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Abstract

Background: Psychiatry is nearly entirely reliant on patient self-reporting, and there are few objective and reliable tests or
sources of collateral information available to help diagnostic and assessment procedures. Technology offers opportunities to
collect objective digital data to complement patient experience and facilitate more informed treatment decisions.

Objective: We aimed to develop computational algorithms based on internet search activity designed to support diagnostic
procedures and relapse identification in individuals with schizophrenia spectrum disorders.

Methods: We extracted 32,733 time-stamped search queries across 42 participants with schizophrenia spectrum disorders and
74 healthy volunteers between the ages of 15 and 35 (mean 24.4 years, 44.0% male), and built machine-learning diagnostic and
relapse classifiers utilizing the timing, frequency, and content of online search activity.

Results: Classifiers predicted a diagnosis of schizophrenia spectrum disorders with an area under the curve value of 0.74 and
predicted a psychotic relapse in individuals with schizophrenia spectrum disorders with an area under the curve of 0.71. Compared
with healthy participants, those with schizophrenia spectrum disorders made fewer searches and their searches consisted of fewer
words. Prior to a relapse hospitalization, participants with schizophrenia spectrum disorders were more likely to use words related
to hearing, perception, and anger, and were less likely to use words related to health.

Conclusions: Online search activity holds promise for gathering objective and easily accessed indicators of psychiatric symptoms.
Utilizing search activity as collateral behavioral health information would represent a major advancement in efforts to capitalize
on objective digital data to improve mental health monitoring.

(JMIR Ment Health 2020;7(9):e19348) doi: 10.2196/19348
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Introduction

Schizophrenia can be associated with significant impairment
[1]. Although early intervention services have demonstrated the
potential to improve outcomes [2], several challenges persist,
limiting the established benefits of effective care. These include
lengthy delays to early and accurate diagnostic ascertainment
[3,4], as well as high rates of relapse, particularly during the
early course of illness [5]. Under-recognized or misdiagnosed
symptoms contribute to poorer outcomes such as social isolation,
unemployment, and comorbid depression, anxiety, and substance
abuse [6]. Furthermore, each new relapse can be associated with
costly emergency room visits, psychiatric hospitalizations,
family burden, medical complications, and suicide [7].

These challenges are compounded by the fact that psychiatry
is still nearly entirely reliant on patient self-report. In contrast
to all other areas of medicine, there are no reliable tests,
biomarkers, or objective sources of collateral information
available to inform diagnostic procedures or to assess mental
health status [8-10]. Clinicians must therefore rely on subjective
information, collected through patient and family interviews,
to support diagnoses and make treatment recommendations.
Technology offers the opportunity to collect objective digital
data to complement self-reports and facilitate more informed
treatment decisions [11-13]. Online search activity is a source
of objective data with great potential.

Google search is one of the most popular websites worldwide,
managing over 3 billion searches daily across over 600 million
daily visitors [14]. Moreover, searching online has become a
primary resource for youth seeking mental health–related
information [15-20]. This is particularly true for stigmatized
illnesses such as schizophrenia as the internet provides an easy
and anonymous setting to gather information about symptoms
and treatment options [21]. Importantly, online search engines
store search activity as time-stamped digital records, offering
a reliable source of objective, easily accessed, and detailed
collateral information about an individual over an extended
period of time.

Prior work has highlighted opportunities to utilize large-scale
anonymized search logs to detect signals associated with the
emergence and progression of medical illnesses [22]. For
example, search activity, including content and patterns of use,
has been used to identify individuals with lung cancer, Parkinson
disease, and pancreatic cancer with high degrees of accuracy
up to a year in advance of the diagnosis [23-25]. The success
of these algorithms may lead to the development of a new
generation of digital tools designed to assist in the screening
and early identification of individuals at risk for medical
conditions. Similar methods have been employed successfully
in psychiatry using digital data extracted from social media sites
[26-33]. However, few studies to date have explored the use of
computational approaches to detect search patterns associated
with psychiatric disorders [34]. Furthermore, while promising,
online activity research thus far has been limited by the fact that
it has been conducted primarily utilizing data extracted from
anonymous individuals online who self-disclose having a
particular diagnosis [35], and has yet to be carried out in

real-world clinical settings using participant-contributed search
data with clinically validated diagnoses.

Toward the goal of improving early diagnostic accuracy and
relapse detection, we sought to conduct one of the first
ecologically valid investigations into the relationship between
online search activity and behavioral health. Specifically, we
aimed to develop computational algorithms designed to
accurately identify individuals with schizophrenia spectrum
disorders (SSD) and to predict psychotic relapse based on
internet search activity. We hypothesized that significant
differences in the timing, content, and pattern of online search
activity would differentiate participants with SSD from healthy
volunteers, and that changes in these features would accurately
predict a psychotic relapse in individuals with SSD.

Methods

Participants and Data Collection
Participants between the ages of 15 and 35 years were recruited
from Northwell Health’s inpatient and outpatient psychiatry
departments. Individuals with SSD were recruited primarily
from the Early Treatment Program, Northwell Health’s
specialized early psychosis intervention clinic (N=37).
Additional participants diagnosed with SSD (N=7) were
recruited from a collaborating institution located in East Lansing,
Michigan. Recruitment occurred between March 2016 and
December 2018. The study was approved by the Institutional
Review Board (IRB) of Northwell Health (the coordinating
institution) as well as by the local IRB at the participating site.
Written informed consent was obtained for adult participants
and legal guardians of participants under 18 years of age. Assent
was obtained for participating minors. Healthy volunteers were
approached and recruited from an existing database of eligible
individuals who had already been screened for prior research
projects at Zucker Hillside Hospital and had agreed to be
recontacted for additional research opportunities (N=58).
Additional healthy volunteers (N=21) were recruited from a
southeastern university via an online student community
research recruitment site. Healthy status was determined either
by the Structured Clinical Interview for DSM Disorders [36]
conducted within the past 2 years or the Psychiatric Diagnostic
Screening Questionnaire [37]. If clinically significant psychiatric
symptoms were identified during the screening process,
participants were excluded.

Participants requested their search archive (known as “takeout”)
through a simple process supported by Google. Participation
involved a single visit during which all historical search activity
was downloaded and collected. Each archive included a
time-stamped record of search terms and browser history. Using
hospitalization dates pulled from participants’ medical records,
each participant's search data was segmented into 4-week
periods immediately before and after each hospitalization. A
4-week period was selected as it represents an interval of time
long enough to identify symptomatic changes [38,39] and also
to contain sufficient online data required to train an algorithm
[33,40]. For healthy participants (who did not have a
hospitalization date), we randomly selected 4 weeks’ worth of
search data to serve as a control.
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Diagnostic Classifier
A diagnostic classifier was built utilizing 4 weeks’ worth of
search data immediately preceding the first psychiatric
hospitalization. Data prior to the first hospitalization were
selected to reduce the potential confounding influence of
receiving a psychiatric diagnosis, being hospitalized, and
receiving psychiatric interventions (such as therapy or
prescriptions for psychiatric medications) on search activity.
Concurrently, we built the diagnostic classifier using data closest
to the time when the diagnosis is typically made (at the point
of initial hospitalization) [41] to enhance the classifier’s
potential clinical utility as a diagnostic support tool. A 4-week
period before hospitalization was selected as it represents a
period of time when psychotic symptoms would likely be most
prominent. To match the data extraction period for both groups,
we randomly selected 4 weeks’ worth of search data from each
healthy participant to serve as a comparison group. This strategy
also reduced possible effects of seasonality on search behavior.
Participants diagnosed with SSD who did not have any search
data in the 4-week period before their first hospitalization were
excluded from this classifier. For healthy volunteers, if no search
data existed in the randomly selected 4-week period, that
participant was excluded.

Relapse Classifier
A relapse classifier was built by segmenting the search data into
4-week periods of “relative health” and “relative illness.”
Periods of relative illness were defined as the 4 weeks
immediately preceding each relapse hospitalization, as it
represents a period of time prior to hospitalization during which
psychiatric symptoms are typically the most prominent. When
less than 1 month existed between two consecutive
hospitalizations, these data were not included in the
classification model. Healthy periods were defined as the 4-week
period immediately following discharge from a relapse
hospitalization, as this represents a period of time when
symptoms are typically better managed and less pronounced.
If less than 2 months’ worth of search data existed between
consecutive hospitalizations, these data were not included in
the classifier, as we did not expect this period to represent a true
period of relative health. Search data prior to the first
hospitalization were not included in the relapse classifier. In
total, 38 participants were included in the relapse classifier

consisting of 51 periods of relative health and 42 periods of
relative illness.

Defining Features
We defined features of search content and search behavior using
linguistic and temporal parameters. For linguistic features, we
used linguistic inquiry and word count (LIWC) [42]. LIWC is
a language analytic tool designed to capture and count the
frequency of 51 different word categories, with established
psychometric properties, including emotions, mood, cognition,
thinking styles, and social concerns. A rich body of literature
has identified associations between the use of LIWC categories
and psychological health and illness [42,43]. We concatenated
the Google search streams for the selected periods before passing
them to LIWC as the input text for computing features. For the
search behavioral features, we constructed histograms of length
and frequency of queries using 1-hour bins as well as 4-day
bins. This was done to explore search features that might
accompany changes in circadian patterns associated with SSD.
The 1-hour bin histogram helped to model finer changes in the
length and frequency of search behaviors throughout the day,
whereas the 4-day bin histogram was used to model broader
changes in search behaviors. The 1-hour bin histograms were
computed by creating 24 bins corresponding to each hour of
the day and aggregating (through summation) each participant’s
data across the 28 days. We chose hourly bins as this approach
has been successfully implemented in prior research [27,44-46]
exploring fluctuations in mood.

In addition, we included the total number of queries and the
average query length for the 4-week period. We also included
the standard deviation of the 4-day bin histograms (length and
frequency) to represent the variation in search behaviors. Finally,
we included directional changes in search behavior by
computing first- and second-order statistics on the derivative
of the 4-day histograms. All LIWC features were normalized
based on the number of words in all searches concatenated for
each participant, whereas the other features were normalized
by subtracting the mean and dividing by the standard deviation.
This process controls for any discrepancies in the feature values
(ie, differences in the number of searches). A summary of all
feature types along with the dimension of each feature is shown
in Table 1.
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Table 1. Feature categories along with the dimensionality of each feature type.

DimensionsFeature type

2424-hour histogram of length of queries with 1-h bin

2424-hour histogram of frequency of queries with 1-h bin

832-day histogram of length of queries with 4-day bin

832-day histogram of frequency of queries with 4-day bin

1SD of 4-day frequency of queries bins

1SD of 4-day length of queries bins

1Average of the derivative of 4-day frequency of queries bins

1Average of the derivative of 4-day length of queries bins

1SD of the derivative of 4-day frequency of queries bins

1SD of the derivative of 4 day length of queries bins

51Linguistic inquiry and word count

1Total number of queries in 1 month

1Average query length in 1 month

Classifier Analyses
For both the diagnostic classifier and relapse prediction, we
tested three classifiers: random forest (RF) [47], support vector
machine (SVM) [48], and gradient boosting (GB) [49]. We used
the standard python-based scikit-learn [50] library for evaluating
classification performance. We performed hyperparameter
tuning using a held-out validation dataset, which resulted in
selection of optimal hyperparameters for the classifiers. For
example, for SVM, we selected the radial basis function kernel
over the standard linear kernel. Each classifier was validated
using a 5-fold crossvalidation technique to avoid overfitting.
To prevent bias in selection of healthy volunteer data, we tried
10 different iterations of randomly selected 4-week periods and
found that the results were consistent. We calculated the average
F1 score, average accuracy, and average area under the receiver
operating characteristic curve (AUC) across 5 folds for each
classifier. Since both diagnostic and relapse classifiers were
trained on unbalanced datasets, we chose to evaluate the
classifiers based on the AUC since it is a parameter that is
agnostic to class imbalance [51].

Feature Importance
A total of 123 features were used for each classifier. We used
the permutation feature importance [52] method to compute the
rank-ordered feature importance for each classifier. Under this
method, feature importance is defined by the difference in the

model’s score when the feature is randomly shuffled. Feature
importance is proportional to the drop in the model score when
the feature is shuffled. We used the AUC value as the model
score. The feature importance was calculated on the validation
set in 5-fold crossvalidation and the average score was computed
across the 5 folds. We used this method as it is model-agnostic
and enabled comparison of three different classifier models in
an unbiased manner.

Results

A total of 123 search archives (44 individuals diagnosed with
SSD and 79 healthy volunteers) were available for analysis, and
116 (42 individuals with SSD an 74 healthy volunteers) met the
inclusion criteria. Of these, 38 participants with SSD were
available for the relapse classifier. An overview of the final
dataset is shown in Table 2.

With respect to the diagnostic classifier (Table 3), the RF was
selected for further feature analysis given its superior AUC
compared to that of the other models. Figure 1 shows the
receiver operating characteristic curves of the RF diagnostic
classifier for each of the 5 folds. To explore consistency, this
process was repeated 10 times with differing randomly selected
4-week periods of healthy volunteer data. Classifier performance
remained consistent. Table 4 shows the quantity of search data
provided per group for the diagnostic classifier.
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Table 2. Participant demographics (N=116).

ValueCharacteristic

24.38 (5.18)Age (years), mean (SD)

Sex, n (%)

51 (44.0)Male

65 (56.0)Female

Race, n (%)

18 (15.5)Asian

32 (27.6)African American

60 (51.7)Caucasian

6 (5.2)Mixed/Other

11 (9.5)Hispanic, n (%)

Diagnosis, n (%)

16 (13.7)Schizophrenia

13 (11.2)Schizophreniform

2 (1.8)Schizoaffective

11 (9.5)Unspecified SSDa

74 (63.8)Healthy volunteers, n (%)

aSSD: schizophrenia spectrum disorders.

Table 3. Diagnostic classifier results.

Mean (SD) AUCcMean AccuracyRecall (SSD)Recall (HV)Precision (SSDb)Precision (HVa)Mean F1Classifier type

0.66 (0.09)0.650.50.730.510.730.49Support vector
machine

0.74 (0.06)0.730.480.860.720.750.54Random forest

0.68 (0.09)0.650.440.770.530.710.47Gradient boost

aHV: healthy volunteers.
bSSD: schizophrenia spectrum disorders.
cAUC: area under the receiver operating characteristic curve.
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Figure 1. Receiver operating characteristic curves of the random forest diagnostic classifier for each of the 5 folds. AUC: area under the curve.

Table 4. Quantity of search data provided per group for the diagnostic classifier.

Participants with SSDaHealthy volunteersMetric

192.76 (214.19)332.93 (298.1)Total average queries (SD)

48.19 (52.91)80.37 (71.92)Weekly average queries (SD)

aSSD: schizophrenia spectrum disorders.

For the relapse classifier (Table 5), the SVM and GB models
had the same AUC, and therefore both were considered for
feature analysis. Further analysis of the feature importance of
the SVM and GB relapse model revealed differing features.
Herein, we report the SVM model as the identified features
included search terms/themes that were deemed to be clinically
interpretable and demonstrated some consistency with previous
findings [33]; see Multimedia Appendix 1 for a comparison of
the important features highlighted by both models. Figure 2
shows the receiver operating characteristics of the SVM relapse
classifier for each of the 5 folds. The average F1 score for the
SVM model was 0.36 and the average accuracy was 0.63. Table
6 shows the quantity of search data provided per group for the
relapse classifier.

For each of the selected models, we calculated the top 20
features using the permutation feature selection method. The

features sorted in decreasing order of feature importance for
diagnostic and relapse classifies are shown in Table 7 and Table
8, respectively. For the two classifiers, both linguistic and
behavioral features accounted for the top 20 features, indicating
that both categories of features were important drivers of the
classification result. Top features pertaining to the diagnostic
classifier included a reduced search length between 12 am and
12 pm, lower overall number/frequency of search queries, as
well as differences in the use of search terms/words from the
“inhibition,” “positive affect,” and “anxiety” categories. Top
features pertaining to the relapse classifier included differences
in the use of search terms/words from the “sexual,” “health,”
“hear,” “anger,” “sadness,” and “perception” LIWC categories,
as well as reductions in search length and search frequency prior
to a relapse hospitalization.
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Table 5. Relapse classifier results.

Mean (SD) AUCcMean AccuracyRecall (SSD)Recall (HV)Precision (SSDb)Precision (HVa)Mean F1Classifier type

0.71 (0.16)0.630.260.920.770.610.36Support vector machine

0.69 (0.09)0.610.480.690.610.610.53Random forest

0.71 (0.10)0.650.530.750.630.660.57Gradient boost

aHV: healthy volunteers.
bSSD: schizophrenia spectrum disorders.
cAUC: area under the receiver operating characteristic curve.

Figure 2. Receiver operating characteristic curves of the support vector machine relapse classifier for each of the 5 folds. AUC: area under the curve.

Table 6. Quantity of search data provided per group for the relapse classifier.

Periods of relative illnessPeriods of relative healthMetric

168.29 (250.18)96.80 (98.77)Total average queries (SD)

42.07 (39.9)24.2 (11.17)Weekly average queries (SD)
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Table 7. Feature importance of diagnostic classifiers sorted by decreasing order of importance.

Average feature importance (random forest)Diagnostic classifier features

0.0315Reduced search lengths between 8-9 am in participants with SSDa compared to HVb

0.0255Reduced search lengths between 6-7 am in participants with SSD compared to HV

0.0178Length of queries from 23-20 days prior to first hospitalization is lower in participants with SSD
compared to HV

0.0112Reduced usage of “relative” LIWCc features in participants with SSD compared to HV

0.0111Variance in frequency of search lengths is lower in participants with SSD

0.0091Reduced search lengths between 11am to 12 pm in participants with SSD compared to HV

0.0078Reduced usage of “inhibition” LIWC features in participants with SSD compared to HV

0.0073Reduced search lengths between 4 and 5 am in participants with SSD compared to HV

0.0072Reduced usage of “quantifier” LIWC features in participants with SSD compared to HV

0.0071Reduced search lengths between 1 and 2 am in participants with SSD compared to HV

0.0071Reduced usage of “positive affect” LIWC features in participants with SSD compared to HV

0.0070Reduced search lengths between 12 am and 1 am in participants with SSD compared to HV

0.0064Reduced usage of “anxiety” LIWC features in participants with SSD compared to HV

0.0062Lower overall number of queries in participants with SSD compared to HV

0.0061Reduced usage of “preposition” LIWC features in participants with SSD compared to HV

0.0059Reduced usage of “inclusive” LIWC features in participants with SSD compared to HV

0.0059Frequency of search 19-16 days prior to first hospitalization is lower in participants with SSD
compared to HV

0.0057Reduced usage of “insight” LIWC features in participants with SSD compared to HV

0.0056Number of queries between 2 and 3 am is lower in participants with SSD compared to HV

0.0051Number of queries between 11 pm and 12 am is lower in participants with SSD compared to HV

aSSD: schizophrenia spectrum disorders.
bHV: healthy volunteers.
cLIWC: linguistic inquiry and word count.
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Table 8. Feature importance of relapse classifiers sorted by decreasing order of importance.

Average feature importance (support vector machine)Relapse classifier features

0.0688Reduced length of queries during relapse periods

0.0523Increased usage of “sexual” LIWCa features during relapse periods

0.0506Reduced length of queries 3-0 days prior to relapse hospitalization

0.0263Reduced frequency of search activity during relapse periods

0.0245Reduced usage of “health” LIWC features during relapse periods

0.0224Increased usage of “hear” LIWC features during relapse periods

0.0223Increased usage of “bio” LIWC features during relapse periods

0.0209Increased searches in the 4 days before relapse hospitalization

0.0196Reduced length of queries in the 7-4 days prior to relapse hospitalization

0.0194Reduced frequency of searches 23-20 days prior to relapse hospitalization

0.0186Increased usage of “percept” LIWC features during relapse periods

0.0162Increased length of queries in the 31-28 days prior to relapse hospitalization

0.0143Increased usage of “inclusive” LIWC features during relapse periods

0.0140Denser searches during relapse periods

0.0131Increased usage of “anger” LIWC features during relapse periods

0.0125Reduced frequency of searches 19-16 days prior to relapse hospitalizations

0.0105Reduced length of queries 11-8 days prior to relapse hospitalization

0.0105Reduced usage of “sadness” LIWC features during relapse periods

0.0104Increased usage of “indefinite pronoun” LIWC features during relapse periods

0.0097Reduced frequency of searches 15-12 days prior to relapse hospitalization

aLIWC: linguistic inquiry and word count.

Discussion

Principal Findings
We aimed to explore the feasibility of using collateral online
search activity to support the diagnostic process and relapse
detection in individuals with SSD. Our results indicate that
important differences exist in the timing, frequency, and content
of search activity in individuals with SSD compared to healthy
volunteers. Furthermore, linguistic and behavioral shifts were
identified in the month preceding a relapse hospitalization in
individuals with SSD. This study demonstrates the promise of
online search activity to potentially serve as collateral
information informing diagnostic procedures as well as relapse
identification strategies. Much like physicians routinely use
medical imaging and blood tests to obtain objective and reliable
clinically meaningful patient data, our results support the
prospect of incorporating real-time machine learning–based
extraction and analysis of online activity into psychiatric
assessment.

Features Relevant to the Diagnostic Classifier
Combining linguistic and behavioral features, the RF classifier
distinguished individuals with SSD from healthy volunteers
with an AUC of 0.74, suggesting that the integration of Google
data with clinical information at the time of first hospitalization
could potentially serve to improve the accuracy and reliability
of clinical diagnoses [52]. Compared to healthy participants,

those with SSD made fewer searches and their searches
consisted of fewer words. Reduced search activity may represent
declining interests and engagement with the environment
[53-55]; as positive and negative symptoms of schizophrenia
escalate, individuals with SSD may become less invested in
their environment and increasingly internally preoccupied.
Alternatively, reduced search activity could be related to
cognitive deficits that are commonly associated with
schizophrenia [56]. Given that cognitive changes may be subtle
early in the course of illness [57], having an objective way by
which to identify cognitive markers of SSD could contribute
valuable information to the diagnostic process and inform
treatment recommendations. Future research will need to explore
precisely when changes first manifest online as well as their
clinical significance. Online search data typically exist from
the origin of an individual’s Google account, and the present
results suggest that search data could prove to be particularly
useful in charting the trajectory of an individual’s illness, as
well as in contributing useful information about the timing of
symptomatic changes.

Compared to healthy participants, those with SSD were
significantly less likely to search for content related to “positive
affect” (eg, “happy,” “good”), and less likely to search for
content related to “anxiety” (eg, “nervous,” “tense”). These
findings are consistent with the experience of low mood, apathy,
and reduced emotional expression often associated with SSD
[58,59]. These symptoms often predate the positive symptoms
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such as hallucinations and delusions, and therefore an objective
method to identify them could help to overcome limitations of
patient self-report to inform early intervention. Participants with
SSD were also less likely to search using words from the relative
(motion, space, time), inhibition (block, constrain), and inclusive
(with, include) categories, and were less likely to use quantifiers
(few, many, much) and prepositions (on, to, from). Determining
the clinical significance of these differences requires additional
research; however, they appear to be related to the complexity
of the search query. Individuals with SSD often experience
concrete thinking [60] in addition to the cognitive limitations
noted above, and may therefore use less complex language when
searching for information online.

Features Relevant to the Relapse Classifier
Relapse periods could be distinguished from healthy periods
with an AUC of 0.71. During a relapse period, participants with
SSD were more likely to use words from the hear (heard, listen,
sound), bio (eat, blood, pain), perception (see, touch, listen),
and anger categories. They were less likely to use words related
to health. These changes could be consistent with increasing
delusions, hallucinations, and irritability during a psychotic
relapse [61-63]. Previous work has identified changes in
language use on social media that occur alongside escalating
psychotic symptoms [33]. Thus, future research should aim to
identify the point in illness progression at which linguistic shifts
emerge online so as to make the best clinical use of this
information.

Compared with periods of relative health, search length became
shorter and the frequency of search activity decreased closer to
the date of the relapse hospitalization. This could be indicative
of a further decline in cognition function [56], or perhaps due
to the presence of distracting internal stimuli. Fewer searches
may also represent disengagement from one’s environment and
reduced desire to ask questions and seek answers. This would
be consistent with the avolition and negative symptoms
commonly experienced by individuals with first-episode
psychosis [59]. Additional research will be required to determine
the precise clinical correlates.

Limitations
The first limitation is that our approach was limited by our
characterization of monthly periods of relative health and
relative illness. The illness trajectory for individuals with SSD
does not neatly fall into distinct segments of “health” and
“illness,” and symptoms instead fluctuate over time. In addition,
discharge from hospital does not necessarily mean full resolution
of symptoms; therefore, we might have underestimated the
potential differences between periods of illness and health.
Furthermore, the inpatient hospitalization dates were obtained
via medical records, and it is possible that some hospitalizations
were missing from the record and therefore not included in our
analyses. Related is the fact that the specific symptoms that
define an exacerbation for each individual with SSD are often
unique, and the impact of symptom heterogeneity on searches
should also be explored in future work. To address these
limitations and to improve the ability to find associations
between online activity and psychotic symptoms, future studies
need to monitor participants prospectively and utilize symptom

rating scales to more accurately assess symptom changes and
severity as well as to determine the specificity and sensitivity
of our findings in comparison to other diagnostic groups.
Additionally, future research will need to consider the potential
influence of various life events, including search patterns
associated with work and school.

Second, some individuals with SSD are diagnosed well before
or long after the first psychiatric hospitalization, and therefore
the generalizability of our diagnostic classifier is currently
unknown. Ongoing efforts focused on understanding search
behavior throughout the entire course of illness development,
progression, and care should explore potential differences in
those who are diagnosed at various time points.

Third, some participants were more active online than others,
providing varying degrees of extractable data. An important
question for future research will be how much search data is
necessary to make reliable clinical predictions.

Fourth, the archives used for our analyses were collected
retrospectively. Although retrospective collection eliminates
the possibility of altering behavior as a result of being
monitored, to achieve the goal of making real-time predictions,
identifying clinically meaningful patterns in search data
prospectively will be necessary.

Fifth, the eligibility criterion for age was between 15 and 35
years to reflect the inclusion criteria of the Early Treatment
Program; however, adolescents may engage with search engines
in a distinct manner compared to young adults, and age will
need to be considered in future initiatives.

Sixth, we used nonlinear kernels in our classification models
to accommodate nonlinear feature dependencies in the models.
Although this is recommended for improved classification
performance, it can also limit the interpretability of the features
based on linear permutation methods. The feature permutation
does not test for nonlinear permutations in features.

Seventh, for the purpose of this feasibility study, we considered
both classification accuracy as well as feature interpretability
in selecting our models. Further research with additional data
from more participants is required to test the scalability of the
selected classifiers and features as well as their generalizability
to other online search engines beyond Google.

Finally, Google takeout only extracts search data collected while
an individual is signed in to their account. Some participants
may have searched for information while signed out, and these
data would not have been captured in their archives.

Conclusion and Prospects
Although search data alone are not sufficient to make a diagnosis
or to predict a relapse, the integration of these data with
information collected through traditional clinical means could
be useful. Previous work has demonstrated that many people
search for information online long before seeking help in person
[9-11], and this study highlights the existence of a diagnostic
signal in daily search patterns. Online services could one day
facilitate the transition from information-seeking to
help-seeking, hasten the diagnostic process, and help to reduce
the burden of untreated psychosis. This approach could also be
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beneficial for relapse identification, enabling earlier intervention.
Prior initiatives have explored the utility of smartphone sensor
data (ie, geolocation, physical activity, phone usage, and
speech), wearables, and social media activity to predict symptom
fluctuations [44,64-66]. Our results demonstrate that
user-generated search activity represents another potentially
critical source of digital data contributing to the diagnostic
process and relapse identification. Future work combining digital
data from multiple sources will likely result in the most effective
clinical tools. However, how to effectively and ethically

incorporate personalized patterns of activity into clinical
workflow are critical questions of inquiry. Interdisciplinary
teams of researchers, clinicians, and patients must continue to
work together on exploring challenges in ethics, privacy,
consent, clinical responsibility, and data ownership. As our
analyses become increasingly sophisticated and our ability to
predict health information improves, stakeholders must develop
standards to protect the confidentiality and the rights of this
sensitive population, and ensure that the enabled technologies
are used in the service of positive outcomes for the patients.
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