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Abstract

Background: Depression and anxiety are prevalent but commonly missed and misdiagnosed, an important concern because
many patients do not experience spontaneous recovery, and the duration of untreated illness is associated with worse outcomes.

Objective: This study aims to explore the potential of using smartphone-tracked behavioral markers to support diagnostics
and improve recognition of these disorders.

Methods: We used the dedicated Behapp digital phenotyping platform to passively track location and app usage in 217
individuals, comprising symptomatic (n=109; depression/anxiety diagnosis or symptoms) and asymptomatic individuals
(n=108; no diagnosis/symptoms). After quantifying 46 behavioral markers (eg, % time at home), we applied a machine
learning approach to (1) determine which markers are relevant for depression/anxiety recognition and (2) develop and evaluate
diagnostic prediction models for doing so.

Results: Our analysis identifies the total number of GPS-based trajectories as a potential marker of depression/anxiety,
where individuals with fewer trajectories are more likely to be symptomatic. Models using this feature in combination
with demographics or in isolation outperformed demographics-only models (area under the receiver operating characteristic
curvep7,=0.60 vs 0.60 vs 0.51).

Conclusions: Collectively, these findings indicate that smartphone-tracked behavioral markers have limited discriminant
ability in our study but potential to support future depression/anxiety diagnostics.
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Introduction outcomes [4]. Mounting evidence suggests depression/anxi-
ety recognition might be improved by diagnostic prediction
models that rely on smartphone-tracked behavioral markers
such as homestay and app use (eg, for depression, sensitiv-
ity=72.5%-75.0%) [5]. However, this research area—here
referred to as digital phenotyping—is considered to be in its
infancy [6]. More work is required to identify informative

Depression and anxiety disorders commonly are not
recognized by general practitioners (eg, for depression,
sensitivity=47.3%-50.1%; [1]). In practice, this diagnostic
issue is an important concern because many patients do
not experience (short-term) spontaneous recovery [2,3], and
the duration of untreated illness is associated with worse

https://mental jmir.org/2026/1/e80765 JMIR Ment Health 2026 | vol. 13 1e80765 I p. 1
(page number not for citation purposes)


https://doi.org/10.2196/80765
https://mental.jmir.org/2026/1/e80765

JMIR MENTAL HEALTH

behavioral markers and evaluate their potential diagnostic
utility for health care professionals.

Digital phenotyping refers to ‘“moment-by-moment
quantification of the individual-level human phenotype in
situ using data from personal digital devices, in particular
smartphones” [7]. By accurately and unobtrusively captur-
ing mental illness dimensions in daily life (eg, sleep,
social behavior), digital phenotyping could contribute to
more precise disease stratification in the long run (ie, deep
phenotyping [8]). However, an important first step is to
evaluate if digital phenotyping can help us broadly distin-
guish individuals with and without depression/anxiety, above
and beyond demographic features known to predict these
symptoms (eg, age, sex, and years of education [9]). We
here consider the potential use of smartphone-tracked location
and app use for depression/anxiety recognition; other digital
phenotyping data sources (eg, Bluetooth, accelerometer, light
sensor) are beyond the scope of this article.

Theoretically, digital phenotyping should (to some extent)
help distinguish symptomatic from asymptomatic individu-
als. By using the smartphone to continuously log individu-
als’ GPS-based location and phone use, we can quantify
smartphone-tracked behavioral markers such as time spent at
home [10-13] that overlap or correlate with psychopathologi-
cal symptoms [14]. For instance, specific anxiety disorders
(eg, agoraphobia, social phobia) are defined by avoidance of
specific contexts, and therefore, we might reasonably expect
individuals with these symptoms to spend less time at leisure
places and more time at home [15]. Similarly, smartphone
app use might be relevant as it captures information about
a person’s social activity (eg, time spent on communication
apps such as WhatsApp) [16] and sleep patterns [17,18], both
of which are altered in depression/anxiety.

In the past decade, digital phenotyping research has
provided evidence that passively logged location and
smartphone use might be promising for depression/anxiety
recognition. One relatively stable finding in the domain is
that depression and anxiety are related to reduced locational
variability (eg, lower variance and entropy, lower number
of places visited, longer homestay) [14,19-22]. Research
further suggests smartphone log data might contain diagnos-
tically useful features [23]. For instance, some—although
limited —evidence indicates depression might be indicated
by greater duration [19,23] and entropy of smartphone use
[24], and that increased social media and communication app
use might predict momentary subjective stress [25]. Collec-
tively, evidence indicates digital phenotyping data might have
diagnostic utility.

An important limitation of digital phenotyping research
remains that applications in clinical samples are relatively
uncommon [26]. This is not surprising because these are
more costly and difficult to investigate than convenience
samples, but it is problematic because the envisioned use case
of digital phenotyping is clinical [27]. The unique contribu-
tion of our study is that we analyze a sample of individu-
als with (n=109; symptomatic group) and without clinically
relevant depression/anxiety symptoms (n=108; asymptomatic
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group) in whom up to 43 days of digital phenotyping data
were collected with the Behapp platform [12,16,28,29] in the
Netherlands Study of Depression and Anxiety (NESDA) [30].

Using an explainable artificial intelligence (XAI)
approach, which has growing popularity in the domain
(Shapley additive explanations [SHAP] [31]; eg, [19]), we
aim to (1) identify which behavioral markers are indicative of
depression/anxiety and explore the strength and nature of this
relation and (2) develop and evaluate machine learning (ML)
models that use these markers to recognize depression/anxi-
ety. Notably, as our sample size is limited, we develop and
evaluate this model not for model deployment in clinical
practice but rather as an exploration to inform future, larger
studies. Where applicable, we report in line with the recently
published TRIPOD-AI (Transparent Reporting of a Multivari-
able Prediction Model for Individual Prognosis or Diagnosis
Plus Artificial Intelligence) guidelines [32].

Methods

Data

We here analyze data collected in the NESDA [30], as part of
the Stress in Action consortium project [33]. This study uses
the method of Penninx et al [30], and the method descrip-
tion partly reproduces their wording. NESDA participants
were initially included for a baseline assessment with
clinical interviews and surveys (2004-2007) and assessed
for the seventh time at the 15-year follow-up (2019-2023).
NESDA was designed to be representative of individuals
with depressive and anxiety disorders in different health care
settings and stages of the developmental history. Initially,
participants were recruited from mental health care organiza-
tions, primary care, and the community setting. Participants
were eligible if they were between 18 and 65 years; fluent
in Dutch; and did not meet criteria for psychotic disorder,
obsessive-compulsive disorder, bipolar disorder, or severe
addiction disorder.

Specially trained clinical research staff conducted the
composite international diagnostic interview [34] to deter-
mine if participants met Diagnostic and Statistical Manual
of Mental Disorders, Fourth Edition (DSM-IV) criteria for
depression and anxiety disorders, and participants completed
a battery of self-report surveys using depression and anxiety
symptom measures, including the Inventory of Depressive
Symptomatology (IDS) [35] and Beck Anxiety Inventory
[36]. A subset of NESDA participants installed a digital
phenotyping app (Behapp, for more information see [11,28,
29]) on their smartphone and provided the app permissions
to continuously log their location (longitude and latitude) and
smartphone app use (timestamps of when a specific app was
opened and closed). On average, Behapp was activated on the
day of the interview (SD 4 d), and self-report surveys were
completed an average of 12 days before app activation.

Participants

We enrolled a total of 405 participants in the NESDA digital
phenotyping study, 343 of whom had both clinical and
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digital phenotyping data (n=62 without any digital phenotyp-
ing data, who were excluded). Because iOS disallows app
logging and this is an essential data source for our study,
we excluded individuals with this operating system (n=24).
Further, to ensure digital phenotyping data quality, we
excluded individuals with fewer than 7 days of both app and
GPS-based location data (n=102). Hence, all analyses were
conducted in 217 participants. For a more extensive descrip-
tion of missingness patterns and a demographic comparison
between iOS and Android users, see Multimedia Appendix
1. The overall sample size was determined by feasibility
constraints (ie, we included as many participants as possible
and we retained those with sufficient available data) rather
than sample size calculation. We applied the commonly
used 80/20 train-test split to determine the sample size for
model development (training) and evaluation (testing). Power
analysis using powerROC [37] showed that our test set
sample size (217 * 0.20 arriving at 43-44 participants) is
sufficient to confirm an area under the receiver operating
characteristic curve (AUROC)=0.80 (prevalence of events in
the test set=0.5, target width for estimated AUROC 95% CI
<0.60).

Ethical Considerations

The NESDA study, including its digital phenotyping
substudy, was approved by the Amsterdam UMC medi-
cal ethical committee (reference number 2003-183). All
participants provided informed consent for both clinical
assessment and digital phenotyping.

For participation in a face-to-face assessment wave,
respondents received a €15 (US $17.53) gift certificate and
reimbursement for travel expenses in appreciation of their
time and cooperation. All data were collected and processed
in compliance with the General Data Protection Regulation
(GDPR). To ensure participant privacy, we present only
statistical aggregates that do not contain any personally
identifiable information.

Outcome

DSM-1V-based diagnoses of depressive disorders (dysthy-
mia and major depressive disorder [MDD]) and anxiety
(social anxiety disorder, panic disorder with and without
agoraphobia, agoraphobia, and generalized anxiety disorder)

Table 1. Synthetic overview of Behapp digital phenotyping features.
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were established with the Composite International Diagnostic
Interview (version 2.1 [34]), either in person or via phone
call. Depression and anxiety symptom severity were assessed
with the 30-item IDS [35] and BAI [36]. Outcome assessment
was consistent across demographic groups. To evaluate if
digital phenotyping data can broadly differentiate between
individuals with and without symptoms, we combined these
measures to form a binary outcome variable: symptomatic
and asymptomatic. Symptomatic individuals had at least 1
depressive or anxiety disorder diagnosis in the past 6 months
or an IDS or a BAI score exceeding thresholds specified
in the survey manuals (IDS>13, BAI>9). Asymptomatic
individuals did not have a diagnosis, and both IDS and BAI
scores were below this threshold.

Predictors

We used the digital phenotyping platform Behapp to
passively collect smartphone-based data without storing any
content of web queries, messages, or calls, in compliance
with the GDPR [38]. The Behapp app has already been
successfully used to investigate neuropsychiatric phenotypes
[10,11,13,16] and to measure behavioral changes during
the COVID-19 pandemic [12]. In this study, the collected
raw data consisted of GPS-based location and foreground
app usage data. We sampled the participants’ latitude and
longitude at least every 10 minutes (with higher sampling
frequencies during movement). For foreground app usage, we
logged when an individual opened and closed a specific app.
The Behapp itself is an app that runs in the background and is
only accessed for setting up data collection and to restart the
app when no data are being collected.

Using the Behapp feature extraction pipeline, these
raw data were used to compute features (ie, measura-
ble quantities), such as total phone usage in hours per
day or the percentage of time spent at home. Table 1
provides a synthetic overview of these features. Prior to
model building, we applied data-driven feature selection
(see below) to all available features and trained mod-
els using only the selected features. Note that although
the feature ‘app addiction’ captures information that we
believe conceptually maps onto app addiction, it is unclear
how it relates to validated addiction surveys or addiction
diagnoses.

Feature group and

features Definition Example

Location

Number of (unique) stay points

Number of (unique) stay points
(average per day). A stay point is a
location where participants stay
within a range of 150 m for more
than 30 min. In the count of the
unique stay points, repeated visits of
the same stay point (eg, office) count
as 1 visit or can be smaller than 1
when individual has a single stay
point for most of data collection.

Day 1: Home, work, gym
Day 2: Home, work, café
Day 3: Home, theater, park

Number of stay points (total)=9
Number of stay points (average per
day)=9/3=3

Number of unique stay points
(total)=6
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Feature group and

features

Definition

Example

Time spent stationary

Home

Trajectories

App use

App frequency

App frequency at night

App duration

App duration at night

App addiction

Time spent at stay points (in min).

Most frequently visited stay point of
the top 3 stay points where most time
was spent at night.

Each set of location data points in
between stay points is saved
separately as a trajectory if they
contain a minimum of 20 data points
(totaling at least 30 min).

Number of times apps (in categories)
were opened per day.

Number of times apps (in categories)
were opened at night (between 00:00
and 05:00).

Duration (sum and mean) for which
apps (in categories) were opened per
day.

Duration (sum and mean) for which
apps (in categories) were opened at
night (between 00:00 and 05:00).

A value between 0 and 1 where 1
means that in each time interval of 20
min apps have been used at least
once (average per day).

Number of unique stay points
(average per day)=6/3=2

Day 1: Home (10 h), work (8 h),
gym (1 h)

Day 2: Home (13 h), work (9 h),
café (2 h)

Time spent at stay points (average
perday)=(10+8 + 1)+ (13 +9 +
2)2=215

Apartment a: 16 h

Apartment b: 9h,12h,10h, 11 h
Night club location: 7 h
Apartment b=>Home

Location 1 (2 h), travel (35

min), location 2 (3 h)=>trajectory
identified

Location 1 (2 h), travel (25 min),
location 2 (3 h)=>trajectory not
identified

WhatsApp is categorized as a
communication app and Instagram
as a social media app

Day 1: WhatsApp from 10:00 to
10:01, WhatsApp from 11:00 to
11:01, and Instagram from 11:30
to 11:40

Day 2: WhatsApp from 10:00 to
10:01

Number of times communication
apps opened=3/2=1.5

Number of times social media apps
opened=1/2=0.5

a

Duration (sum, average per day)
communication apps = (2 + 1)/2 =
1.5 min

Duration (mean, average per day)
communication apps = (1 + 1)/2 =
1 min

WhatsApp from 10:00 to 10:01
WhatsApp from 11:00 to 11:01
WhatsApp from 12:00 to 12:01
WhatsApp from 13:00 to 13:01
No other usage until 14:00
Addiction = 4/(4 * 3) =0.33
4%3 represents the number of
20-min intervals between 10:00
and 14:00

4Not applicable.
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Analytical Methods

Figure 1 visualizes our ML pipeline (see [39] for all
required Python code). After extracting features from the raw
location and app usage data, we randomly split features and
their corresponding psychiatric labels into 5 partitions, each
containing (n=43) data points, corresponding to 20% of our
total sample. To uniformly distribute individuals with and
without depression/anxiety symptoms across data partitions,
we apply a stratified 5-fold data split. We then iteratively
select 4 partitions (referred to as the training set) and use
these for minimum-maximum feature scaling, missing feature
value imputation, feature selection, and hyperparameter
tuning (with 10-fold stratified cross-validation) of a linear

Aalbers et al

(ElasticNet logistic regression [LR]) and tree-based ML
model (random forest [RF]) on each of 3 feature (sub)sets (ie,
demographic, digital phenotyping, combined), after which we
evaluate models on the remaining data partition (referred to as
the test set). To impute missing feature values, we computed
the mean of each feature in a training set and replaced the
missing values in both this training set and its associated
test set with this value. This procedure was repeated for
all train-test set pairs. We repeat all steps until each data
partition has been held out of model training once. Finally,
for all trained models, we compute and visualize SHAP [31]
values to clarify how models make their predictions based on
specific feature values.

Figure 1. Visualization of the study design and machine learning pipeline. SHAP: Shapley additive explanations.
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Feature Selection

To reduce our initial feature set to a subset of potentially
informative items, we applied the well-known Boruta feature
selection algorithm [40], which selects an all-relevant subset
of features by first reshuffling the original features into
so-called “shadow features” and training RF classifiers to
determine if the former are more informative about the target
than the latter. The added value of RF, a tree-based ensemble
model [41], over a traditional linear model is the capacity to
learn discontinuous, interactive associations without making
assumptions (eg, absence of multicollinearity) that are likely
to be violated in digital phenotyping data (eg, multicollinear-
ity due to feature similarity).

Model Training

Using the Python library Scikit-learn [42] (version 1.5), we
applied grid search stratified 10-fold cross-validation to tune
hyperparameters of elasticNet-regularized LR [43] and RF
[41] to maximize the model’s AUROC in validation data.
We maximize the AUROC as this metric is typically used to
assess how well a diagnostic prediction model can differen-
tiate between individuals with and without a certain health
outcome [32].

Model Evaluation

To estimate how well models might differentiate between
individuals with and without depression/anxiety symptoms in
a real-world setting, we let trained models make predictions
on the hold-out test data (ie, 20% patients) and then evaluate
to what extent they can correctly classify individuals with
and without depression/anxiety. We used Scikit-learn (version
1.5) to compute evaluation metrics applied in related work
[19] (accuracy, AUROC, F1, precision, and recall, comput-
ing F1, precision, and recall separately for asymptomatic
(F10, Precision0, Recall0) and symptomatic individuals (F11,
Precisionl, Recalll). Because we use 5-fold nested cross-vali-
dation—which means we train models on five train-test splits
—we also evaluate each trained model on 5 hold-out test sets.
For each trained model, we provide the median score for each

Aalbers et al

evaluation metric. To determine which model performed best,
we use the AUROC as our primary evaluation metric, as this
is typically done for binary classification tasks [32].

For theory-driven researchers and clinicians, an important
limitation of the RF classifier is that this model does not have
the interpretable parameters that make up linear models. We
therefore explain our models using the Python library SHAP
(version 0.46.0) to compute and visualize SHAP [31] values
as a beeswarm plot. A beeswarm plot visualizes how changes
in feature values affect probabilities output by the model.
This visualization might be thought of as a visual stand-in for
parameter estimates in linear models.

Results

Descriptives

Demographics were similar in the 2 groups, although female
participants were overrepresented in the symptomatic group
(Table 2). Relatively few individuals in the symptomatic
group had a current diagnosis, with MDD being the most
common diagnosis (n=26), followed by social phobia (n=16).
However, by design, self-reported depression and anxiety
symptoms were higher in the symptomatic than in the
asymptomatic group. The median individual had 42 days of
GPS-based location data and up to 43 days of app usage
data. On average, symptomatic and asymptomatic individu-
als differed most strongly in their total number of leisure
stay points, number of trajectories, duration of entertain-
ment apps, and number of apps used (Multimedia Appen-
dix 2). Most feature distributions were nonnormal, with the
highest densities generally at the left tail. Feature distributions
strongly overlap between symptomatic and asymptomatic
individuals. Minor distributional differences are visible for
features that quantify locational variability (ie, total time
spent stationary, percentage of stay points visited once, total
number of trajectories, total number of stay points, mean time
spent stationary, total time traveled), and communication app
use (Figure 2).

Table 2. Demographic and clinical descriptives for the asymptomatic and symptomatic groups.

Domain and Variable

Asymptomatic (n=108) Symptomatic (n=109)

Demographics
Age (years), mean (SD)
Years of education, mean (SD)
Sex (female), n (%)
Diagnosis in past 6 mo, n (%)
Agoraphobia
Panic disorder
Generalized anxiety disorder
Social phobia
Dysthymia
MDD

Symptom severity, mean (SD)

55.08 (12.82)
13.86 (2.88)
65 (60.19)

5339 (12.24)
1327 (3.28)
78 (70.64)

—a 5(4.59)
_ 12 (11.01)
- 6 (5.50)
- 16 (14.68)
- 6 (5.50)
- 26 (23.85)
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Domain and Variable

Asymptomatic (n=108)

Symptomatic (n=109)

IDS€ total
BAI4 total
Data availability (days), median (IQR; range; SD)

Location

App usage

6.22 (3.59)
2.84 (2.50)

42.00 (25.75-43;7-43; 11.53)

42.50 (25-43; 8-43; 11.77)

21.63 (8.40)
11.00 (6.35)

42,00 (30-43; 7-43;
10.09)
43.00 (32-43; 8-43;
10.09)

4Not applicable.

bMDD: major depressive disorder.

°IDS: Inventory of Depressive Symptomatology.
dBAL Beck Anxiety Inventory.
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Figure 2. Multiboxplot representing distributions of minimum and maximum scaled digital phenotyping features for each group (symptomatic=dark
purple and asymptomatic=light purple). Plots are categorized by feature group (upper panel location, lower panel smartphone app use) and sorted by

overall feature mean.

Total time spent stationary (hours) -

Percentage of staypoints visited once -

Total time spent at home (hours) -

Total number of unique nightly staypoints -

Total time spent outside including travel (hours)
Total number of trajectories -

Total number of staypoints A

Total time spent stationary (hours) excluding home -
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Total number of nightly staypoints -

Total number of unique staypoints -

Mean time spent stationary (hours) -

Total number of single visits -

Total number of unique leisure staypoints -

Total time travelled (hours) 1

Total number of nightly staypoints excluding home -
Mean time travelled (hours) -

Mean time spent stationary (hours) excluding home -
Mean distance travelled (kilometers) -

Total distance travelled (kilometers) -

Standard deviation time travelled (hours) -
Standard deviation distance travelled (kilometers) 1
Maximum distance from home (kilometers) -

Average distance from home (kilometers) -

Phone addiction -

Duration opened all apps (minutes) -

Duration opened communication apps (minutes) -
Number of apps used -

Mean duration opened communication apps (minutes) -
Mean duration opened news magazines apps (minutes)
Number of times opened communication apps A
Number of times opened news magazines apps -
Duration opened camera apps (minutes)

Number of times opened all apps -

Duration opened all apps (minutes) at night -

Duration opened social media apps (minutes)

Mean duration opened health fitness apps (minutes)
Number of times opened entertainment apps
Duration opened news magazines apps (minutes)
Number of times opened health fitness apps -
Duration opened clock apps (minutes) 1

Mean duration opened social media apps (minutes) -
Mean duration opened entertainment apps (minutes) -
Number of times opened all apps at night 1

Duration opened entertainment apps (minutes) A
Number of times opened social media apps A

Duration opened health fitness apps (minutes) -

Feature Selection

The total number of GPS-based trajectories was selected in
all train-test splits. Other features, the majority of which were
locational (n=7 vs n=3 app use), were generally selected in
only 1 data split (eg, mean duration of communication app
use). Therefore, with respect to the full dataset and relative to
all the other features, a person’s number of location trajec-
tories appears to most reliably indicate depression/anxiety.
After an initial round of training and evaluating models, we
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observed suboptimal model performance, which we attributed
to overfitting on feature selection. We therefore decided
to retrain all models with the total number of GPS-based
trajectories as the only digital phenotyping feature, as this was
clearly the most stable feature of the data, and we success-
fully improved model performance by doing so. We present
model performance and explanations of these simplified
models here. Please note that model performance could be
inflated due to decisions informed by the hold-out test data.
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Model Performance

To evaluate if features are predictive not only in the train
but also in the hold-out test data, we trained 2 common ML
model types (LR, RF) to recognize depression/anxiety from
digital phenotyping and demographic data. We considered
the predictive performance of models trained with only the
total number of GPS-based trajectories as their feature and
models using a combination of the total number of GPS-
based trajectories and demographic features (age, sex, and
years of education). We compared how well these models
performed relative to two baseline models: a dummy model
that uniformly outputs asymptomatic or symptomatic groups
and models trained using only demographic features.

Aalbers et al

Considering median AUROC values as the primary metric,
LR trained on only the total number of GPS-based trajec-
tories performed best across train-test splits. AUROCSs for
this model (AUROC,;,=0.61, Table 3) exceeded those of
both baseline models (dummy model AUROC,;4,=0.50; LR
demographics model AUROC,;;,=0.52). LR trained on the
combined feature groups (AUROC,;,=0.56) outperformed
both baseline models but performed worse than the LR
using GPS-based trajectories. Performance of RF models
trained on combined feature groups (AUROC;;,=0.60) was
equal to that of RF models trained on GPS-based trajec-
tories (AUROC,;4,=0.60) and better than both baselines
(dummy model AUROC,;;,=0.50; RF demographics model
AUROC44,=0.51).

Table 3. Model performance metrics (median-aggregated across hold-out test sets, range in parentheses).

Feature group

and model AUROC? F10 F11 Precision0 Precisionl Recall0 Recalll Accuracy
Baseline model, median (IQR; range)

DMP 0.50 047 047 045 048 048 045 047 (0.45-0.53;
(0.50-0.50; (0.45-0.55; (0.45-0.52; (0.45-0.55; (0.45-0.52; (0.45-0.55; (0.45-0.52; 0.45-0.56)
0.50-0.50) 0.45-0.56) 0.45-0.56) 0.45-0.55) 0.45-0.57) 0.45-0.57) 0.45-0.55)

All, median (IQR; range)

LR® 0.56 049 0.61 0.58 0.54 048 0.64 0.56 (0.52-0.58;
(0.51-0.65; (0.47-0.55; (0.57-0.61; (0.53-0.60; (0.52-0.58; (0.41-0.52; (0.64-0.71; 0.47-0.68)
0.49-0.67) 0.46-0.63) 0.42-0.72) 0.45-0.75) 0.48-0.64) 0.41-0.55) 0.45-0.82)

RF4 0.60 0.60 0.54 0.56 0.58 0.64 0.50 0.57 (0.56-0.58;
(0.60-0.61; (0.55-0.62; (0.53-0.60; (0.56-0.61; (0.53-0.62; (0.62-0.64; (0.45-0.59; 0.51-0.61)
0.58-0.64) 0.46-0.62) 0.46-0.63) 0.50-0.62) 0.53-0.62) 0.36-0.71) 0.41-0.76)

Digital phenotyping, median (IQR; range)

LR 0.61 0.57 0.59 0.58 0.58 0.64 0.59 0.61 (0.53-0.61;
(0.60-0.61; (0.56-0.62; (0.57-0.60; (0.53-0.61; (0.54-0.62; (0.50-0.64; (0.55-0.59; 0.52-0.61)
0.56-0.62) 0.5-0.62) 0.46-0.64) 0.52-0.65) 0.53-0.63) 0.48-0.67) 0.41-0.71)

RF 0.60 0.59 047 0.52 0.56 0.67 045 0.54 (0.52-0.58;
(0.58-0.62; (0.58-0.61; (0.45-0.53; (0.52-0.58; (0.53-0.59; (0.64-0.68; (0.41-0.48; 0.44-0.59)
0.52-0.62) 0.43-0.62) 0.43-0.57) 0.43-0.58) 0.45-0.60) 0.43-0.68) 0.36-0.55)

Demographics, median (IQR; range)

LR 0.52 049 0.60 0.56 0.54 041 0.64 0.56 (0.52-0.56;
(0.51-0.62; (0.46-0.51; (0.57-0.61; (0.53-0.60; (0.52-0.56; 0.41-041; (0.64-0.71; 0.48-0.64)
0.48-0.63) 0.39-0.53) 0.56-0.70) 0.47-0.75) 0.50-0.59) 0.33-0.48) 0.64-0.86)

RF 0.51 0.50 0.55 0.53 0.52 048 0.59 0.51 (0.51-0.53;
(0.51-0.55; (0.46-0.51; (0.51-0.57; (0.50-0.53; (0.50-0.54; (0.41-0.50; (0.55-0.59; 0.45-0.55)
047-0.61) 0.40-0.52) 0.50-0.57) 0.44-0.55) 0.46-0.54) 0.36-0.52) 0.50-0.62)

4AUROC: area under the receiver operating characteristic curve.

bpMm: dummy model. Accuracy is balanced for any minor class imbalance.

°LR: logistic regression.
dRF: random forest.

Model Explanation

As nonlinear ML models such as RF do not have directly
interpretable parameters, we computed and visualized SHAP
values as beeswarm plots. By inspecting these plots, we learn
how ML models transform feature values into probabilities,
and in doing so, we gain insight into the mapping from
features to the outcome that the models have learned. Figure 3
shows that LR and RF models consistently learned a negative
relation between an individual’s total number of GPS-based

https://mental jmir.org/2026/1/e80765

trajectories per day and depression/anxiety. This means that
for individuals with fewer trajectories, all models output a
greater probability that they have depression/anxiety. Though
capturing a relation with the same sign for this feature,
LR and RF disagreed on its feature importance relative to
demographic features. RF classifiers always assigned the
highest feature importance to the total number of GPS-based
locational trajectories, whereas LR always prioritized one or
more demographic features.
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Figure 3. Beeswarm plots for the two model types trained using sex, age, years of education, and GPS-based number of trajectories as features.
SHAP: Shapley additive explanations.
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Discussion

Principal Findings

To explore if digital phenotyping has the potential to support
a diagnosis of depression/anxiety, we applied XAl to a unique
combination of location, app use, and clinical assessment data
collected in a subsample of NESDA participants with (n=109;
symptomatic) and without depression/anxiety disorders or
clinically relevant symptoms (n=108; asymptomatic). Our
general findings suggest behavioral markers extracted from
location and app use data potentially carry information about
depression/anxiety, although their capacity to distinguish
between those with and without clinically relevant symptoms
is limited in the currently used data set.

Using a data-driven approach, we identify a number of
GPS-based trajectories as a candidate behavioral marker for
future studies. The total number of GPS-based trajectories, a
locational feature that measures how frequently an individ-
ual moves between different stay points, was consistently
selected across data splits, while other features were generally
selected only once. Descriptive statistics and XAI analysis
showed that individuals with fewer trajectories are more
likely to be symptomatic and that this relation holds above
and beyond demographic factors.

Our finding that individuals with fewer GPS-based
trajectories are more likely to have depression/anxiety
symptoms fits with previous empirical findings, providing
more evidence that GPS-based behavioral features map onto
depression/anxiety symptoms. A consistent finding in digital
phenotyping has been that those with reduced locational
variability (eg, lower variance and entropy, longer homestay)
tend to have more depression and/or anxiety symptoms [19-
22]. Conceptually, this behavioral feature fits with depression
and anxiety symptoms that might diminish an individual’s
tendency to approach rewarding experiences (eg, anhedonia)
or might reinforce their tendency to avoid negative expe-
riences (eg, specific locations or situations such as social
situations). Such symptoms potentially might cause individu-
als to get stuck in places (or rather to prevent them from
getting unstuck), which would manifest itself as reduced
GPS-based trajectories. Changes in GPS-based trajectories
might have clinical use in terms of monitoring symptoms,
but could also point to an intervention opportunity where
individuals are encouraged to increase their daily number of
trajectories.

Comparison With Prior Work

Model performance was less optimistic than in related ML
work [19,23,24] but is consistent with statistically oriented
studies that show weak relations between locational fea-
tures and depression/anxiety [21,22]. Adequate study-to-study
comparisons remain difficult to make, however, because
digital phenotyping and clinical measures, sample characteris-
tics, and modeling decisions differ from study to study and
are likely to explain performance gaps. Hence, as sugges-
ted by others [44], an important avenue for digital phenotyp-
ing will be to harmonize study designs (eg, data collection,
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feature extraction, model types, cross-validation) to facilitate
comparisons that are required to more adequately monitor
progress in the domain. This call has been answered by
academic consortia such as Stress in Action [33] that aim
to collect digital phenotyping data at scale.

Model explanations using SHAP [31] showed our models
have learned associations that are partially consistent with
previous digital phenotyping studies. We found the total
number of trajectories—which is conceptually similar to
standard measures such as location variance or entropy—
to be most important relative to all other Behapp features
and negatively related to depression/anxiety, which matches
previous findings [20,22,23,45] and well-known patterns
that characterize depression/anxiety (eg, reduced motivation,
social withdrawal [23]). However, contrary to previous work
[24], our study did not identify any app use features as
reliable predictors of depression/anxiety. Conceivably, this is
because the relation between app use and depression/anxiety
might hold in a specific subgroup only, as previous evidence
suggests the association between app use and mental well-
being potentially might differ from person to person [25,46-
48].

Our findings are of interest not only for the develop-
ment of diagnostic support systems but also for predict and
preempt systems that aim to facilitate relapse prevention
[49]. Diagnostic support systems aim to separate symp-
tomatic from asymptomatic individuals based on differen-
ces between individuals (eg, symptomatic individuals tend
to have fewer locational trajectories than asymptomatic
individuals), while predict and preempt systems aim to
identify onset of symptoms within an individual, based
on behavioral differences between this individual’s asympto-
matic and symptomatic periods (eg, when an individual’s
trajectories start to decrease, they are increasingly sympto-
matic). Because our modeling approach, strictly speaking,
is limited to between-subject conclusions, these findings
do not necessarily imply that changes in the number of
locational trajectories are indicative of symptom change.
However, previous studies have already found within-person
associations between locational features and depression/anxi-
ety symptoms [21,22,50], indicating our findings might
generalize from between-person to within-person and could
potentially inform systems for relapse prevention.

Limitations

An important contribution of our work is that it investigated
the potential use of digital phenotyping in a sample that
included individuals with a current disorder. This is still
relatively uncommon in digital phenotyping [26] as clinical
samples are more difficult to study than convenience samples.
Notwithstanding, our findings should be considered in light
of the following limitations. Though larger than the aver-
age study in the domain (N=217 vs Npean=82) [51], our
sample size was limited and had restricted demographics, in
particular regarding age range. Combined with the fact that
we excluded iOS users from our analysis, generalizability
is limited to middle-aged Android users. However, consider-
ing the small demographic differences between Android and
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10S users in our sample, this issue seems limited. Android
users, on average, were somewhat older than iOS users,
but did not differ in years of education and gender. Recent
work in larger samples, however, has shown that Android
ownership predicts lower levels of education, income, and
extraversion [52], while other evidence suggests Android
users are more likely to be men and older [53]. Future
digital phenotyping work is needed for both iOS and Android
users, as digital phenotyping screening tools ideally would
be deployed irrespective of an individual’s operating system
(OS). Because technical architecture and privacy frameworks
for a given OS might prevent certain data sources from being
collected (eg, app use in iOS), this means digital phenotyp-
ing screening tools might need to be developed for each OS
separately.

It is also important to note that—within the feasibility
constraints on sample size that are very common in a
clinical setting—we were unable to evaluate how digital
phenotyping features relate to specific depression and anxiety
disorder diagnoses. The sample we analyzed contained a
limited number of individuals with current depression and
anxiety diagnoses. However, because many individuals who
experience substantial residual symptoms would be unsuita-
ble to be included in a control group, we took this into
account by combining participant diagnosis and symptom
self-report. Further, we know from NESDA research reports
that comorbidity between depression and anxiety disorders is
high, especially when looking at lifetime prevalence. We have
observed that about 60% to 80% of NESDA respondents have
had depression and anxiety diagnoses [54] and, therefore,
decided not to analyze them separately. However, symptom
heterogeneity in our sample might have attenuated our ability
to detect features that are relevant to specific disorders, such
as social anxiety disorder. In a more homogeneous sample,
other behavioral markers might be found to be relevant
and, given that these behavioral markers could arguably
map better onto specific symptom profiles, it is thinkable
that model performance would be improved. We therefore
encourage future work to consider comparisons of sympto-
matically homogeneous groups. Notwithstanding, research on
heterogeneous samples such as our own is necessary to detect
transdiagnostic smartphone-tracked behavioral markers.

Finally, we acknowledge that model performance might
have been inflated as a result of data leakage. In an ini-
tial exploratory round of model evaluation on hold-out test
data, we discovered model performance to be unstable across
test sets (Multimedia Appendix 3). We attributed this to
the potential overfitting feature selection in the individual
training sets, which is a risk in small sample sizes. To
stabilize model performance, we decided to only develop and
evaluate models with the most consistently selected feature
(ie, total number of GPS trajectories). Even though these
generalized more reliably to hold-out test sets within our
sample, it could be that the total number of GPS trajecto-
ries was consistently selected by chance and that our post
hoc decision to only retain this feature might be tantamount
to overfitting. Further, post hoc power calculations using
powerROC [37] showed that, with the model performance
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in our study, our test sets were about three times smaller than
what would be required to convincingly show models perform
better than random guessing. It is therefore not surprising
that follow-up DeLong model comparison tests showed no
statistically significant differences in model performance nor
that model evaluation metrics confidence intervals consis-
tently overlapped with chance (Multimedia Appendix 4). All
in all, these findings should be interpreted with caution and
viewed as a first step that can inform larger-scale follow-up
studies.

Future Research Directions

We recommend the following for future work that aims to
develop a digital phenotyping-based symptom recognition
system that can adequately differentiate between symptomatic
and asymptomatic individuals. To ensure digital markers
are consistently defined across studies, digital phenotyping
studies would benefit from developing and adhering to an
ontology of digital markers (for an example under develop-
ment, see [55]). This ontology would ideally map digital
markers (and configurations thereof) to specific symptoms
or syndromes and could still include behavioral markers
that were not marked as relevant in the present dataset,
but have a strong conceptual mapping onto disorder defini-
tions (eg, homestay is a clinical marker of agoraphobia). In
a sufficiently large dataset with adequate diagnostic labels
(conceivably in the order of thousands of participants), such
an ontology could be used to develop multigroup classifi-
cation models that can leverage digital markers to identify
individuals as having no symptoms or (symptoms of) one or
more specific disorders (eg, agoraphobia or agoraphobia with
MDD).

It is highly recommended to design future digital
phenotyping studies with model evaluation in mind, using
a prior power analysis. Given the model performance in
this study, post hoc sample size calculation suggests that
at least 122 individuals should be held out of training for
model evaluation, meaning that a sample size of over 600
individuals would have been needed for both training and
evaluation. Of note, fewer individuals would be required for
sufficient statistical power if model performance is improved
substantially, which might possibly be achieved with greater
symptom contrasts between groups (ie, comparing individuals
without symptoms to individuals with severe symptoms) and
greater symptom homogeneity within groups (ie, comparing
individuals without symptoms to individuals with a specific
disorder).

Development of a multimodal digital phenotyping toolkit,
longitudinal measurement of much larger samples, and
follow-up research on theoretically relevant markers is
underway in the Stress in Action consortium [33]. We
envision that, over time, this multimodal digital phenotyping
toolkit might be used to trigger traditional symptom screen-
ing instruments such as the 9-item Patient Health Question-
naire (PHQ-9) when symptoms are most likely (for a similar
approach with wearables, see [49]), given changes in an
individual’s digital phenotyping data. Symptom screening
surveys have high sensitivity for detecting mental illness.
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For instance, the PHQ-9 has a sensitivity of 0.88 (95% CI
0.83 to 0.92) and a specificity of 0.85 (0.82-0.88) for MDD
[56], which is unlikely to be outmatched by digital phenotyp-
ing models. In practice, however, individuals are unlikely to
consistently complete symptom surveys for extended periods,
which can be a significant burden. By using digital pheno-
typing, we might be able to help reduce this burden and
potentially improve early symptom detection.

Aalbers et al

individuals with clinically relevant depression/anxiety
symptoms from those without. In the unique NESDA sample
comprising both symptomatic and asymptomatic individu-
als, we identified a specific smartphone-tracked behavioral
marker, namely the total number of GPS-based trajectories,
that may indicate these symptoms. Our findings align with
previous studies suggesting ML models might be able to
leverage smartphone-tracked behavioral markers to recog-

nize symptomatic individuals. Although we show that such
markers cannot support diagnostics on their own, we believe
they are sufficiently promising to be considered in future deep
phenotyping of depression and anxiety.

Conclusion

In all, digital phenotyping, here operationalized as pas-
sive logging of location and app use, offers insights
into behavioral patterns that could potentially differentiate
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