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Abstract

Background: Patient safety incidents are a leading cause of harm in psychiatric settings, yet early warning systems (EWS)
tailored to mental health remain underdeveloped. Traditional risk tools such as the Dynamic Appraisal of Situational
Aggression–Inpatient Version (DASA-IV) offer limited predictive accuracy and are reactive rather than proactive.

Objective: We introduce the Predictive Risk Identification for Mental Health Events (PRIME) tool, a deep learning–based EWS
trained on longitudinal psychiatric electronic medical record (EMR) data to anticipate adverse events in 24-hour windows.

Methods: A retrospective cohort study using routinely collected EMR data to train and validate machine learning (ML) models
for short-term risk prediction was conducted. This study took place at Waypoint Centre for Mental Health Care, a large inpatient
psychiatric hospital in Ontario, Canada, serving both high-security forensic and nonforensic patient populations. A total of 4651
patients and 403,098 encounters from January 2020 to August 2024 were included. For model evaluation, the 2024 test set included
900 patients and 48,313 encounters. PRIME was trained using recurrent neural networks with attention mechanisms on multivariate
time-series data. The model used an autoregressive design to forecast risk based on 7 days of prior patient data and was benchmarked
against the DASA-IV clinical tool and other ML baselines. The primary outcome was the occurrence of an adverse mental health
event recorded in the EMR within the following 24 hours. Model performance was assessed using area under the receiver operating
characteristic curve (AUC) and recall, alongside subgroup analyses and interpretability assessments using integrated gradients.

Results: The long short-term memory with attention mechanism achieved the highest predictive performance (AUC=0.83),
outperforming existing tools such as DASA-IV by 0.20 AUC (0.81 vs 0.61) and demonstrating the potential of ML-based models
to support proactive risk management in mental health settings.

Conclusions: The PRIME tool is one of the first developed and evaluated deep learning–based EWS for psychiatric inpatient
care. By outperforming existing clinical tools and providing interpretable, rolling predictions, PRIME offers a pathway toward
safer, more proactive mental health interventions. Future work should assess its equity implications and integration into routine
psychiatric workflows.
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Introduction

Patient and staff safety are top priorities in health care, yet
patient safety incidents remain the third leading cause of death
in Canada [1]. Many of these incidents stem from adverse events
such as falls, medication errors, and medical complications [2].
A recent study found that 1 in 4 hospital admissions involved
adverse events, with a quarter of these deemed preventable [3].
While all health care settings face safety risks, psychiatric
environments present a distinct set of challenges, including
suicide, restraint, and seclusion—events that contribute to
continued deterioration and injury [4,5]. Despite a higher
prevalence of adverse events in mental health, research on
patient safety and mental deterioration–related adverse events
in these settings remains limited compared to other medical
fields [6,7].

These incidents not only worsen patient outcomes but also
increase risks for staff [8]. Worldwide, approximately 24% of
health care workers experience physical violence annually, with
psychiatric staff at particularly high risk [9-11]. Reducing
adverse events through assessment and prediction is crucial for
improving staff and patient safety.

Current methods for assessing patient deterioration rely heavily
on voluntary reporting, critical incident reviews, and clinician
judgment [12]. While actuarial tools such as the Dynamic
Appraisal of Situational Aggression and the Brøset Violence
Checklist are also used, these 2 primarily target short-term
aggression and violence prediction, and they have shown limited
predictive accuracy and tend to miss early warning signs [13,14].
As a result, many opportunities for timely intervention are lost,
especially in high-risk but low-observable cases with early signs
of deterioration that are not easily detected. Additionally, there
are other widely validated measures for more specific feature
prediction, such as the Historical, Clinical, and Risk
Management, also used for violence risk assessment; the
Columbia Suicide Severity Rating Scale for the assessment of
suicidal ideation and behavior; and many other risk assessment
tools [15,16]. We focused on both the Dynamic Appraisal of
Situational Aggression and Brøset Violence Checklist measures
as they are 2 of the most widely validated and routinely
implemented structured risk assessment tools in inpatient
psychiatry [17].

Early warning systems (EWSs) are widely used in medicine,
leveraging routinely collected clinical data to detect early signs
of patient deterioration. Tools such as the National Early
Warning Score 2 have been effectively implemented in acute
care settings to support timely interventions [18-20]. At the
same time, machine learning (ML) is transforming risk
assessment by enabling the analysis of large-scale,
high-dimensional health care data [21-23]. Predictive ML
models are developed using historical patient records combined

with expert input to train, test, and refine algorithms for higher
performance and clinical relevance [24,25]. Compelling
examples include CHARTWatch, developed to predict inpatient
deterioration in general internal medicine, and Sepsis Watch,
designed to identify patients at risk of sepsis before clinical
recognition [26-28]. However, psychiatric care has not seen
comparable innovation, in part due to the complexity of mental
health data, lack of validated digital tools, and
underrepresentation of psychiatric settings in EWS research.

To address this gap, we introduce a novel ML-based EWS, the
Predictive Risk Identification for Mental Health Events (PRIME)
tool. The PRIME tool is a deep learning–based EWS leveraging
longitudinal electronic medical record (EMR) data from a
specialized psychiatric hospital. The goal of the PRIME tool is
to predict mental health–specific adverse events, including but
not limited to self-harm, suicide attempts, violence toward
others, and aggressive behaviors (Multimedia Appendix 1).
PRIME is trained to predict the likelihood of these adverse
events within 24-hour windows using autoregressive recurrent
neural networks enriched with attention mechanisms and
interpretability via integrated gradients. Unlike traditional tools,
PRIME is capable of continuous, real-time risk forecasting even
in the absence of prior incidents. We benchmarked PRIME
against Dynamic Appraisal of Situational Aggression–Inpatient
Version (DASA-IV) and other ML models, and it demonstrated
superior performance, particularly in complex and high-risk
subgroups.

Through this study, we aimed to move beyond reactive safety
practices toward proactive, data-informed risk mitigation in
mental health care, advancing both patient and staff safety in a
setting long underserved by digital innovation.

Methods

Study Design and Data Acquisition
In this study, we used routinely collected clinical data extracted
from the EMR at Waypoint Centre for Mental Health Care
(hereafter referred to as “Waypoint”), Ontario, Canada. We
retrospectively retrieved data from all patients at Waypoint
between January 2020 and August 2024, including static and
dynamic variables (Multimedia Appendix 1).

Ethical Considerations
This study was approved by the York University Office of
Research Ethics (certificate e2023-163) and the Research Ethics
Board of Waypoint Centre for Mental Health Care (reference
#RCRA#23.08.01) with waived informed consent. The Research
Ethics Board waived the need for informed consent since the
data was retrospectively collected in routine practice.
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Data Representation and Processing
First, we conducted a literature review to identify factors widely
associated with mental health deterioration and adverse events.
We collaborated with clinicians, physicians, clinical informatics
specialists, and the research team to review these factors and
select the variables within our EMR (Multimedia Appendix 1).
The baseline data preprocessing included one-hot encoding and
normalization of all measures. We implemented a standardized
aggregation strategy to address the variability in time-series
data arising from differing measurement frequencies, where
some clinical parameters were recorded daily and others were
recorded multiple times per day. These factors encompassed a
range of clinical and behavioral variables in the following
categories: inpatient admission assessments that included
demographic and diagnosis data, clinical risk assessments,
physiological data, recent behavioral data, and mental status
assessment data (Multimedia Appendix 1). Patient encounters
were segmented into 24-hour intervals, aligning with clinical
workflows that typically operate on daily cycles for alerts.
Within each interval, all measures were aggregated to provide
a comprehensive snapshot of patient health over the specified
time frame. Numerical variables were averaged across the
interval, whereas categorical variables were first encoded
numerically based on severity or clinical importance and then
summed within the 24-hour period.

We collected admission diagnosis data based on the Diagnostic
and Statistical Manual of Mental Disorders, Fifth Edition,
selecting the 45 most frequent diagnoses across all patients to
prevent overfitting. Medication data included our patient group’s
5 most relevant categories, each represented as a binary indicator
denoting whether it was administered within the previous 24
hours (Multimedia Appendix 1).

The primary outcome in our study was the occurrence of any
mental health adverse event. For our prediction task, each patient
encounter was labeled based on whether a logged adverse event
in the EMR system occurred within the following 24-hour bin.
This binary label (event vs no event) was used as the target
variable for PRIME training. Moreover, prior adverse events
in the previous 24-hour intervals were also dynamically added
to future intervals, referred to as the history of any incident.

Building the PRIME Model
To improve psychiatric-medical baselines, we designed a deep
learning–based EWS. Specifically, we developed recurrent
neural networks using the long short-term memory (LSTM)
model that triggered an alert every 24 hours based on a variable
sequence length (3-7 days) of patient data, treated as a
hyperparameter. During training, the ground truth history of
each adverse event was provided for every 24-hour interval in
the model. In the inference phase, the model operated in an
autoregressive mode: it used its own predicted output for the
previous 24-hour window as an input signal for the next
prediction step. To enhance the model’s ability to focus on the
most relevant temporal signals within the input sequence, we
further explored an LSTM model with attention mechanisms
(LSTM+attention). In this variant, an attention layer was added
to the LSTM hidden states Multimedia Appendix 2. For each
24-hour prediction interval, the attention mechanism

dynamically assigned weights to each time step in the historical
input sequence, allowing the model to selectively focus on the
most informative data that contributed to the risk signal.

We also evaluated our model against 2 ML approaches: light
gradient boosting machine (LightGBM) and feedforward neural
network (FNN). All time-series features were aggregated over
3 to 7 days using the same methodology applied to 24-hour
intervals. Predictions were then made for the next 24-hour
interval, allowing for consistent model evaluation and direct
comparison across different sequence lengths to identify the
best-performing approach. To support robust evaluation and
model selection, the dataset was first partitioned into two distinct
test sets: (1) a held-out patient test set with no patient overlap
between the development (3000 patients) and the test sets (751
patients) and (2) an out-of-time test set split across time using
2020 to 2022 data for training and 2023 data for testing.

Once the model selection was finalized, we performed a final
training phase using all data from 2020 to 2023 to build PRIME.
This final model was then evaluated on 2024 data to assess
real-world applicability. Model calibration was assessed on the
2024 evaluation cohort using reliability (calibration) curves and
the Brier score [29,30]. Reliability curves were generated using
10 uniformly spaced probability bins plotting the mean predicted
risk against observed outcome frequency within each bin. The
Brier score was computed as the mean squared difference
between predicted probabilities and observed binary outcomes,
providing a quantitative measure of overall probabilistic
accuracy.

To explore the factors driving PRIME’s predictions, we used
integrated gradients to compute feature importance in our LSTM
model by computing the path-integrated gradients from the
input to the actual output [31]. To quantify uncertainty, gradients
were bootstrapped over 100 resampled datasets.

Comparison With Clinical Measures
We compared PRIME’s predictive performance against that of
the DASA-IV, a standardized tool used at our hospital to
evaluate risks of aggression [32]. The PRIME tool’s predictions
included all mental health–specific adverse events recorded in
the hospital’s incident log (Multimedia Appendix 1). DASA-IV
includes 7 items assessing behavioral indicators (ie, irritability,
negative attitudes, and verbal threats), each scored as 0 (not
observed) or 1 (observed), with a total score categorized as low
(0-1), moderate (2-3), or high (>3) [33,34]. To align DASA-IV
with PRIME’s binary classification, we restructured the risk
categories. Moderate and high risk were grouped as “at risk”
(positive prediction), whereas low risk was grouped as “no risk”
(negative prediction). PRIME is designed to predict a broader
range of mental health–specific adverse events, whereas
DASA-IV is limited to aggression-related incidents and
deterioration. Our goal was to compare the PRIME tool with
the current validated tool used in clinical practice. This allowed
us to compare DASA-IV’s performance against PRIME’s
predictions and the ground truth outcomes recorded in patient
encounters.
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Results

Cohort Characteristics
The dataset encompassed 4651 patients and 403,098 patient

encounters over 55 months. The demographic characteristic
distribution of the patient cohort is presented in Table 1. For
the evaluation of the best-performing ML model and comparison
against clinical baselines, we used data from 2024, with detailed
breakdowns provided in Table 1.

Table 1. Cohort characteristics and dataset splits used for model development and evaluation. After final model selection, the full dataset from 2020
to 2023 (model development) was used to train the Predictive Risk Identification for Mental Health Events, which was evaluated using 2024 (model
evaluation) data to assess real-world performance.

Model evaluation
(2024)—evaluation
set (48,313)

Model development (2020-2023)

Out-of-time patientsHeld-out patients

Test set (95,528)Development set
(259,257)

Test set (73,763)Development set
(281,022)

Data split (number of patient
encounters)

900 (100)1202 (29.7)2851 (70.3)751 (20)3000 (80)Patients, n (%)

January 1, 2024, to
August 19, 2024

January 1, 2023, to
December 31, 2023

January 1, 2020, to
December 31, 2022

January 1, 2020, to
December 31, 2023

January 1, 2020, to De-
cember 31, 2023

Period

134.99 (117.83)336.90 (390.40)708.04 (676.56)530.41 (654.51)629.22 (632.67)LOSa, mean (SD)

Sex, n (%)

235 (26.05)310 (25.75)845 (29.63)231 (30.81)839 (27.98)Female

633 (70.37)842 (70.05)1912 (67.08)502 (66.82)2045 (68.17)Male

32 (3.58)50 (4.20)94 (3.29)18 (2.37)116 (3.85)Other

Sexual orientation, n (%)

541 (60.14)699 (58.15)1833 (64.31)472 (62.90)1878 (62.59)Heterosexual

359 (39.86)503 (41.85)1018 (35.69)279 (37.10)1122 (37.41)Other

Race, n (%)

73 (8.10)109 (9.03)224 (7.85)36 (4.73)273 (9.10)Black

19 (2.13)23 (1.92)63 (2.21)18 (2.45)61 (2.05)First Nations

570 (63.28)763 (63.49)2000 (70.15)572 (76.20)1987 (66.23)White

238 (26.49)307 (25.57)564 (19.78)125 (16.62)679 (22.62)Other races

Incident prevalence

2106362510,688256911,744Total number of incidents

266342766209762Patients, n (%)

aLOS: length of stay in days.

Adverse event distribution per individual varied across the
sample of patients between 2020 to 2024. When grouping the
number of patients by the frequency of adverse events they
experienced during their hospital stay, there is a decrease in the
number of patients who experience a high count of adverse
events. Most patients experienced few or no adverse events:
69.9% (3251/4651) had no incidents, and 12.6% (587/4651)
experienced up to 2 incidents. A total of 7.4% (344/4651) of
the patients had between 3 and 16 events, with a median of 14.5
(IQR 14.25). A smaller group of 162 patients experienced
between 17 and 83 incidents, most of whom (n=42, 25.9%) had
between 17 and 20, whereas only 22 (13.6%) had more than 83
events. As incident frequency increased, cohort size decreased.
The mean number of adverse events across the sample was 2.85,
whereas the mode and median were both 0, highlighting the
skewed nature of the data. This imbalance is important to

consider as it affects how the model learns from the hospital’s
patient population, with most of the training data representing
patients with few or no incidents.

PRIME’s Predictions
Table 2 presents the performance comparison of the 4 ML
models: light gradient boosting (LightGBM), feedforward neural
network (FNN), LSTM, and LSTM+attention. Each model was
trained multiple times using different random seeds, and
performance metrics were averaged across runs to ensure
robustness. Given the imbalanced nature of the dataset, model
performance was evaluated using the area under the receiver
operating characteristic curve (AUC) and recall. The
LSTM+attention model consistently achieved the highest
performance, with an AUC of 0.87 for held-out patients and
0.72 for out-of-time patients Multimedia Appendix 3. We
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selected the LSTM+attention model as the final architecture for PRIME (Table 2).

Table 2. Performance comparison of 4 machine learning models evaluated using area under the receiver operating characteristic curve (AUC) and
recall. Metrics were averaged across multiple runs with different random seeds to ensure robustness.

RecallAUCCategory and subcategory

Model selection, mean (SD)

Held-out patients

0.02 (0.009)0.51 (0.004)LightGBMa

0.05 (0.011)0.52 (0.005)FNNb

0.75 (0.02)0.87 (0.002)LSTMc

0.74 (0.04)0.87 (0.002)LSTM+attention

Out-of-time patients

0.04 (0.003)0.52 (0.002)LightGBM

0.08 (0.03)0.54 (0.01)FNN

0.72 (0.01)0.84 (0.01)LSTM

0.75 (0.02)0.85 (0.01)LSTM+attention

PRIME’sd performance

Sex

0.360.83Male

0.290.84Female

0.230.87Intersex

Race

0.160.69 eBlack

0.160.8First Nations

0.380.84White

0.270.81Other racial identities

Sexual orientation

0.340.82Heterosexual

0.340.84Other

Program type

0.340.83Regional (nonforensic)

0.270.8Provincial (forensic)

Age group (years)

0.320.8118-65

0.380.81≥65

0.30.81All

aLightGBM: light gradient boosting machine.
bFNN: feedforward neural network.
cLSTM: long short-term memory.
dPRIME: Predictive Risk Identification for Mental Health Events.
eItalicization indicates significance.

For the evaluation using the dataset from 2024, with 48,313
encounters and 2106 recorded adverse events, PRIME achieved
an AUC of 83% (Table 2). The performance varied within and
across subgroups, with AUC ranging from 0.69 (Black patients)

to 0.87 (intersex patients), indicating potential biases favoring
larger, more represented groups within the sample data. Across
racial subgroups, AUC differed by 14%; across sex subgroups,
AUC varied by 5%; across sexual orientation subgroups, AUC
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varied by 2%; across program types, AUC differed by 4%; and,
across age groups, AUC variation was minimal (<1%).

Calibration analysis demonstrated that PRIME produced
well-aligned risk estimates. The reliability curve closely
followed the identity line across predicted probability bins
(Multimedia Appendix 4), indicating good agreement between
predicted and observed event rates. The model achieved a Brier
score of 0.036 on the evaluation set, reflecting strong overall
calibration performance given the low event prevalence.

Feature importance was aggregated across time steps and
encounters and summarized at the feature level (Figure 1).
Integrated gradient attributions were bootstrapped over 100
resampled evaluation datasets, with the resulting variability
visualized as error bars. Ranking stability was assessed using
Spearman correlation, demonstrating near-perfect robustness
(ρ=0.99, –0.0001 to +0.0001). Among the 40 features included
in PRIME, the top 16 predictors accounted for approximately
80% of the model’s total importance, reflecting a diverse
combination of demographic, medical, and psychosocial factors
that drive risk prediction.

Figure 1. Feature importance across distinct categories in the PRIME model: (A) Demographic features including gender, race, and sexual orientation;
(B) Clinical assessment features such as mental status indicators and functional assessments; (C) Clinical diagnoses including major psychiatric conditions,
including schizophrenia diagnosis; (D) Clinical variables related to adverse events, incident history, and hospital stay duration; (E) Medication-related
features, including mood stabilizers and antipsychotics; and (F) Vital signs, including pulse, blood pressure, and oxygen saturation.

When further analyzing feature contributions within specific
categories, demographic factors (Figure 1A) and indicators,
with heterosexual sexual orientation and male sex showing the
largest individual contributions, followed by other sexual
orientation categories and female sex. Race-related variables
and age demonstrated comparatively smaller effects. From the

clinical assessments (Figure 1B), meal tolerated (ADL), risk
assessment (MSA) and uninterrupted sleep (ADL) were
identified as important contributors. In the category of clinical
diagnoses (Figure 1C), schizophrenia and schizoaffective or
bipolar disorder emerged as the most significant predictors.
Among clinical variables (Figure 1D), length of hospital stay
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emerged as the most influential contributor, followed by history
of past incidents and adverse events in the previous 24 hours.
In the medication category (Figure 1E), the other medications
category exhibited the largest overall contribution, followed by
antipsychotics and antidepressants, with mood stabilizers and
anxiolytics contributing more modestly. Finally, among vital
signs (Figure 1F), features such as pulse, blood pressure, and
oxygen saturation met the 0.90 cumulative importance threshold,
although their influence remained relatively modest.

Comparison With the Standardized Risk Assessment
Tool DASA-IV
PRIME demonstrated a 0.2 AUC improvement over the
DASA-IV assessment tool when assessed on the 2024 evaluation
dataset, with PRIME achieving an AUC of 0.81 compared to

DASA-IV’s AUC of 0.61 (Multimedia Appendix 5). To further
assess PRIME’s performance across different patient groups,
we analyzed its effectiveness based on the historical incidence
of adverse events for each individual in the training dataset
(previous adverse event history). Figure 2 illustrates the
performance differences between PRIME and DASA-IV across
various patient groups, where each group is defined by the
number of adverse events recorded in both the training (past)
and evaluation (future) datasets. To examine the model’s
performance compared to that of DASA-IV, we defined
subgroups based on all the unique combinations of adverse
event occurrences observed in the training and test datasets.
This yielded 63 unique subgroups representing different patterns
and combinations of past and future incident frequencies across
the datasets.

Figure 2. Difference in AUC ROC performance scores (Delta AUC = ML AUC ROC - DASA AUC ROC). A positive delta AUC indicates the ML
model outperformed DASA for that specific cohort group. A negative delta AUC indicates DASA outperformed ML for that specific cohort group.
AUC: area under the receiver operating characteristic curve; DASA: Dynamic Appraisal of Situational Aggression; ML: machine learning; ROC:
receiver operating characteristic curve.

The PRIME tool significantly outperformed DASA-IV in 40
of the 63 subgroups (Wilcoxon test; P=.007). For individuals
with no prior incidents in the training set but up to 58 total
incidents in the evaluation period (Figure 2A), PRIME achieved
an AUC of 0.62, whereas DASA-IV achieved an AUC of 0.50.
For individuals with up to 10 incidents in the past and up to 23
in the future (Figure 2B), DASA-IV outperformed PRIME in
cases in which individuals had 1, 2, or 5 future incidents.
However, PRIME outperformed DASA-IV in the remaining 4
subcategories within this range. For individuals with moderate
incident frequency (11-99 past incidents), PRIME outperformed
DASA-IV in 11 of the 19 groups (Figure 2C). Among
individuals with frequent incidents (>100 past incidents),
PRIME outperformed DASA-IV in 4 of the 5 subgroups (Figure
2D). Notably, PRIME’s performance was better in edge cases

in which individuals had a high number of past incidents but
only 1 in the future.

Discussion

Despite the growing number of adverse events in mental health
settings, deep learning tools that leverage routinely collected
EMR data to predict patient deterioration remain limited. Our
model, PRIME, represents a first-of-its-kind approach tailored
specifically to psychiatry and demonstrated strong predictive
performance, achieving an AUC of 0.83. Leveraging
autoregressive LSTM with attention mechanisms, PRIME
operates in a rolling prediction mode, enabling 24-hour forecasts
even in the absence of recent incident data. Notably, the history
of prior incidents emerged as one of the most informative
features, reinforcing the predictive value of temporal continuity
in patient risk trajectories. Furthermore, the inclusion of patients
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from both forensic and nonforensic acute care programs
contributes to the model’s generalizability across diverse mental
health populations. The strong calibration performance observed
for PRIME is particularly important for clinical deployment,
where accurate probability estimates are essential for risk
stratification and decision support. Well-calibrated predictions
enable clinicians to interpret PRIME scores as meaningful risk
estimates rather than solely as ranking signals.

Currently, no ML-based predictive alerting tools are deployed
in mental health settings. Instead, clinicians rely on actuarial
tools such as DASA-IV to assess risks related to violence and
aggression [35]. On the same dataset, PRIME outperformed
DASA-IV (AUC=0.83 vs 0.61). While DASA-IV has reported
AUCs between 0.61 and 0.82 in other studies, it is important to
note that PRIME and DASA-IV target different outcomes [36].
PRIME captures a broader spectrum of deterioration events,
including suicide, self-harm, and clinical decompensation,
whereas DASA-IV is limited to aggression-related outcomes.
The lower AUC for DASA-IV in our dataset likely reflects these
differences in scope. Nonetheless, PRIME’s ability to deliver
significantly stronger performance across a wider range of
adverse events underscores its versatility and robustness. In
clinical practice, focusing solely on aggression is insufficient;
risks of suicide and self-harm are equally critical. By
encompassing a more comprehensive set of risks, PRIME
provides clinicians with a holistic and actionable risk assessment
framework, supporting earlier and more effective interventions.
PRIME also showed strong performance even in patients with
no prior recorded incidents, addressing a critical limitation of
traditional tools that rely heavily on observable behavior or
clinician judgment.

The feature “adverse event in the past 24 hours” emerged as
one of the predictors of future deterioration, consistent with
findings from acute care settings where recent clinical instability
is a key driver of risk. Similar patterns have been observed in
inpatient deterioration models, where temporal proximity to
prior events significantly enhances predictive accuracy [37,38].
Beyond clinical history, our results indicate that a wide array
of features, including demographic variables, mental status
assessments, clinical diagnoses, medications, and vital signs,
contribute meaningfully to risk prediction. This
multidimensional pattern aligns with emerging work suggesting
that accurate prediction of psychiatric outcomes requires
integrating different types of structured medical data and
psychosocial factors [39-41]. Overall, these findings underscore
the importance of using holistic patient representations to
capture the complex drivers of risk in mental health, a direction
that has been underexplored in existing ML applications in
psychiatry.

A limitation of this study, as previously noted, is the
underrepresentation of certain demographic subgroups, which
affected the model’s predictive performance. We observed up
to an 18% variation in AUC across subpopulations, indicating
disparities in performance. Notably, the model was less accurate

for 2 racial subgroups: Black and First Nations individuals, with
AUC scores 14% and 3% lower, respectively, than those for
the overall model performance. Additionally, both groups had
a recall of 0.16, which was lower than that of all other
subgroups, suggesting a higher rate of false negatives and an
undercalling of risk. These disparities likely stem from the low
representation of these groups in the dataset, with Black
individuals comprising less than 10% (309/3751) of the sample
in the training set and less than 10% (73/900) in the evaluation
set. Similarly, First Nations individuals comprise less than 3%
(79/3751) in the training set and less than 3% (19/900) in the
evaluation set. Furthermore, this study did not assess the
intersectional effects, such as whether the demographic factors
had any effect or potential differences between the forensic and
nonforensic programs. These represent important assessments
for future work to further evaluate whether predictive models
such as PRIME are unbiased and generalizable across different
clinical settings and patient populations.

Additionally, while the PRIME tool demonstrated high
predictive performance, the complexity that is inherently present
in deep learning models may limit clinical interpretability.
Ensuring clinician confidence and understanding of the model’s
prediction is critical for successful implementation. Ongoing
monitoring and evaluation of PRIME are needed to assess its
real-world performance and potential biases.

Future work will evaluate the utility, feasibility, and efficacy
of the PRIME tool in real-world clinical settings. This future
work will also focus on mitigating the previously mentioned
biases through bias-aware data augmentation and fairness-aware
learning algorithms (eg, adversarial debiasing) to improve
representation across subgroups [42-44]. Piloting the PRIME
tool in a live clinical setting is the next step in validating its
performance and efficacy and informing the next steps toward
broader clinical deployment. In our future pilot and deployment,
we plan to use PRIME as a binary risk assessment tool to flag
patients at a high risk of adverse events in mental health settings.
Finally, although the PRIME tool was developed using data
from a single mental health hospital, the model framework and
variable-mapping methodological approaches are transferable
to other mental health and psychiatric settings. If the PRIME
tool is to be implemented in other settings, it will require
retraining and validation to account for different patient
populations, data sources, and documentation practices.

In this study, we developed and evaluated an LSTM model that
could predict patients at risk of an adverse event. The model
showed good performance across different subgroup
populations, and our findings suggest that the model would
outperform currently used risk assessment tools. Its
autoregressive design, model evaluation, and near–real-time
operation position it for real-world clinical integration. By
generating dynamic forecasts without dependence on manual
clinician input, PRIME can augment existing workflows and
support earlier interventions in settings where mental health
staff face high demands and elevated safety risks.
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EWS: early warning system
LSTM: long short-term memory
ML: machine learning
PRIME: Predictive Risk Identification for Mental Health Events
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