MCSuSkin conductance relates to MCS, skin temperature, and phone usage timing and duration; GPS relates both to PSS and MCS.
Tron et al [80]25 subjects with schizophrenia, DSM-IVAccelerometer, light, temperaturePANSSPhysical activity relates to PANSS.
Cella et al [81]30 subjects with schizophrenia, DSM-IV, and 25 controlsAccelerometer, skin conductance, heart rate variability, and interbeat intervalsPANSSInterbeat intervals negatively correlate with positive symptoms; movement negatively correlates with negative symptoms.

aPHQ-9: Patient Health Questionnaire-9.

bPSS: Perceived Stress Scale.

cUCLA: University of California, Los Angeles.

dHAMD: Hamilton Depression Rating Scale.

eYMRS: Young Mania Rating Scale.

fSIAS: Social Interaction Anxiety Scale.

gDASS-21: Depression, Anxiety, and Stress Scale.

hPSQI: Pittsburgh Sleep Quality Index.

iMEQ: Horne-Ostberg Morningness-Eveningness Questionnaire.

jMCS for mental health: Short Form-12 Physical and Mental Health Composite Scale.

kPHQ-2: Patient Health Questionnaire-2.

lPHQ-8: Patient Health Questionnaire-8.

mQID: Quick Inventory of Depression.

nDSM-IV: Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition.

oPANSS: Positive and Negative Syndrome Scale.

pAPI: application programming interface.

qGAD-7: General Anxiety Disorder questionnaire.

rSF-36: Short Form-36 Health Survey.

sCES-D: Center for Epidemiologic Studies-Depression scale.

tYPAS: Yale Physical Activity Survey.

uMCS: Mental Component Summary.

Only five studies addressing schizophrenia were included in this review [53,57,66,80,81]. None of them included patients with treatment-resistant schizophrenia. Early studies by Ben-Zeev et al [34,49] analyzed patients’ location, activity, and speech, but did not associate sensor data to the severity of symptoms. Difrancesco et al [57] implemented a time-based method and a density-based method to identify the geolocations visited by 5 schizophrenic patients, detecting patients’ out-of-home activities with moderate recall. Staples et al [53] investigated sleep estimation of 17 patients by comparing the Pittsburgh Sleep Quality Index (PSQI), EMAs, and accelerometer data, but did not address the severity of symptoms. Psychiatric symptoms evaluated by the Positive and Negative Syndrome Scale (PANSS) among those with schizophrenia were related to lower activity level [66,80,81], while interbeat intervals correlated negatively with positive symptoms [81].

Nine studies were conducted among bipolar disorder patients [50,58,61,63,64,67,72,73,78]. Among those with bipolar disorder, physical activity was related to psychiatric assessment scores [50,58,61], but the association of voice features and patients’ psychiatric evaluation was incongruent [58,63]. A correlation between depressive and manic symptoms and phone usage was also detected [64,72]. Location recordings correlated with depressive symptoms and a weak negative association between staying in clinics and self-reported state was found [67,73]. Typing features (ie, interkey delay, backspace ratio, and autocorrect rate) were positively related to depression and mania [78].

Most of the other included studies referred to depression [59,70] or symptoms of depression and anxiety in healthy subjects [49,51,52,54-56,60,62,65,68,69,71,74-77,79]. In one study, a limited association was found between mobility and ratings of depressive symptoms [59], while physical activity and phone usage were related to depressive symptoms in another [70]. In healthy subjects with symptoms of depression and anxiety, several data such as speech, sleep duration, mobility, and phone usage were related to severity of symptoms [49,51,52,54-56,60,62,65,74-77], while GPS-based semantic location did not correlate with depression or anxiety [71].


Principal Findings

The data from sensors were associated with symptoms of schizophrenia, bipolar disorder, and depression. This may have the potential to change the nature of identification, follow-up, and treatment of mental disorders. Early identification of behavioral markers of psychiatric disorders may allow health care providers to react early to patients’ needs and deliver personalized dynamic treatment.

This systematic review uncovered a broad investigation, but still limited use, of data coming from mobile phones and wearable sensors to support therapeutic intervention for psychiatric disorders or for psychiatric symptoms. This review showed a high variability in participant selection criteria, investigation protocols, and data processing techniques, which limits the generalizability of the identified associations between sensor-based data and clinical assessment. This was also seen in three recent studies in the area of passive sensing in the mental health domain and the wider health care domain [13,47,82]. The available studies in this review often had methodological limitations (eg, small sample size, variations in the number of observations or monitoring duration, lack of randomized control group, and heterogeneity of methods).

In addition, there were issues related to usability of sensors and acceptance by patients; risks (eg, they may increase psychotic experiences and fears), feasibility (eg, psychiatric patients may have cognitive and economic limitations), risk-benefit ratio, costs, and health economics were not widely investigated. Also, potential biases in measurements due to the individual usage of the devices were only marginally addressed in most of the selected papers; for example, practical mobile phone use modalities (eg, only at work or at home) or reliability of wearable sensors (eg, a tight or loose smartwatch bracelet).

On the other hand, current psychiatric evaluation is strongly limited by assessment through scales on the day of the visit with the clinician and not necessary during a crisis (eg, “bad day” or relapse situation); it does not appropriately reflect the subjective experience of the patient nor the impact of the treatment in real life. The benefits of sensor-based data information may also be useful among those with TRS, as they show poor adherence to TAU programs of intervention; TAU intervention programs cannot ensure continuity of assistance, immediacy of attention, tailored treatment, and caregiver integration [21].

The data collected from sensors is expected to strongly contribute to behavioral monitoring and mental status assessment over time on an individual basis in a transparent way. Within an intraperson investigation, the data may be used as a trigger to personalized interventions facilitating the implementation of remote psychiatric therapeutic programs. It is expected that the long-term analysis of sensor-based data, building on a personal baseline and assessing individual modifications, may play a key role in clinical applications [14]. To realize this, all aspects of mobile phone sensor technology should be thoroughly investigated. Studies using rigorous methodology are needed to investigate the beneficial as well as the harmful effects of extracting behavioral markers of psychiatric disorders or symptoms from sensor-based data.

m-RESIST Project Contribution

Building on the results of this review, m-RESIST set up a framework to create a clinical decision support system (CDSS) based on a mobile therapeutic intervention for schizophrenic patients. The CDSS is designed to provide the users with necessary information to support health-related and clinical decision-making. The system utilizes available data sources in order to assess the patient’s condition using decision algorithms and, as a result, classify the clinical condition in order to provide clinical and lifestyle recommendations. The CDSS starts with a training period of two weeks, during which sensor-based data are collected, without activation of further system actions, in order to assess the patient’s baseline. Once trained, the system monitors the changes against the baseline. The functionality of the CDSS is based on the workflows developed by expert clinicians, reflecting the process of interaction between the system and its users in order to establish novel health care pathways. The CDSS activation is triggered by an event (ie, change in the baseline value) that is interpreted in a context of additional information that exists regarding a specific patient (ie, records in the patient’s file and information regarding attendance of scheduled visits) and a series of predefined conditions and actions [83].

The features supplied by sensor data that are used to trigger the CDSS are as follows: app number and duration of incoming, outgoing, and missed calls; number of incoming and outgoing SMS text messages by mobile phone; amount of time spent at home and in other places, measured by GPS data; and amount of time sleeping measured by physiological heart rate [83].

Conclusions

The data from sensors are associated with symptoms of schizophrenia, bipolar disorder, and depression, but their usability in clinical practice needs to be scrutinized more thoroughly. m-RESIST aims to support intervention administration by sensor-based data in TRS. m-RESIST also plans to go a step further in remote therapy management of TRS by implementing a CDSS to correlate clinical information and sensor-based data. In m-RESIST, a mental status evaluation based on the most common perceptions and risk behaviors of patients with schizophrenia has been developed, together with the usual clinical scales. A pilot study has been carried out and its results are under analysis.

Acknowledgments

This work was supported by the Horizon 2020 Framework Programme of the European Union (grant number 643552) and was partly funded by Fonds Européen de Développement Économique et Régional (FEDER) and Centres de Recerca de Catalunya (CERCA) Programme, Generalitat de Catalunya. We are grateful to all members of the m-RESIST project, who are also collaborative authors of this review under the name of m-RESIST Group.

The m-RESIST Group is composed of the following members: Francisco Alcalde, Caritat Almazán, Anna Alonso-Solís, Jesús Berdún, István Bitter, Walter Baccinelli, Maria Bulgheroni, Johanna Caro Mendivelso, Asaf Caspi, Tanguy Coenen, Xavier Constant, Iluminada Corripio, Enrico d'Amico, Ilaria De Vita, Marisol Escobar, Kinga Farkas, Kata Fazekas, Shenja van der Graaf, Eva Grasa, Margarita Hospedales, Elena Huerta-Ramos, Matti Isohanni, Erika Jääskeläinen, Charlotte Jewel, Teija Juola, Timo Jämsä, Rachelle Kaye, Panagiotis Kokkinakis, Hannu J Koponen, Silvia Marcó, Gregoris Mentzas, Jouko Miettunen, Jani Moilanen, Susana Ochoa, Ilias Papas, Fotis Paraskevopoulos, Elisabeth Reixach, Katya Rubinstein, Elena Rubio-Abadal, Garifalia Sebú, Annika Seppälä, Jussi Seppälä, Valentina Simonetti, Matthias Stevens, Anna Triantafillou, Zsolt Szabolcs Unoka, Judith Usall, Vincenzo Vella, and David Vermeir.

Conflicts of Interest

None declared.

Multimedia Appendix 1

PRISMA checklist.

DOCX File, 15KB

  1. Adibi S. Introduction. In: Adibi S, editor. Mobile Health: A Technology Road Map. Cham, Switzerland. Springer International Publishing; 2015:1-10.
  2. Donker T, Petrie K, Proudfoot J, Clarke J, Birch MR, Christensen H. Smartphones for smarter delivery of mental health programs: A systematic review. J Med Internet Res. Nov 15, 2013;15(11):e247. [FREE Full text] [CrossRef] [Medline]
  3. Reid SC, Kauer SD, Hearps SJC, Crooke AHD, Khor AS, Sanci LA, et al. A mobile phone application for the assessment and management of youth mental health problems in primary care: Health service outcomes from a randomised controlled trial of mobiletype. BMC Fam Pract. Jun 19, 2013;14:84. [FREE Full text] [CrossRef] [Medline]
  4. Forchuk C, Donelle L, Ethridge P, Warner L. Client perceptions of the mental health engagement network: A secondary analysis of an intervention using smartphones and desktop devices for individuals experiencing mood or psychotic disorders in Canada. JMIR Ment Health. 2015;2(1):e1. [FREE Full text] [CrossRef] [Medline]
  5. Turvey C, Fortney J. The use of telemedicine and mobile technology to promote population health and population management for psychiatric disorders. Curr Psychiatry Rep. Oct 16, 2017;19(11):88. [CrossRef] [Medline]
  6. Bell IH, Lim MH, Rossell SL, Thomas N. Ecological momentary assessment and intervention in the treatment of psychotic disorders: A systematic review. Psychiatr Serv. Nov 01, 2017;68(11):1172-1181. [CrossRef] [Medline]
  7. Faurholt-Jepsen M, Munkholm K, Frost M, Bardram JE, Kessing LV. Electronic self-monitoring of mood using IT platforms in adult patients with bipolar disorder: A systematic review of the validity and evidence. BMC Psychiatry. Jan 15, 2016;16:7. [FREE Full text] [CrossRef] [Medline]
  8. Treisman GJ, Jayaram G, Margolis RL, Pearlson GD, Schmidt CW, Mihelish GL, et al. Perspectives on the use of eHealth in the management of patients with schizophrenia. J Nerv Ment Dis. Dec 2016;204(8):620-629. [FREE Full text] [CrossRef] [Medline]
  9. Gaggioli A, Riva G. From mobile mental health to mobile well-being: Opportunities and challenges. Stud Health Technol Inform. 2013;184:141-147. [Medline]
  10. Mohr DC, Zhang M, Schueller SM. Personal sensing: Understanding mental health using ubiquitous sensors and machine learning. Annu Rev Clin Psychol. Dec 08, 2017;13:23-47. [CrossRef] [Medline]
  11. Kimhy D, Myin-Germeys I, Palmier-Claus J, Swendsen J. Mobile assessment guide for research in schizophrenia and severe mental disorders. Schizophr Bull. May 2012;38(3):386-395. [FREE Full text] [CrossRef] [Medline]
  12. Dogan E, Sander C, Wagner X, Hegerl U, Kohls E. Smartphone-based monitoring of objective and subjective data in affective disorders: Where are we and where are we going? Systematic review. J Med Internet Res. Dec 24, 2017;19(7):e262. [FREE Full text] [CrossRef] [Medline]
  13. Cornet VP, Holden RJ. Systematic review of smartphone-based passive sensing for health and well-being. J Biomed Inform. Dec 2018;77:120-132. [FREE Full text] [CrossRef] [Medline]
  14. Torous J, Staples P, Barnett I, Sandoval L, Keshavan M, Onnela J. Characterizing the clinical relevance of digital phenotyping data quality with applications to a cohort with schizophrenia. NPH Digit Med. Apr 6, 2018;1(1):15. [CrossRef]
  15. Or F, Torous J, Onnela JP. High potential but limited evidence: Using voice data from smartphones to monitor and diagnose mood disorders. Psychiatr Rehabil J. Dec 2017;40(3):320-324. [CrossRef] [Medline]
  16. Abdullah S, Choudhury T. Sensing technologies for monitoring serious mental illnesses. IEEE Multimed. Jan 2018;25(1):61-75. [CrossRef]
  17. Aung MH, Matthews M, Choudhury T. Sensing behavioral symptoms of mental health and delivering personalized interventions using mobile technologies. Depress Anxiety. Dec 2017;34(7):603-609. [FREE Full text] [CrossRef] [Medline]
  18. Boonstra TW, Nicholas J, Wong QJ, Shaw F, Townsend S, Christensen H. Using mobile phone sensor technology for mental health research: Integrated analysis to identify hidden challenges and potential solutions. J Med Internet Res. Jul 30, 2018;20(7):e10131. [FREE Full text] [CrossRef] [Medline]
  19. Jääskeläinen E, Juola PN, Hirvonen N, McGrath JJ, Saha S, Isohanni M, et al. A systematic review and meta-analysis of recovery in schizophrenia. Schizophr Bull. Nov 2013;39(6):1296-1306. [FREE Full text] [CrossRef] [Medline]
  20. Millier A, Schmidt U, Angermeyer MC, Chauhan D, Murthy V, Toumi M, et al. Humanistic burden in schizophrenia: A literature review. J Psychiatr Res. Jul 2014;54:85-93. [FREE Full text] [CrossRef] [Medline]
  21. Wimberley T, Støvring H, Sørensen HJ, Horsdal HT, MacCabe JH, Gasse C. Predictors of treatment resistance in patients with schizophrenia: A population-based cohort study. Lancet Psychiatry. Apr 2016;3(4):358-366. [CrossRef] [Medline]
  22. m-RESIST. URL: https://www.mresist.eu/ [accessed 2019-01-29] [WebCite Cache]
  23. Huerta-Ramos E, Escobar-Villegas MS, Rubinstein K, Unoka ZS, Grasa E, Hospedales M, M-RESIST Group, et al. Measuring users' receptivity toward an integral intervention model based on mHealth solutions for patients with treatment-resistant schizophrenia (m-RESIST): A qualitative study. JMIR Mhealth Uhealth. Sep 28, 2016;4(3):e112. [FREE Full text] [CrossRef] [Medline]
  24. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. Jul 21, 2009;6(7):e1000100. [FREE Full text] [CrossRef] [Medline]
  25. Abdullah S, Matthews M, Frank E, Doherty G, Gay G, Choudhury T. Automatic detection of social rhythms in bipolar disorder. J Am Med Inform Assoc. Dec 2016;23(3):538-543. [CrossRef] [Medline]
  26. Barnett I, Torous J, Staples P, Sandoval L, Keshavan M, Onnela JP. Relapse prediction in schizophrenia through digital phenotyping: A pilot study. Neuropsychopharmacology. Dec 2018;43(8):1660-1666. [CrossRef] [Medline]
  27. Ben-Zeev D, Brian R, Wang R, Wang W, Campbell AT, Aung MSH, et al. CrossCheck: Integrating self-report, behavioral sensing, and smartphone use to identify digital indicators of psychotic relapse. Psychiatr Rehabil J. Dec 2017;40(3):266-275. [FREE Full text] [CrossRef] [Medline]
  28. Zhang J, Tang H, Chen D, Zhang Q. deStress: Mobile and remote stress monitoring, alleviation, and management platform. In: Proceedings of the 2012 IEEE Global Communications Conference (GLOBECOM). 2012. Presented at: 2012 IEEE Global Communications Conference (GLOBECOM); December 3-7, 2012:2036-2041; Anaheim, CA. [CrossRef]
  29. Wang R, Chen F, Chen Z, Li T, Harari G, Tignor S, et al. StudentLife: Assessing mental health, academic performance and behavioral trends of college students using smartphones. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing. 2014. Presented at: 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing; September 13-17, 2014:3-14; Seattle, WA. [CrossRef]
  30. Sarker H, Tyburski M, Rahman MM, Hovsepian K, Sharmin M, Epstein DH, et al. Finding significant stress episodes in a discontinuous time series of rapidly varying mobile sensor data. Proc SIGCHI Conf Hum Factor Comput Syst. May 2016;2016:4489-4501. [FREE Full text] [CrossRef] [Medline]
  31. Tseng VWS, Merrill M, Wittleder F, Abdullah S, Aung MH, Choudhury T. Assessing mental health issues on college campuses: Preliminary findings from a pilot study. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. 2016. Presented at: 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing; September 12-16, 2016:1200-1208; Heidelberg, Germany.
  32. Li CT, Cao J, Li TMH. Eustress or distress: An empirical study of perceived stress in everyday college life. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct. 2016. Presented at: 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct; September 12-16, 2016:1209-1217; Heidelberg, Germany.
  33. Kerz M, Folarin A, Meyer N, Begale M, MacCabe J, Dobson RJ. SleepSight: A wearables-based relapse prevention system for schizophrenia. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct. 2016. Presented at: 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct; September 12-16, 2016:113-116; Heidelberg, Germany.
  34. Ben-Zeev D, Wang R, Abdullah S, Brian R, Scherer EA, Mistler LA, et al. Mobile behavioral sensing for outpatients and inpatients with schizophrenia. Psychiatr Serv. Dec 01, 2016;67(5):558-561. [FREE Full text] [CrossRef] [Medline]
  35. van Breda W, Pastor J, Hoogendoorn M, Ruwaard J, Asselbergs J, Riper H. Exploring and comparing machine learning approaches for predicting mood over time. In: Chen YW, Tanaka S, Howlett RJ, Jain LC, editors. Innovation in Medicine and Healthcare 2016. Cham, Switzerland. Springer International Publishing; 2016:37-47.
  36. Burns MN, Begale M, Duffecy J, Gergle D, Karr CJ, Giangrande E, et al. Harnessing context sensing to develop a mobile intervention for depression. J Med Internet Res. Aug 12, 2011;13(3):e55. [FREE Full text] [CrossRef] [Medline]
  37. Ben-Zeev D, Scherer EA, Brian RM, Mistler LA, Campbell AT, Wang R. Use of multimodal technology to identify digital correlates of violence among inpatients with serious mental illness: A pilot study. Psychiatr Serv. Oct 01, 2017;68(10):1088-1092. [FREE Full text] [CrossRef] [Medline]
  38. Wang R, Aung MSH, Abdullah S, Brian R, Campbell AT, Choudhury T, et al. CrossCheck: Toward passive sensing and detection of mental health changes in people with schizophrenia. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. 2016. Presented at: 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing; September 12-16, 2016:886-897; Heidelberg, Germany.
  39. Matthews M, Abdullah S, Murnane E, Voida S, Choudhury T, Gay G, et al. Development and evaluation of a smartphone-based measure of social rhythms for bipolar disorder. Assessment. Dec 2016;23(4):472-483. [FREE Full text] [CrossRef] [Medline]
  40. Lawanont W, Mongkolnam P, Nukoolkit C, Inoue M. Daily stress recognition system using activity tracker and smartphone based on physical activity and heart rate data. In: Czarnowski I, Howlett R, Jain L, Vlacic L, editors. Intelligent Decision Technologies 2018. Cham, Switzerland. Springer International Publishing; 2019:11-21.
  41. Naslund JA, Aschbrenner KA, Barre LK, Bartels SJ. Feasibility of popular mHealth technologies for activity tracking among individuals with serious mental illness. Telemed J E Health. Mar 2015;21(3):213-216. [FREE Full text] [CrossRef] [Medline]
  42. Bauer G, Lukowicz P. Can smartphones detect stress-related changes in the behaviour of individuals? In: Proceedings of the 2012 IEEE International Conference on Pervasive Computing and Communications Workshops. 2012. Presented at: 2012 IEEE International Conference on Pervasive Computing and Communications Workshops; March 19-23, 2012:213-216; Lugano, Switzerland.
  43. Prociow PA, Crowe JA. Towards personalised ambient monitoring of mental health via mobile technologies. Technol Health Care. 2010;18(4-5):275-284. [CrossRef] [Medline]
  44. Bachmann A, Klebsattel C, Budde M, Riedel T, Beigl M, Reichert M, et al. How to use smartphones for less obtrusive ambulatory mood assessment and mood recognition. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing. 2015. Presented at: 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing; September 7-11, 2015:693-702; Osaka, Japan.
  45. DeMasi O, Feygin S, Dembo A, Aguilera A, Recht B. Well-being tracking via smartphone-measured activity and sleep: Cohort study. JMIR Mhealth Uhealth. Oct 05, 2017;5(10):e137. [FREE Full text] [CrossRef] [Medline]
  46. Hetrick SE, Robinson J, Burge E, Blandon R, Mobilio B, Rice SM, et al. Youth codesign of a mobile phone app to facilitate self-monitoring and management of mood symptoms in young people with major depression, suicidal ideation, and self-harm. JMIR Ment Health. Jan 23, 2018;5(1):e9. [FREE Full text] [CrossRef] [Medline]
  47. Rohani DA, Faurholt-Jepsen M, Kessing LV, Bardram JE. Correlations between objective behavioral features collected from mobile and wearable devices and depressive mood symptoms in patients with affective disorders: Systematic review. JMIR Mhealth Uhealth. Aug 13, 2018;6(8):e165. [FREE Full text] [CrossRef] [Medline]
  48. Batra S, Baker RA, Wang T, Forma F, DiBiasi F, Peters-Strickland T. Digital health technology for use in patients with serious mental illness: A systematic review of the literature. Med Devices (Auckl). 2017;10:237-251. [FREE Full text] [CrossRef] [Medline]
  49. Ben-Zeev D, Scherer EA, Wang R, Xie H, Campbell AT. Next-generation psychiatric assessment: Using smartphone sensors to monitor behavior and mental health. Psychiatr Rehabil J. Sep 2015;38(3):218-226. [FREE Full text] [CrossRef] [Medline]
  50. Osmani V, Maxhuni A, Grünerbl A, Lukowicz P, Haring C, Mayora O. Monitoring activity of patients with bipolar disorder using smart phones. In: Proceedings of the International Conference on Advances in Mobile Computing & Multimedia. 2013. Presented at: International Conference on Advances in Mobile Computing & Multimedia; December 2-4, 2013; Vienna, Austria.
  51. Chow PI, Fua K, Huang Y, Bonelli W, Xiong H, Barnes LE, et al. Using mobile sensing to test clinical models of depression, social anxiety, state affect, and social isolation among college students. J Med Internet Res. Dec 03, 2017;19(3):e62. [FREE Full text] [CrossRef] [Medline]
  52. Boukhechba M, Huang Y, Chow P, Fua K, Teachman BA, Barnes LE. Monitoring social anxiety from mobility and communication patterns. In: Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing. 2017. Presented at: 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing; September 11-15, 2017:749-753; Maui, HI.
  53. Staples P, Torous J, Barnett I, Carlson K, Sandoval L, Keshavan M, et al. A comparison of passive and active estimates of sleep in a cohort with schizophrenia. NPJ Schizophr. Oct 16, 2017;3(1):37. [FREE Full text] [CrossRef] [Medline]
  54. Sano A, Phillips AJ, Yu AZ, McHill AW, Taylor S, Jaques N, et al. Recognizing academic performance, sleep quality, stress level, and mental health using personality traits, wearable sensors and mobile phones. Int Conf Wearable Implant Body Sens Netw. Jun 2015;2015. [FREE Full text] [CrossRef] [Medline]
  55. Sano A, Picard RW. Stress recognition using wearable sensors and mobile phones. In: Proceedings of the 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction. 2013. Presented at: 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction; September 2-5, 2013:671-676; Geneva, Switzerland.
  56. Stütz T, Kowar T, Kager M, Tiefengrabner M, Stuppner M, Blechert J, et al. Smartphone-based stress prediction. In: Proceedings of the International Conference on User Modeling, Adaptation, and Personalization. 2015. Presented at: International Conference on User Modeling, Adaptation, and Personalization; June 29-July 3, 2015:240-251; Dublin, Ireland.
  57. Difrancesco S, Fraccaro P, van der Veer SN, Alshoumr B, Ainsworth J, Bellazzi R, et al. Out-of-home activity recognition from GPS data in schizophrenic patients. In: Proceedings of the 2016 IEEE 29th International Symposium on Computer-Based Medical Systems (CBMS). 2016. Presented at: 2016 IEEE 29th International Symposium on Computer-Based Medical Systems (CBMS); June 20-23, 2016; Dublin, Ireland and Belfast, Northern Ireland.
  58. Osmani V. Smartphones in mental health: Detecting depressive and manic episodes. IEEE Pervasive Comput. Jul 2015;14(3):10-13. [CrossRef]
  59. Renn BN, Pratap A, Atkins DC, Mooney SD, Areán PA. Smartphone-based passive assessment of mobility in depression: Challenges and opportunities. Ment Health Phys Act. Mar 2018;14:136-139. [CrossRef] [Medline]
  60. Mehrotra A, Hendley R, Musolesi M. Towards multi-modal anticipatory monitoring of depressive states through the analysis of human-smartphone interaction. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. 2016. Presented at: 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing; September 12-16, 2016:1132-1138; Heidelberg, Germany.
  61. Grünerbl A, Muaremi A, Osmani V, Bahle G, Ohler S, Tröster G, et al. Smartphone-based recognition of states and state changes in bipolar disorder patients. IEEE J Biomed Health Inform. Jan 2015;19(1):140-148. [CrossRef] [Medline]
  62. Saeb S, Zhang M, Karr CJ, Schueller SM, Corden ME, Kording KP, et al. Mobile phone sensor correlates of depressive symptom severity in daily-life behavior: An exploratory study. J Med Internet Res. Jul 15, 2015;17(7):e175. [FREE Full text] [CrossRef] [Medline]
  63. Guidi A, Salvi S, Ottaviano M, Gentili C, Bertschy G, de Rossi D, et al. Smartphone application for the analysis of prosodic features in running speech with a focus on bipolar disorders: System performance evaluation and case study. Sensors (Basel). Nov 06, 2015;15(11):28070-28087. [FREE Full text] [CrossRef] [Medline]
  64. Beiwinkel T, Kindermann S, Maier A, Kerl C, Moock J, Barbian G, et al. Using smartphones to monitor bipolar disorder symptoms: A pilot study. JMIR Ment Health. Jan 06, 2016;3(1):e2. [FREE Full text] [CrossRef] [Medline]
  65. Wahle F, Kowatsch T, Fleisch E, Rufer M, Weidt S. Mobile sensing and support for people with depression: A pilot trial in the wild. JMIR Mhealth Uhealth. Sep 21, 2016;4(3):e111. [FREE Full text] [CrossRef] [Medline]
  66. Shin S, Yeom CW, Shin C, Shin JH, Jeong JH, Shin JU, et al. Activity monitoring using a mHealth device and correlations with psychopathology in patients with chronic schizophrenia. Psychiatry Res. Dec 30, 2016;246:712-718. [CrossRef] [Medline]
  67. Palmius N, Tsanas A, Saunders KEA, Bilderbeck AC, Geddes JR, Goodwin GM, et al. Detecting bipolar depression from geographic location data. IEEE Trans Biomed Eng. Dec 2017;64(8):1761-1771. [FREE Full text] [CrossRef] [Medline]
  68. Abrantes AM, Blevins CE, Battle CL, Read JP, Gordon AL, Stein MD. Developing a Fitbit-supported lifestyle physical activity intervention for depressed alcohol-dependent women. J Subst Abuse Treat. Dec 2017;80:88-97. [FREE Full text] [CrossRef] [Medline]
  69. Saeb S, Lattie EG, Schueller SM, Kording KP, Mohr DC. The relationship between mobile phone location sensor data and depressive symptom severity. PeerJ. 2016;4:e2537. [FREE Full text] [CrossRef] [Medline]
  70. Place S, Blanch-Hartigan D, Rubin C, Gorrostieta C, Mead C, Kane J, et al. Behavioral indicators on a mobile sensing platform predict clinically validated psychiatric symptoms of mood and anxiety disorders. J Med Internet Res. Dec 16, 2017;19(3):e75. [FREE Full text] [CrossRef] [Medline]
  71. Saeb S, Lattie EG, Kording KP, Mohr DC. Mobile phone detection of semantic location and its relationship to depression and anxiety. JMIR Mhealth Uhealth. Aug 10, 2017;5(8):e112. [FREE Full text] [CrossRef] [Medline]
  72. Faurholt-Jepsen M, Vinberg M, Frost M, Christensen EM, Bardram JE, Kessing LV. Smartphone data as an electronic biomarker of illness activity in bipolar disorder. Bipolar Disord. Nov 2015;17(7):715-728. [CrossRef] [Medline]
  73. Sabatelli M, Osmani V, Mayora O, Gruenerbl A, Lukowicz P. Correlation of significant places with self-reported state of bipolar disorder patients. In: Proceedings of the 2014 4th International Conference on Wireless Mobile Communication and Healthcare: Transforming Healthcare Through Innovations in Mobile and Wireless Technologies (MOBIHEALTH). 2014. Presented at: 2014 4th International Conference on Wireless Mobile Communication and Healthcare - Transforming Healthcare Through Innovations in Mobile and Wireless Technologies (MOBIHEALTH); November 3-5, 2014:116-119; Athens, Greece.
  74. Rabbi M, Ali S, Choudhury T, Berke E. Passive and in-situ assessment of mental and physical well-being using mobile sensors. Proc ACM Int Conf Ubiquitous Comput. 2011;2011:385-394. [FREE Full text] [CrossRef] [Medline]
  75. Doryab A, Min JK, Wiese J, Zimmerman J, Hong J. Detection of behavior change in people with depression. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI-14). 2014. Presented at: 28th AAAI Conference on Artificial Intelligence (AAAI-14); July 27-31, 2014:14-16; Quebec City, QC.
  76. Farhan AA, Lu J, Bi J, Russell A, Wang B, Bamis A. Multi-view bi-clustering to identify smartphone sensing features indicative of depression. In: Proceedings of the 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE). 2016. Presented at: 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE); June 27-29, 2016; Arlington, VA.
  77. Canzian L, Musolesi M. Trajectories of depression: Unobtrusive monitoring of depressive states by means of smartphone mobility traces analysis. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing. 2015. Presented at: 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing; September 7-11, 2015:1293-1304; Osaka, Japan.
  78. Zulueta J, Piscitello A, Rasic M, Easter R, Babu P, Langenecker SA, et al. Predicting mood disturbance severity with mobile phone keystroke metadata: A biaffect digital phenotyping study. J Med Internet Res. Jul 20, 2018;20(7):e241. [FREE Full text] [CrossRef] [Medline]
  79. Sano A, Taylor S, McHill AW, Phillips AJ, Barger LK, Klerman E, et al. Identifying objective physiological markers and modifiable behaviors for self-reported stress and mental health status using wearable sensors and mobile phones: Observational study. J Med Internet Res. Jun 08, 2018;20(6):e210. [FREE Full text] [CrossRef] [Medline]
  80. Tron T, Resheff YS, Bazhmin M, Peled A, Weinshall D. Real-time schizophrenia monitoring using wearable motion-sensitive devices. In: Proceedings of the 7th International Conference, MobiHealth 2017. 2018. Presented at: 7th International Conference, MobiHealth 2017; November 14-15, 2017:242-249; Vienna, Austria. [CrossRef]
  81. Cella M, Okruszek Ł, Lawrence M, Zarlenga V, He Z, Wykes T. Using wearable technology to detect the autonomic signature of illness severity in schizophrenia. Schizophr Res. Dec 2018;195:537-542. [FREE Full text] [CrossRef] [Medline]
  82. Faurholt-Jepsen M, Bauer M, Kessing LV. Smartphone-based objective monitoring in bipolar disorder: Status and considerations. Int J Bipolar Disord. Jan 23, 2018;6(1):6. [FREE Full text] [CrossRef] [Medline]
  83. Alonso-Solís A, Rubinstein K, Corripio I, Jaaskelainen E, Seppälä A, Vella VA, m-RESIST Group, et al. Mobile therapeutic attention for treatment-resistant schizophrenia (m-RESIST): A prospective multicentre feasibility study protocol in patients and their caregivers. BMJ Open. Jul 16, 2018;8(7):e021346. [FREE Full text] [CrossRef] [Medline]


API: application programming interface
CDSS: clinical decision support system
CERCA: Centres de Recerca de Catalunya
CES-D: Center for Epidemiologic Studies-Depression scale
DASS-21: Depression, Anxiety, and Stress Scale
DSM-IV: Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition
FEDER: Fonds Européen de Développement Économique et Régional
GAD-7: General Anxiety Disorder questionnaire
EMA: ecological momentary assessment
HAMD: Hamilton Depression Rating Scale
MCS: Mental Component Summary
MCS for mental health: Short Form-12 Physical and Mental Health Composite Scale
MEQ: Horne-Ostberg Morningness-Eveningness Questionnaire
m-RESIST: Mobile Therapeutic Attention for Patients with Treatment-Resistant Schizophrenia
PANSS: Positive and Negative Syndrome Scale
PHQ-2: Patient Health Questionnaire-2
PHQ-8: Patient Health Questionnaire-8
PHQ-9: Patient Health Questionnaire-9
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
PSQI: Pittsburgh Sleep Quality Index
PSS: Perceived Stress Scale
QID: Quick Inventory of Depression
SF-36: Short Form-36 Health Survey
SIAS: Social Interaction Anxiety Scale
SMS: short message service
TAU: treatment-as-usual
TRS: treatment-resistant schizophrenia
UCLA: University of California, Los Angeles
YMRS: Young Mania Rating Scale
YPAS: Yale Physical Activity Survey


Edited by J Torous; submitted 11.01.18; peer-reviewed by E Kohls, D Bakker; comments to author 10.02.18; revised version received 30.06.18; accepted 15.12.18; published 20.02.19.

Copyright

©Jussi Seppälä, Ilaria De Vita, Timo Jämsä, Jouko Miettunen, Matti Isohanni, Katya Rubinstein, Yoram Feldman, Eva Grasa, Iluminada Corripio, Jesus Berdun, Enrico D'Amico, M-RESIST Group, Maria Bulgheroni. Originally published in JMIR Mental Health (http://mental.jmir.org), 20.02.2019.

This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Mental Health, is properly cited. The complete bibliographic information, a link to the original publication on http://mental.jmir.org/, as well as this copyright and license information must be included.