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Abstract

Background: Suicide is the second-leading cause of US childhood mortality after 9 years of age. The accurate measurement
of pediatric emergency service use for self-injurious thoughts and behaviors (SITB) remains challenging, as diagnostic codes
undercount children. This measurement gap impedes public health and prevention efforts. Current research has not established
which combination of electronic health record data elements achieves both high detection accuracy and consistent performance
across youth populations.

Objective: This study aims to (1) compare the detection accuracy of electronic health record—based methods for identifying
SITB-related pediatric emergency department (ED) visits: basic structured data (International Classification of Diseases
Version 10, Clinical Modification codes, chief concern), comprehensive structured data, clinical note text with natural language
processing, and hybrid approaches combining structured data with notes; and (2) for each method, measure variability in
detection by youth demographics and underlying mental health diagnosis.

Methods: Multiple human experts reviewed clinical records of 3828 pediatric mental health emergency visits (28,861 clinical
notes) to a large health system with 2 EDs (June 2022-October 2024). The reviewers used the Columbia Classification
Algorithm for Suicide Assessment to label the presence of SITB at the visit. Random forest classifiers were developed using
3 data modalities: (1) structured data (low-dimensional [International Classification of Diseases codes and chief concerns],
medium-dimensional [adding Columbia Suicide Severity Rating Scale screening or mental health diagnoses], and high-dimen-
sional [all structured data or augmented case surveillance, aCS]); (2) text data (general-purpose natural language processing,
medical text-specific trained natural language processing, and Large Language Model Meta Al—derived scores), and (3) hybrid
data (combining aCS with each text approach). Model performance was evaluated using area under the receiver operating
characteristic curve (AUROC).

Results: Of the 3828 visits, 1760 (n=1760, 46.0%) were SITB-related. Detection performance improved with dimensionality:
low-dimensional (AUROC=0.865), medium-dimensional (AUROC=0.934-0.935), and high-dimensional (AUROC=0.965).
Low-dimensional structured (International Classification of Diseases codes and chief concerns) showed high variabil-
ity in detection, with lower accuracy among preadolescents (AUROC=0.821 vs 0.880 for adolescents); male partici-
pants (AUROC=0.817 vs 0.902 for females); and patients with neurodevelopmental (AUROC=0.568-0.809), psychotic
(AUROC=0.718), and disruptive disorders (AUROC=0.703). Hybrid modality (aCS+Large Language Model Meta Al)
achieved optimal performance (AUROC=0.977), with AUROC =0.90 for all 20 demographic and 12/15 diagnostic subgroups.
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Conclusions: This cross-sectional retrospective study identified that, relative to diagnostic codes and chief concern alone,
hybrid structured-text detection methods improved accuracy and mitigated unwanted detection variability. The findings
offer a scaffold for future clinical deployment of improved information retrieval of pediatric suicide and self-harm—related

emergencies.
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Introduction

Suicide is the second-leading cause of death among US
children over 9 years old [1]. The estimated annual cost
of suicide- and self-harm-related emergency department
(ED) use is $510 billion, and among young people, nearly
75% of costs are attributable to nonfatal self-harm injuries
[2]. Self-injurious thoughts and behaviors (SITB)—encom-
passing suicidal ideation, suicide attempts, and nonsuicidal
self-injury—rank among the strongest predictors of future
suicidal behavior [3-5]. The accurate detection of ED visits
for SITB underpins interventions to improve quality and
reduce preventable ED use [6-8]. Detection enables public
health surveillance for geographically or temporally clustered
events [7,9-11], informs health system staffing [12], mitigates
crowding [13], and supports policy measures such as firearm
safety regulations [14,15] and crisis hotlines [16]. Yet, among
children, detection remains inconsistent [10,17-19] and leaves
many instances of SITB care unidentified [20], particularly
among younger children [21].

Several challenges impede the detection of pediatric
service use for SITB. When, where, and whether clinicians
document suicidality in structured data or clinical text may
reflect medical record software functionality [22], stigma
[23], racial bias [24], and provider training in pediatrics
or mental health (MH) [25,26]. Diagnostic codes and chief
concern may inconsistently reflect suicidality in school-age
children [21] and children with neurodiverse [27] who often
present to emergency services with less lethal means, without
immediate disclosure of suicidality, or with externalizing
symptoms [28]. The assignment of a diagnostic code often
occurs under associated psychiatric diagnoses [29], such
as major depression or behavioral disturbance in autism.
Diagnostic inaccuracy may further obfuscate these patterns:
fewer than 16% of children who attempt suicide are evaluated
by a MH specialist in the ED [30].

In this context, methods lag to detect SITB-related service
use among children. Most work focuses on adults [31,32] and
leverages costly locally trained natural language process-
ing (NLP) of clinical text to detect SITB events in a
research context [17]. These NLP methodologies include deep
learning [33,34], pretrained models (eg, Word2Vec) [31],
and Bidirectional Encoder Representations from Transform-
ers—based transformer models [35] and the examination of
keyword representation in clinical notes of individuals with
and without self-harm events [31]. While large language
models demonstrate promising capabilities to accelerate
the efficiency of clinical text analysis, fewer than 5% of
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medical NLP applications evaluate large language models
against nonsynthetic clinical notes using large human—labeled
datasets to assess sensitivity, hallucinations, and algorithmic
bias [36]. Structured data—such as standardized pediatric
MH codes [37] and triage screening [38] —offer more readily
implementable detection strategies for operational use [20].
Although the NLP of clinical notes yields fair performance
in adolescents [27,39-41], current literature lacks systematic
head-to-head comparisons of SITB detection accuracy across
electronic health record (EHR) data modalities (text alone,
structured alone, hybrid combined). Further, despite calls
for algorithmic fairness assessment in suicide prevention
[42], phenotyping strategies have seldom evaluated unwanted
detection accuracy variation across pediatric demographic and
diagnostic subgroups [17]. Combined with typically small
human-labeled validation samples (<1000 youth) [17,32],
performance variation in detection strategies across demo-
graphic subgroups remains largely unknown.

To address these gaps, this study presents the first
large-scale comparative evaluation of automated detection
approaches for SITB-related emergency service use among
children and adolescents. The primary objectives were to (1)
compare detection accuracy across 3 EHR data modalities —
structured data alone, clinical text alone, and hybrid combina-
tions—for identifying SITB-related pediatric ED visits; and
(2) for each data modality, measure variability in detection
performance by youth demographics and underlying MH
diagnosis. The findings provide strategies for SITB detec-
tion in pediatric emergency settings, with particular emphasis
on measuring accuracy for population subgroups historically
characterized by suboptimal suicide prevention care.

Methods
Study Design and Population

This retrospective cross-sectional study utilized EHR data
from 4 hospitals within a large academic health care
system in Southern California serving 5.1 million mem-
bers, including approximately 400,000 youth. We included
all youth aged 6-17 years with at least 1 MH-related
ED visit between October 2017 and October 2019; this
period was selected to capture data following the ini-
tial implementation of Columbia Suicide Severity Rating
Scale (c-SSRS) screening and International Classification
of Diseases Version 10, Clinical Modification (ICD-10-CM)
while excluding pandemic disruptions. MH-ED visits were
defined as those associated with (1) a pediatric MH dis-
order as specified per the Child and Adolescent Mental
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Health Disorders Classification System (CAMHD-CS), a
comprehensive taxonomy organizing pediatric MH-related
ICD-10-CM codes into diagnostic categories based on DSM-5
criteria [37]; (2) an MH-related chief concern; (3) involun-
tary psychiatric detainment; or (4) a positive response to
ED nursing triage screening for psychiatric complaints. The
flowchart for study inclusion is presented in Multimedia
Appendix 1.

To ensure the dataset included unique individuals, we
analyzed each child’s most recent visit. The multiexpert
annotation of all eligible encounters (N=3828 visits) occurred
in June 2022-October 2024, with analyses conducted in
November 2024-February 2025. We compared 3 data
modalities to identify optimal approaches for SITB detec-
tion: (1) structured data from discrete EHR fields, (2) text
data from clinical narratives, and (3) hybrid combinations
integrating all available structured data with NLP of clinical
notes. Performance was evaluated against expert classifica-
tions using area under the receiver operating characteristic
(AUROC) curve metrics for overall cohort and subgroup
analyses.

Ethical Considerations

Data, including clinical note text, were deidentified. Analyses
were conducted in secure computing environments. The
study followed Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE) [43] statement guide-
lines, as well as the Transparent Reporting of a Multivaria-
ble Prediction Model for Individual Prognosis or Diagnosis
(TRIPOD) guidelines, TRIPOD-AI [44], and TRIPOD-LLM
[45] (Checklist 1). The University of California Los Angeles
Institutional Review Board approved this study with the
informed consent waiver due to the retrospective study nature
and minimal risk (IRB #20-001512).

Demographic and Clinical Variables

Participants were classified as children (6-12 y) or adoles-
cents (13-17 y), with race, ethnicity, and legal sex from
patient- or family-reported EHR. Racial and ethnic catego-
ries aligned with federal standards [46]: American Indian or
Alaska Native, Asian, Black or African American, Hispanic
or Latino, Native Hawaiian or Pacific Islander, White, plus
other or missing or unknown. We incorporated 2 area-based
socioeconomic measures linked by census tract: the social
vulnerability index [47], a Centers for Disease Control
and Prevention measure ranking communities’ resilience
to external stresses on human health (ranging 0-1, higher
indicating greater vulnerability) derived from the 2018 5-year
American Community Survey, and the area deprivation index
[48], a composite measure of neighborhood socioeconomic
disadvantage based on income, education, employment, and
housing quality (national percentile 1-100, higher indicating
greater deprivation) derived from the 2019 Block Group
ADI files v. 3.0. Further details are provided in Multimedia
Appendix 2.

We extracted all available EHR data from index ED
visits, restricting to the time window between arrival and
discharge, transfer, or inpatient hospitalization. We included
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all verbatim clinical notes (excluding surgical procedures
and medical student notes) across disciplines, including
notes authored by ED physicians, psychiatrists, psychologists,
other medical consultants, social workers, and nurses. We
categorized suicide- and self-harm—related diagnoses by the
Centers for Disease Control and Prevention surveillance
definition of nonfatal suicide attempt and intentional self-
harm using ICD-10-CM [29]. Youth MH diagnoses were
classified via CAMHD-CS, with psychiatric comorbidity
defined as =2 categories. Chief concerns were categorized as
MH or non-MH and SITB or non-SITB related (Multimedia
Appendix 3). We included c-SSRS screening scores, ED-
administered psychotropic medications, homicidal ideation
screening, overdose-related laboratory tests, urine drug screen
results, and discharge disposition. Missing data occurred
in <6% cases for most variables, except for insurance status
(~30% missing) and c-SSRS scores (Multimedia Appendix
4). c-SSRS is asked with gatekeeping question structure
where subsequent items are only administered if initial
screening questions indicate risk. Thus, missingness was
recoded as a separate binary variable for each c-SSRS item
to preserve this clinical decision pattern. To estimate prior
care use, we included number of ED visits and psychiatric
and general medical hospitalizations in the past 30, 90, and
365 days.

Ground-Truth Labeling

A total of 2 trained staff research associate annotators
reviewed structured data and verbatim notes from each
visit. Annotators labeled visits for SITB presence or
type using a modified Columbia Classification Algorithm
for Suicide Assessment [49] (Multimedia Appendix 5).
Interannotator agreement was assessed via Cohen kappa.
When annotators disagreed, 2 board-certified child psychia-
trists reviewed records independently. Consensus discussion
resolved clinician disagreements. All encounters (N=3828)
received binary SITB-related and categorical SITB-type
classifications. For a random 724-encounter subsample,
annotators assigned phrase-level labels indicating SITB-rela-
ted (any), the SITB type (ideation, attempt, preparatory act,
or nonsuicidal self-injury), and if the phrase referred to the
patient (vs other), present (vs past), and was affirmed (vs
negated).

Text Processing Methods

We developed 3 distinct approaches to assign clinical text
scores for SITB detection. We provide complete techni-
cal specifications, Community Advisory Board consultation
details, and prompt engineering protocols in Multimedia
Appendices 6 and 7.

The first approach (general-purpose natural language
processing [NLP-general]) adapted a semisupervised
methodology from common semisupervised approach
(PheCAP) [50] through the following sequential steps. All
sentences from the 724 held-out encounters were segmented
using spaCy, then embedded using the Universal Sentence
Encoder CMLM-en-base and indexed using the Annoy
approximate nearest neighbor algorithm [51] with angular
distance metrics. Then, for each sentence from the remaining
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3104 encounters, the K=5 nearest neighbor sentences were
retrieved from the labeled training set, and a sentence-level
score was computed as the mean from these neighbors. We
determined encounter-level scores by averaging the sentence-
level scores (k-normalized votes per sentence) across all
sentences within the encounter [51].

The second approach (medical text-specific trained natural
language processing) employed identical methodology but
substituted MedEmbed-small-v0.146 for sentence vectoriza-
tion to leverage domain-specific medical embeddings.

The third approach (Large Language Model Meta Al
[LLaMA]) utilized large language model processing through
a multistage implementation. We leveraged the 724 held-
out encounters to iteratively develop and improve upon a
condition-specific prompt. The prompt includes instructions
to output a Likert-type score ranging from -3 (definitely
does not contain SITB) to +3 (definitely contains SITB)
along with explanatory text as JSON objects. We tested
iterations of this prompt using LLaMA-3.2-1B (selected for
computational efficiency with 10x faster processing speed)
by comparing the Likert scores against note-level labels from
human reviewers. Once preliminary accuracy was established,
we presented the prompt to the study Community Advisory
Board that suggested additional revisions. Once the prompt
was finalized, we conducted final scoring on the remaining
3104 encounters’ notes using LLaMA-3.3-70B. We then
determined encounter-level scores by selecting the maximum
score across all clinical notes within each encounter.

Classification Models

Feature Set Definitions

We define 3 data modalities based on the fundamental data
type: (1) structured modality used discrete EHR fields, (2)
text modality used clinical narratives processed through NLP,
and (3) hybrid modality combined both data types. We
compared a total of 10 feature sets against multiexpert chart
annotation—4 structured modality, 3 text modality, and 3
hybrid modality.

We categorized structured feature sets by dimensional-
ity based on the number of input features: low (<10 fea-
tures), medium (10-50 features), and high (>50 features).
The 4 structured data feature sets were as follows: Low: (1)
SITB-related ICD-10-CM codes and chief concerns (Interna-
tional Classification of Diseases codes and chief concerns
[ICD/CC]); Medium: either (2) low plus c-SSRS scores from
ED nursing evaluation (c-SSRS+ICD/CC) or (3) low plus
MH diagnoses from primary treating ED physician evaluation
(MH dx+ICD/CC); and High: (4) augmented case surveil-
lance (aCS), which includes all available structured clinical
data from the EHR. We categorized feature sets by dimen-
sionality to understand the trade-off between model com-
plexity and performance, where low-dimensional models are
easier to implement but may miss important signals.

The 3 text feature sets were (5) NLP-general, (6) NLP-
med, and (7) an open-source large language model (LLaMA).
We selected these text approaches to evaluate detection
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gains while accounting for key trade-offs—dependency on
sentence-labeled data (yes: NLP-general and NLP-med,
no: LLaMA), computational resource requirements (higher
graphics processing unit requirements: NLP-med, LLaMA;
higher central processing unit requirements: NLP-gen-
eral), and medical-specific versus light-weight embeddings
(NLP-med vs NLP-general).

The 3 hybrid structured-text feature sets (8-10) combined
aCS with each text approach.

Model Development and Validation

Encounters allocated to develop text processing methodology
(n=724) were excluded. To assign the probabilities of SITB
presence to the remaining encounters (n=3104), we devel-
oped 10 random forest classifiers [52], using 10-fold cross-
validation with nested hyperparameter optimization [53]. A
probability threshold of 0.5 was applied to convert random
forest predictions into binary encounter-level classifications.
For each outer fold, training data was split 50/50 for inner
cross-validation. Hyperparameters were selected from the
grid based on the highest classification accuracy in the
inner CV. Each outer fold could select different optimal
hyperparameters independently. The AUROC was calculated
separately for each outer fold using the selected hyperparame-
ters. The reported AUROC values represent the mean across
all 10 outer folds with 95% CIs. The mean receiver operat-
ing characteristic (ROC) curve was created by interpolating
individual fold ROC curves onto a common false positive
rate grid and averaging the true positive rates. We selected
this approach to maintain the integrity of the validation
process and prevent data leakage by ensuring that hyperpara-
meter tuning occurs only on training folds, with perform-
ance evaluation conducted on completely unseen validation
data within each fold. Each encounter classifier’s individual
features are specified in Multimedia Appendix 8.

Statistical Analysis

Overall Classification Performance

We evaluated performance using AUROC, accuracy,
sensitivity, specificity, positive predictive value, and negative
predictive value. Shapley Additive Explanation values
quantified feature importance, while permutation importance
provided complementary ranking. Cross-validation variability
was used to construct asymptotically exact CIs for test error
[54]. Classifier performance was compared using DeLong
tests [55].

Subgroup Performance

We assessed subgroup variation [56] by stratifying perform-
ance across demographic (age group, sex, race or ethnic-
ity) and MH diagnosis (CAMHD-CS groups) subgroups.
Each patient was assigned to 1 demographic subgroup but
could belong to multiple diagnostic subgroups. For each
subgroup, we calculated performance metrics with 95% ClIs
and generated ROC curves.
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Analyses used Python 3.13.0 with scikit-learn, pytorch
1.9.0, and spacy 3.2.0. LLaMA inferencing used Hugging
Face Transformers v4.49.0. The code is available upon
request.

Results

Sample Characteristics

Our study sample included 3828 pediatric ED visits by
unique youth ages 6-17 and comprised 28,861 notes with
619,827 sentences. The sample included 1963 (51.3%) female

Table 1. Sample characteristics®.

Edgcomb et al

and 1865 (48.7%) male youth, with the racial and eth-
nic composition of White non-Hispanic (n=1894, 49.5%),
Hispanic or Latino (n=1017, 26.6%), Black (n=363, 9.5%),
and Asian (n=178, 4.6%; Table 1). Adolescents (ages 13-17
y) constituted most of the sample (n=2819, 73.6%), while
children (ages 6-12 y) represented 26.4% (n=1009). The
median age was 15 (IQR 12-16) years. Common psychiatric
diagnoses included depressive disorders (n=1387, 36.2%),
anxiety disorders (n=1161, 30.3%), suicide or self-injury
coded diagnoses (n=1282, 33.5%), and attention-deficit or
hyperactivity disorder (ADHD) (n=840, 21.9%). Suicide-rela-
ted concerns comprised 18.5% (n=708) of the chief concerns.

Sample characteristic Value
Gold-standard, n (%) 3828 (100)
Any SITBP 1760 (46.0)
Suicide attempt 301 (7.9)
Preparatory acts 261 (6.8)
Suicidal ideation 1014 (26.5)
NSSI¢ 762 (19.9)
Other reason for visit 2036 (53.2)
Not enough information 33(0.9)
Sex, n (%)
Female 1963 (51.3)
Male 1865 (48.7)
Race and ethnicity, n (%)
Not Hispanic or Latino 2774 (72.5)
American Indian or Alaska Native 10 (0.3)
Asian 178 (4.6)
Black or African American 363 (9.5)
Multiple races 88 (2.3)
Native Hawaiian or Other Pacific Islander 5(0.1)
White 1894 (49.5)
Other race 235 (6.1)
Hispanic or Latino 1017 (26.6)
Unknown race or ethnicity 37 (1.0)
Site, n (%)
Academic medical center 2858 (74.7)
Community hospital 970 (25.3)
Disposition, n (%)
Discharged without hospitalization 2277 (59.5)
Hospitalized 1452 (37.9)
General medical hospitalization 390 (10.2)
Psychiatric hospitalization 1062 (27.7)
Other disposition 99 (2.6)
Chief concern, n (%)
Psychiatric (including suicide-related) 2108 (55.1)
Suicide-related 708 (18.5)
EDY Diagnostic code category (CAMHD-CS®), n (%)
ADHDf 840 (21.9)
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Sample characteristic Value
Anxiety disorders 1161 (30.3)
Autism spectrum disorder 468 (12.2)
Bipolar and related disorders 176 (4.6)
Depressive disorders 1387 (36.2)
Developmental disorder 81(2.1)
Disruptive, impulse control, and conduct disorders 269 (7.0)
Feeding and eating disorders 106 (2.8)
Intellectual disability 66 (1.7)
Mental health symptom 535 (14.0)
Miscellaneous 202 (5.3)
Neurocognitive disorders 66 (1.7)
Obsessive-compulsive and related disorders 172 (4.5)
Schizophrenia and other psychotic disorders 145 (3.8)
Substance-related and addictive disorders 475 (12.4)
Suicide or self-injury 1282 (33.5)
Trauma and stressor-related disorders 246 (6.4)
=2 CAMHD-CSF® diagnoses 2345 (61.3)

Age (y), median (IQR) 15 (12-16)

Social vulnerability index, total, median (IQR)
Area deprivation index, median (IQR)

State ranking
National ranking

0.38 (0.19-0.65)

2(1-5)
5(2-12)

2percentages do not sum to 100% as children may present with more than one chief concern or mental health diagnosis.

bSITB: self-injurious thoughts and behaviors.
°NSSI: nonsuicidal self-injury.
dED: emergency department.

¢CAMHD-CS: Child and Adolescent Mental Health Disorders Classification System.

fADHD: attention-deficit or hyperactivity disorder.

Ground-Truth Agreement

The raters agreed on SITB classification (3695/3828 [96.5%
agreement]; Cohen %=0.93). Nearly half (n=1760, 46.0%)
of the encounters involved SITB, with similar prevalence in
children (n=455, 45.1%) and adolescents (n=1305, 46.3%).

Performance Metrics

Overview

The detection of SITB varied across EHR data represen-
tations (Figure 1). Complete fit metrics, failure mode
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characterization including the number of false positives and
false negatives, exact DelLong test P values, and ROC
curves are provided in Multimedia Appendices 9 and 10.
AUROC stability across folds is visualized in Multimedia
Appendix 11. The examination of Shapley Additive Explan-
ations and permutation importances for the best-performing
representations revealed that text-derived features provided
the strongest contribution to classifier accuracy (Figure 2;
Multimedia Appendices 12 and 13).
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Figure 1. Comparison of detection classifiers for self-injurious thoughts and behaviors: pairwise analysis of area under the receiver operating curve
(AUROC) by feature type. This heatmap illustrates the differences in AUROC values among 10 feature sets used for encounter classification. The
matrix compares each pair of feature sets, with subtrahend feature sets listed in columns and minuend feature sets listed in rows. Cells shaded blue
indicate that the row feature set outperformed the column feature set, while cells shaded yellow indicate inferior performance. The feature sets
are categorized into 3 groups: structured (including International Classification of Diseases codes and chief concerns [ICD/CC], c-SSRS+ICD/CC,
MH dx+ICD/CC, and augmented case surveillance [aCS]), text (including general-purpose natural language processing [NLP-general], medical
text-specific trained natural language processing [NLP-med], and Large Language Model Meta Al [LLaMA]), and hybrid (including aCS+NLP,
aCS+NLP-med, and aCS+LLaMA). Asterisks denote statistical significance (¥*P<.05, **P<.01, ***P<.001). The largest improvement in AUROC
(0.111) occurred when high-dimensional structured data (aCS) were combined with open-source large language model scores (LLaMA), compared to
the baseline ICD/CC feature set. c-SSRS: Columbia Suicide Severity Rating Scale.

Subtrahend
Structured data Note text Hybrid
Feature set | ICDICC ﬁ_cScS)/Rc?; :‘ggfé‘é aCS | NLP-gen | NLP-med | LLaMA Nigi‘;n Nfgfn*e 5 g’offs’fe&gz
ICD/CC
Structured | c-SSRS+ICD/CC | 0.069*** 0.075
data MH dx+ICD/CC | -0.001 | 0.050
0.030*** | 0.032*** 0.025
) 0.021*** | 0.022*** | -0.009** 0.000
Minuend | text data 0.035*** | 0.037*** | 0.005 | 0.014*** -0.025
LLaMA 0.027*** | 0.029*** | -0.003 | 0.006 -0.008* -0.050
aCS+NLP-gen 0.038*** | 0.039*** [0.007**| 0.017*** | 0.002 | 0.010** -0.075
Hybrid aCS+NLP-med 0.037*** | 0.038*** [ 0.007** [ 0.016*** | 0.002 [ 0.010** [ -0.001 -0.100

0.015***

0.021***

aCS+LLaMA 0.012***

0.042*** | 0.043***

Figure 2. Comparison of feature and permutation importance between aCS+NLP-med and aCS+LLaMA for encounter classification of self-injurious
thoughts and behaviors. This figure presents importance analyses for the 2 top-performing classification approaches, aCS+NLP-med (left panels) and
aCS+LLaMA (right panels), which achieved the highest area under the receiver operating characteristic curve. The upper panels display Shapley
Additive Explanation (SHAP) values, where negative values indicate the decreased detection of self-injurious thoughts and behaviors (SITB), and
positive values indicate increased detection. The lower panels show permutation importance scores, which quantify the contribution of each feature
to the classifier’s performance. In both classifiers, text features dominated the feature importance rankings, outperforming structured data features.
Notable exceptions among structured data features included Columbia Suicide Severity Rating Scale (c-SSRS) items, homicide screening, area
deprivation indices, encounter age, and psychiatric hospitalization disposition. For reference, the notation used in this figure is as follows: aCS
represents all available structured data; NLP-med refers to note scores derived using MedEmbed-small-v0.1 embeddings with nearest-neighbor
approximation; LLM refers to note scores generated by the open-source language model 1lama-3.3-70B. The "+" symbol indicates combinations of
aCS with the corresponding text-based feature set (NLP-med or Large Language Model Meta Al [LLaMA]). aCS: augmented case surveillance;
ICD-10-CM: International Classification of Diseases Clinical Modification Version 10; NLP-med: medical text-specific trained natural language
processing; Str: structured data; SVI: social vulnerability index.

aCS+NLP-med aCS+LLM
High High
NLP: SITB-relevant - T — .-h LLM: SITB-pOSitive P e— e c— .’
NLP: SITB affirmed, patient, present B 2 Str: SITB-related ICD-10-CM i
Str: SITB-related ICD-10-CM '_ Str: Suicide-related chief concern {'—
Str: Number of safety questions . _.'. - . Str: Encounter age (years) -.{L——. 3
Str: Homicide screening - ._', § Str: Number of Safety Questions . .«. g
Str: Autism spectrum disorder ICD-10-CM *_ f“::, Str: Mental health symptom ICD-10-CM {}_ g
Str: Encounter age, years +_ £ Str: Area Deprivation Index, national rank _+|..- =
Str: Antidepressant administered —_ Str: SVI - Minority Language 4+
Str: Area Deprivation Index, national rank .- + Str: Disposition to psychiatric hospitalization —_
Str: SVI Household Composition {— Str: Child is Hispanic or Latino {}-
-0.8 -0.6 -0.4 -0.2 0.0 0.2 Lo -0.8 -0.6 -0.4 -0.2 0.0 0.2 tow
SHAP value (impact on model output) SHAP value (impact on model output)
NLP: SITB-relevant = LLM: SITB-positive max Likert score I
Str: SITB-related ICD-10-CM - Str: SITB-related ICD-10-CM [
NLP: SITB-affirmed-patient-present HilH Str: Disposition to psychiatric hospitalization
Str: Number of safety questions [ Str: Area Deprivation Index national rank
Str: Homicide screening L] Str: Homicide screening
Str: Encounter year i Str: Area Deprivation Index state rank
Str: Antidepressant administered i Str: Bipolar and related disorders ICD-10-CM
Str: Psychiatric comorbidity ICD-10-CM i Str: c-SSRS Item 2 score
StrzHomicide/Plan Str: SVI Minority Language
Stri'sVl, Minority, Language | Str: Involuntary mental health detainment
R PR 80 92 o4 -04  -02 0.0 0.2 0.4

Permutation importance Mo
P Permutation importance

Structured Data Classification Both medium-dimensional structured (c-SSRS+ICD/CC;

i . . MH dx+ICD/CC) feature sets outperformed ICD/CC (both
Low-dlmensmna.ll structured (ICD/CC) yielded the lowest P<.001). The high-dimensional structured feature set (aCS)
accuracy detection (AUROC 0.865, 95% CI 0.852-0.879).
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(AUROC 0.965, 95% CI 0.958-0.972) further outperformed
¢-SSRS+ICD/CC (AUROC 0.935, 95% CI 0.925-0.944) and
MH dx+ICD/CC (AUROC 0.934, 95% CI 0.924-0.943;
P<.001).

Text-Based Classification

Among text modalities, NLP-med (AUROC 0.970, 95%
CI 0.964-0.977) marginally outperformed NLP-general
(AUROC 0.956, 95% CI 0.948-0.964; P<.001) and LLaMA
(AUROC 0.962, 95% CI 0.955-0.969; P=.03). The text-only
modalities all surpassed ICD/CC as well as c-SSRS+ICD/CC
and MH dx+ICD/CC (all P<.001), but NLP-general was
slightly inferior to aCS (P=.005). NLP-med and LLaMA did
not significantly exceed aCS.

Hybrid Classification
Combining text with aCS exceeded aCS alone (P<.001).

Edgcomb et al

Subgroup Performance
Demographic Subgroups

Detection varied considerably across age, sex, and race
or ethnicity subgroups (Figure 3; Multimedia Appendix
14). Low-dimensional structured data (ICD/CC) achieved
AUROC values =0.950 for only 2/20 demographic groups.
ICD/CC performed less well for children (AUROC 0.821,
95% CI 0.791-0.851) compared to adolescents (AUROC
0.880, 95% CI 0.865-0.895) and for male (AUROC 0.817,
95% CI 0.794-0.840) compared to female (AUROC 0.902;
95% CI 0.886-0.918) youth, with nonoverlapping ClIs.
Detection was similar between female children and female
adolescents (AUROC 0.903, 95% CI 0.867-0.939 vs AUROC
0902, 95% CI 0.884-0.920) but differed between male
children and male adolescents (AUROC 0.753, 95% CI
0.708-0.798 vs AUROC 0.847, 95% CI 0.821-0.873). Using

ICD/CC alone, detection was lower among Hispanic male
children (AUROC 0.684, 95% CI 0.579-0.789) and Black
male children (AUROC 0.754, 95% CI 0.630-0.877), with
a similar trend among Asian male children. Multimedia
Appendices 16-19 present ROC curves stratified by feature
set and demographic groups.

Combining text with aCS also exceeded NLP-general alone
(P<.001) and LLaMA alone (P<.01). However, adding aCS to
NLP-med did not improve detection compared with NLP-
med alone (P=.633). The hybrid representation combining
aCS with LLaMA classification (aCS+LLaMA) achieved
the highest overall AUROC (0.977, 95% CI 0.971-0.982),
narrowly exceeding aCS with NLP-med (AUROC 0.970,
95% CI10.964-0.977; P=.04).

Figure 3. Stratified performance of detection classifiers by demographics. This figure presents the area under the receiver operating characteristic
curve (AUROC) values for various encounter classification feature sets, stratified by age (6-12 and 13-17 y), sex (male and female), and race or
ethnicity (Asian, Black, Hispanic or Latino, White, and Other), with the number of cases with self-injurious thoughts and behaviors (SITB Pos)
shown for each subgroup. The feature sets are categorized into 3 groups: structured (including International Classification of Diseases codes and chief
concerns [ICD/CC], c-SSRS+ICD/CC, MH dx+ICD/CC, and augmented case surveillance [aCS]), text (including general-purpose natural language
processing [NLP-gen], medical text-specific trained natural language processing [NLP-med], and Large Language Model Meta Al [LLaMA]), and
hybrid (including aCS+NLP, aCS+NLP-med, and aCS+LLaMA). The results show that baseline classifiers using only ICD codes or chief concerns
had lower performance (AUROC range: 0.681-0.966), whereas more comprehensive classifiers, particularly those combining structured data (aCS)
with natural language processing (NLP or LLaMA), achieved higher performance across all demographic subgroups (AUROC range: 0.900-1.000),
as indicated by the color gradient from teal (higher performance) to red (lower performance), with the "Other" race or ethnicity category including
individuals who identify as multiple races, Native Hawaiian or Pacific Islander, Native American or Alaska Native, or have an unknown race or
ethnicity.

Structured data Note text Hybrid
aCS+
) ICD/  ¢SSRS  MHdx NLP-  NLP- acs+ aCs+
[ -

Demographic Group N | nSITB.% | cc wcpicc  +icoce S | gen  med HHAMA ZI:; NLP-med  LLaMA
Male, Asian, 6-12 years 18 | 6(33.3) 0.84 0.003__ | 0.833 | 0.875 [ 0.917 | 0.986 | 0.875 0.889 0.972
Male, Latino, 6-12 years 144 | 37 (25.7) 0.832 0.871 | 0.956 | 0.972 | 0.962 | 0.956 | 0.975 0.976 0.965
Male, Black, 6-12 years 61 | 29 (47.5) 0.848 0.921 | 0.921 | 0.934 | 0.949 | 0.932 | 0.918 0.927 0.958
Male, White, 6-12 years 233 | 107 (45.9) 0.843 0.916 | 0.912 | 0.911 | 0.041 | 0.952 | 0.926 0.941 0.963
Female, Other
Race/Ethniclty. 612 years 30 | 13(43.3) [ 0.785 | 0.928 0.91 0.959 | 0.986 0.968
Male, Latino, 13-17 years 262 | 85(32.4) | 0.802| 0918 0.908 | 0953 | 0.939 | 095 | 0.94 | 0.963 0.956 0.956
':";'f% ?;2‘:; Race/Ethnicity, 74 | 22(29.7) | 0.838 | 0.939 0.873 | 0.959 | 0.965 | 0.986 | 0.968 | 0.969 0.978 0.976
Male, Black, 13-17 years 80 | 22(27.5) | 0.841 | 0943 0.969 | 0.971 | 0.931 | 0.972 | 0.934 | 0.969 0.97 0.985
g"ﬁ"zey S;:‘Ser Race/Ethnicity, 48 | 11(22.9) | 0.844 | 0.915 0971 | 0.958 | 0.968 | 0.966 | 0.983 | 0.988 0.962 0.988
Female, Black, 6-12 years 34 | 13(38.2) | 0.846 | 0.949 0813 | 0.967 | 0.96 0978 | 0974 0.989 0.963
Female, Black, 13-17 years | 113 | 51 (45.1) | 0.848 | 0.917 0.919 | 0958 | 0.928 | 0.958 | 0.952 | 0.964 0.962 0.973
Male, White, 13-17 years 560 | 244 (43.6) | 0.849 | 0.941 0.919 | 0.957 | 0.941 | 0.963 | 0.957 | 0.969 0.964 0.971
Female, Latino, 13-17 years | 311 | 154 (49.5) | 0.887 | 0.949 0.933 | 0.973 | 0.973 [0.985| 0.964 | 0.978 0.975 0.978
Female, White, 13-17 years | 618 | 325 (52.6) | 0.912 | 0.959 0.964 | 0.977 | 096 | 0.977 | 0.969 | 0.978 0.98 0.981
Female, White, 6-12 years 137 | 71(51.8) | 0.915 | 0.95 0.933 | 0.966 | 0.974 | 0.971 | 0.973 | 0.972 0.961 0.98
Female, Asian, 6-12 years 16 | 10(62.5) | 0.925 | 0.967 0.967 0.917
Female, Latino, 6-12 years 110 | 48 (43.6) | 0.929 0.98
Female, Other
Race/Ethnicity, 1317 years | 105 | 49467) | 0932 | 0.93 0.941 0.989 0.981 m
Female, Asian, 13-17 years 63 32 (50.8) | 0.946 0.979
Male, Asian, 13-17 years 40 21(52.5) | 0.966
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Hybrid feature sets achieved the greatest subgroup con-
sistency, with AUROC values =0.950 for aCS+NLP-gen-
eral (15/20 demographic groups), aCS+NLP-med (17/20
demographic groups), and aCS+LLaMA (19/20 demographic
groups). aCS+LLaMA yielded the most consistent perform-
ance, reducing the AUROC gap between the highest and
lowest performing groups from 0.285 (ICD/CC) to 0.100
(aCS+LLaMA). Notably, aCS+LLaMA achieved strong
detection performance for groups with the lowest detection
performance using ICD/CC alone, including Hispanic male
children and Black male children, with AUROC improve-
ments of 0.281 and 0.205, respectively.

Diagnostic Subgroups

Detection further varied by MH diagnostic categories
(Figure 4; Multimedia Appendix 19). ICD/CC achieved

Edgcomb et al

AUROC values =0.90 for 0/15 diagnostic groups. ICD/CC
achieved lower SITB detection performance among youth
with neurodevelopmental (eg, intellectual disability: AUROC
0568, 95% CI 0.410-0.726; autism spectrum disorder:
AUROC 0.736, 95% CI 0.686-0.787; ADHD: AUROC 0.809,
95% CI 0.777-0.841), externalizing (disruptive or impulse
control disorders: AUROC 0.703, 95% CI 0.635-0.772), and
psychotic (AUROC 0.718, 95% CI 0.626-0.811) disor-
ders. In contrast, ICD/CC achieved higher SITB detection
performance among youth with internalizing (eg, depressive
disorders: AUROC 0.896, 95% CI 0.878-0.915; anxiety
disorders: AUROC 0.878, 95% CI 0.856-0.899; trauma- or
stressor-related disorders: AUROC 0.842, 95% CI 0.789-
0.895) and substance-related disorders (AUROC 0.878, 95%
CI10.840-0.917).

Figure 4. Stratified performance of detection classifiers by mental health diagnosis. This figure presents the area under the receiver operating
characteristic curve (AUROC) values for various encounter classification feature sets, stratified by the 15 most prevalent diagnostic categories of
the Child and Adolescent Mental Health Disorders Classification System (CAMHD-CS), with the number of self-injurious thoughts and behaviors
(SITB)—positive cases shown for each subgroup. For performance by all 23 categories, see Multimedia Appendix 13. The feature sets are categorized
into 3 groups: structured (including International Classification of Diseases codes and chief concerns [ICD/CC], ¢c-SSRS+ICD/CC, MH dx+ICD/CC,
and augmented case surveillance [aCS]), text (including general-purpose natural language processing [NLP-gen], medical text-specific trained
natural language processing [NLP-med], and Large Language Model Meta Al [LLaMA]), and hybrid (including aCS+NLP, aCS+NLP-med, and
aCS+LLaMA). The results show that classifiers performed best in identifying SITB risk for substance-related and addictive disorders, anxiety
disorders, and developmental delay disorders across most feature sets. Notably, classifiers that integrated structured data (aCS) with natural language
processing (NLP) or large language model (LLaMA) approaches generally achieved higher performance compared to individual feature sets alone, as

indicated by the color gradient from teal (higher performance) to red (lower performance). ADHD: attention-deficit or hyperactivity disorder.

Structured data Note text Hybrid
. . c-SSRS| MH dx NLP- NLP- aCS+ aCS+ aCS+
Diagnosis N | nSITB % +icoic, +icbice| 3% | gen | med | ““®AINLP-gen | NLP-med| LLaMA
Intellectual disability 55 21 (38.2) 0.756 0.768 | 0.902 0.898 0.902| 0.945 0.899 0.913 0.933
Disruptive, impulse control and
conduct disorders 436 | 295 (67.7) 0.728 0.743 0.730 0.839| 0.859 0.752 0.816 0.858
Schizophrenia spectrum and other
psychotic disorders 158 | 87 (55.1) 0.718 | 0.777 0.759| 0.750 | 0.823| 0.829( 0.801 0.809 0.867
Developmental delay or
neurodevelopmental disorder 36 17 (47.2) 0.735 | 0.912 0.902 | 0.968( 0.952 0.966 0.950 0.973
Autism spectrum disorder 54 10 (18.5) 0.736 | 0.851 0.816 | 0.902| 0.899 0.915 0.912 0.936
Mental health symptom 129 | 89(69.0) 0.745 | 0.822 0.841 0.791 0.862 0.875 0.880
Miscellaneous 23 18 (78.3) 0.763 0.864 0.853 | 0.909 0.913 0.937 0.940 0.939
Feeding and eating disorders 116 | 74 (63.8) 0.774 0.849 0.858 | 0.909 0.885 0.921 0.921 0.952
Bipolar and related disorders 29 25 (86.2) 0.804 0.819 0.792 0.828 0.791 0.844 0.876 0.891
ADHD 23 5(21.7) 0.809 0.895 0.897 | 0.934 0.932 0.950 0.950 0.956
Trauma and stressor-related disorders | 11 5 (45.5) 0.842 0.914 0.840 | 0.934 0.896 0.939 0.948 0.936
Obsessive-compulsive disorders 389 | 152 (39.1) 0.864 0.919 0.839 | 0.958 0.924 0.948 0.942 0.967
Comorbidity (2 2 CAMHD-CS
diagnostic groups) 202 | 129 (63.9) 0.877 0.915 0.869 | 0.931 0.919 0.946 0.948 0.957
Anxiety disorders 1866 (1286 (68.9) | 0.878 | 0.929 0.903 | 0.950| 0.953 0.964 0.962 0.970
Substance related and addictive 700 | 357(51.0) | 0.878 | 0.937 | 0921 | 0.971| 0.972 978 g
Depressive disorders 933 | 574 (61.5) 0.896 0.931 0.879 | 0.942 0.934 0.957| 0.942 0.960 0.964 0.963
Hybrid feature sets achieved the greatest subgroup con- AUROC 0.956,95% CI 0.941-0.972), externalizing problems

sistency among diagnostic groups, with AUROC exceed-
ing 0.950 for aCS+NLP-general (5/15 diagnostic groups),
aCS+NLP-med (5/15 diagnostic groups), and aCS+LLaMA
(8/15 diagnostic groups). aCS+LLaMA yielded the most
consistent performance, reducing the AUROC gap between
the highest and lowest performing groups from 0.328
(ICD/CC classifier) to 0.115. Notably, aCS+ LLaMA

(disruptive or impulse control disorders: AUROC 0.858, 95%
CI 0.809-0.908), and psychotic disorders (AUROC 0.867,
95% CI 0.803-0.931). However, the detection of SITB among
children with externalizing and psychotic disorders remained
lower for internalizing disorders (eg, depression: AUROC
0.963,95% C10.953-0.973).

achieved strong detection performance for the groups with Dijscussion
lower detection performance using ICD/CC alone, includ-
ing neurodevelopmental problems (intellectual disability: Prin cipal Findin gs

AUROC 0.933, 95% CI 0.854-1.000; developmental delay:
AUROC 0973, 95% CI 0.910-1.000; autism spectrum
disorder: AUROC 0.936, 95% CI 0.909-0.963; ADHD:
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the detection of pediatric ED service use for suicide and
self-harm. Hybrid modality classifiers combining high-
dimensional structured data with an open-source language
model scores achieved the highest performance across
nearly all subgroups—advancing detection accuracy beyond
prior efforts relying on ICD-10-CM codes or clinical
text alone [17,35,57,58]. Surprisingly, detection using
high-dimensional structured data approximated text-based
approaches, providing a resource-efficient alternative to
improve detection while simplifying anonymization and
computational requirements.

Our findings challenge the widespread reliance on suicide-
and self-harm-related /CD-10-CM codes and chief concern
for identifying SITB emergency service use among chil-
dren. While epidemiologic studies report female adolescents
account for the surge in emergency service use for suicidality
[59,60], the misclassification of SITB among male children
may distort observed patterns of pediatric ED utilization.
This detection gap raises particular concern given the annual
8.2% rise in suicide death rates among preteens [59] and
the highest age-standardized suicide death rates among male
US youth aged 10-24 years across 52 countries [61]. Youth
with psychotic disorders or neurodevelopmental disorders
also presented detection challenges despite their markedly
elevated risk—70-fold elevated risk of suicide attempts [62]
and 3-fold elevated risk of suicide death [63,64], respectively.
For these populations, clinical text analysis offers advan-
tages, possibly by capturing subtle manifestations of distress
such as irritability, perceptual disturbances, and aggression.
Future phenotyping studies should implement systematic bias
auditing protocols that regularly evaluate detection accuracy
across demographic and diagnostic subgroups to identify and
remediate performance disparities before clinical deployment.

The detection of pediatric ED service use for suicide and
self-harm has key implications for clinical practice, health
system operations, and public health surveillance. Better
detection underpins the development of clinical decision
support tools to guide clinician awareness of suicide risk
and promote delivery of evidence-based suicide prevention
interventions such as safety planning [65,66] and lethal means
safety counseling [67,68]. Youth with serious mental illness
and developmental disorders—among the most frequently
undetected groups—are also the highest ED utilizers [59]
and experience extended boarding times [69]. Investment
in sensitive, efficient SITB detection methods is likely
to yield significant returns through forecasting resources,
alleviating ED crowding, and reducing ED recidivism.
Further, narrowing detection gaps could enable more precise
monitoring during crisis periods, such as natural disasters and
suicide clusters.

Limitations

While this study included 2 EDs in a single health system,
generalizability requires external validation in other health
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systems, particularly in low-resourced community-based
settings. Some children with SITB present to health care
settings for non-MH reasons. To balance maximizing unique
individuals while maintaining feasibility for human annota-
tion, we analyzed only the most recent MH-related visit
per child. Model performance was evaluated using retro-
spective data that may not reflect evolving clinical docu-
mentation practices, changes in suicide screening protocols,
or shifts in patient presentation patterns over time. While
feature dimensions are invariant to note length, it is pos-
sible extreme differences in documentation volume could
influence the accuracy of note-derived scores; however,
our observation of decreased heterogeneity with the use
of text suggests that note-derived features are capturing
clinical patterns across subgroups despite any unmeasured
documentation differences. Calibration, while essential for
clinical deployment, was outside our scope of comparing
data modalities’ relative discriminative power. There are
numerous practical challenges involved in deploying NLP
methodologies in real-time clinical settings, including the
computational cost and necessary implementation infrastruc-
ture. Future research should focus on prospective validation
in diverse clinical settings, implementation studies exam-
ining workflow integration and clinician acceptance, cost-
effectiveness analyses, and evaluation of model degradation
over time. In the interim, this study offers actionable
approaches to strengthening retrospective surveillance of
pediatric suicide—related ED use. Real-time EHR integration
would require robust model maintenance protocols, compre-
hensive staff training on result interpretation, patient and
family input on automated screening approaches, and ongoing
bias monitoring.

Conclusions

This study developed a cross-disciplinary and multimodal
machine learning approach for automating the detection
of pediatric SITB-related emergency care using integrated
EHR data representations. The hybrid modality achieved
high accuracy while demonstrating reduced variation across
demographic and diagnostic subgroups compared with basic
structured data alone. The findings indicate that, alone,
ICD-10-CM codes and chief concerns yield suboptimal and
variable detection accuracy. Study methods provide compu-
tationally efficient alternatives to improve detection accu-
racy beyond traditional approaches. The findings suggest
that systematic detection gaps exist and can be efficiently
mitigated: focused efforts to augment information retrieval on
suicide risk factors at bedside are needed to stymie decision
bias and bolster pediatric MH care quality.
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