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Abstract
Background: Sleep-wake patterns are important behavioral biomarkers for patients with serious mental illness (SMI),
providing insight into their well-being. The gold standard for monitoring sleep is polysomnography (PSG), which requires
a sleep lab facility; however, advances in wearable sensor technology allow for real-world sleep-wake monitoring.
Objective: The goal of this study was to develop a PSG-validated sleep algorithm using accelerometer (ACC) and electrocar-
diogram (ECG) data from a wearable patch to accurately quantify sleep in a real-world setting.
Methods: In this noninterventional, nonsignificant-risk, abbreviated investigational device exemption, single-site study,
participants wore the reusable wearable sensor version 2 (RW2) patch. The RW2 patch is part of a digital medicine system
(aripiprazole with sensor) designed to provide objective records of medication ingestion for patients with schizophrenia,
bipolar I disorder, and major depressive disorder. This study developed a sleep algorithm from patch data and did not
contain any study-related or digitized medication. Patch-acquired ACC and ECG data were compared against PSG data to
build machine learning classification models to distinguish periods of wake from sleep. The PSG data provided sleep stage
classifications at 30-second intervals, which were combined into 5-minute windows and labeled as sleep or wake based on the
majority of sleep stages within the window. ACC and ECG features were derived for each 5-minute window. The algorithm
that most accurately predicted sleep parameters against PSG data was compared to commercially available wearable devices to
further benchmark model performance.
Results: Of 80 participants enrolled, 60 had at least 1 night of analyzable ACC and ECG data (25 healthy volunteers and
35 participants with diagnosed SMI). Overall, 10,574 valid 5-minute windows were identified (5854 from participants with
SMI), and 84% (n=8830) were classified as greater than half sleep. Of the 3 models tested, the conditional random field
algorithm provided the most robust sleep-wake classification. Performance was comparable to the middle 50% of commercial
devices evaluated in a recent publication, providing a sleep detection performance of 0.93 (sensitivity) and wake detection
performance of 0.60 (specificity) at a prediction probability threshold of 0.75. The conditional random field algorithm retained
this performance for individual sleep parameters, including total sleep time, sleep efficiency, and wake after sleep onset (within
the middle 50% to top 25% of the assessed devices). The only parameter where the model performance was lower was sleep
onset latency (within the bottom 25% of all comparator devices).
Conclusions: Using industry-best practices, we developed a sleep algorithm for use with the RW2 patch that can accurately
detect sleep and wake windows compared to PSG-labeled sleep data. This algorithm may be used for a more complete
understanding of well-being for patients with SMI in a real-world setting, without the need for PSG and a sleep lab.
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Introduction
Sleep is an important behavioral biomarker for patients with
serious mental illness (SMI) [1-8]. Several studies have
outlined well-categorized disturbances in sleep parameters
for patients with SMI [3-5,7,8]. The types of disturbances
differ by condition, but many SMIs influence commonly
tested sleep parameters and characteristics, including total
sleep time (TST), sleep onset latency (SOL), sleep efficiency
(Eff), and wake after sleep onset (WASO) [1,2,5,6,9-18].

Historically, sleep parameters were assessed primarily
through sleep diaries and polysomnography (PSG); however,
each of these has limitations for daily utilization [1,2]. Sleep
diaries may be helpful at identifying changes in daily sleep
habits and activity patterns, but as most studies highlight,
these reports rely on subjective responses [1,2,5,11]. PSG
requires instrumentation that may be better utilized within a
dedicated sleep facility and is not designed for continuous
monitoring [1,2]. Therefore, PSG findings do not fully reflect
patients’ natural sleep patterns and habits.

Recent studies have focused on the role of actigraphy or
the measure of relative activity, namely in sleep and wake
cycles, as a means of capturing more natural sleep and wake
habits [1,2,5,10-21]. This is typically accomplished utiliz-
ing accelerometer (ACC)-based data from small, portable
(wristwatch-sized) recording devices. Most studies report
strong to relatively strong correlation with the gold standard
PSG recordings, but with the added benefit of continuous,
noninvasive monitoring [1,2,10-13,15-17,19,20].

The results of studies for patients with SMI and other
sleep-related conditions emphasize the value of actigraphy as
a tool to gain a more complete picture of the patient’s daily
health status and potentially provide insight into changes in
symptomology [2,5,10,16,20,21]. However, it is important to
highlight that PSG and actigraphy collect different types of
data. PSG typically includes 3 separate dimensions (electro-
cardiography (ECG), electroencephalography, and electroocu-
lography). Actigraphy typically provides a single dimension
of ACC data (though some devices may also record heart rate
data via ECG or optical modalities) that must be interpreted
and processed through mathematical modeling [1,2,15-18].
Given that these data require complex postprocessing for
accurate and meaningful interpretation, there is a need for
the development of models that can reliably predict sleep
parameters and sleep and wake windows [15,16,18,19]. This
is particularly important for patients with SMI, as baseline
disrupted sleep patterns often complicate accurate calcula-
tions [1,2,5,9,10,19].

Several recent studies have focused on the development
of such models [10,11,15-23]; however, not all have been
designed with patients who have SMI, and many have been
tested only with healthy control participants. There is an
additional need for models that are validated within the
appropriate context of use—in this case, for patients with SMI
[24].

The goal of this study was to develop a model using ACC
and ECG data to accurately quantify sleep in a real-world
setting. The ACC and ECG data were used to build machine
learning classification models to distinguish periods of wake
from periods of sleep.

Methods
Objectives
This was a noninterventional, nonsignificant-risk, abbrevi-
ated investigational device exemption, single-site study. The
primary objective of this study was to develop a PSG-valida-
ted sleep algorithm for measuring hours of sleep at night
using data from the reusable wearable sensor version 2
(RW2) patch. The RW2 patch is part of a digital medi-
cine system (aripiprazole tablets with sensor) designed to
provide objective records of medication ingestion for patients
with schizophrenia, bipolar I disorder, and major depressive
disorder. This study focused exclusively on the development
of a sleep algorithm from the data generated by the RW2
patch and did not contain any study-related or digitized
medication.

The RW2 device was manufactured by Otsuka America
Pharmaceutical, Inc. (Rockville, MD, USA) and consists of
an adhesive strip and a replaceable pod that collected and
stored the data. This patch was placed on either side of the
torso within a defined zone just above the lower edge of the
rib cage.

Due to the inability to define a priori the discrepancies
in model performance accuracy based on patch-derived data,
this study was not specifically powered for any statistical
analysis. The intent of this design was to permit ready
combination with datasets of subsequent samples and sleep
studies; the data generated from this study thus could be
utilized to determine more precisely the required sample size
for statistical analysis based on any observed limitations of
the developed model.
Participants and Recruitment
Data were collected for a total of 220 nights from 60
participants in the United States. All participants were
recruited on an outpatient basis or from regional volunteers
at local clinical sites in California. There was no target age
range for the population, as this study was not designed
as a specific intervention. Adult participants who were in
good health or had a diagnosis of SMI (schizophrenia,
bipolar I disorder, or major depressive disorder), as defined
by the Diagnostic and Statistical Manual of Mental Disor-
ders, Fifth Edition, were included in this study. Participants
were excluded if they had a history of epilepsy or seizures,
heart failure, or documented history of sleep apnea. Partici-
pants deemed as high risk for sleep apnea at baseline were
considered on a case-by-case basis. Regular drug screens
were performed to identify any substances that could impact
the measurement of sleep as determined by the investigator
or sponsor. Of the total participant population, 35 participants
had a diagnosed SMI (12 with bipolar I disorder, 13 with
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schizophrenia, and 10 with major depressive disorder), and 25
participants were healthy volunteers with no SMI diagnosis.

For the literature comparison, the population (which was
fully independent of that in the present study) consisted of 34
healthy adults, with mean age of 28.1 (SD 3.9) years. This
population differed from that of the present study in that only
healthy participants were included. Participant exclusion in
the comparator study was based on a self-report questionnaire
of medical history, and exclusion included history of mental
health or sleep disorders [19].
Ethical Considerations
This study was conducted in compliance with Good Clinical
Practice guidelines for conducting, recording, and report-
ing studies, as well as for archiving essential documents.
Consistent with ethical principles for the protection of human
research participants, no study procedures were performed
on study candidates until their written consent had been
obtained. The informed consent form, protocol, and amend-
ments for this study were submitted to and approved by an
appropriate institutional review board (Aspire IRB, Santee,
CA, USA), with the protocol number 031-201-00266. All
participants provided written informed consent forms at the
beginning of the study.
Study Design and Treatment
This study was conducted over 6 weeks and included
a 1-week observation period. The study consisted of a
screening/baseline period, a 1-week observation period, and
a safety follow-up call approximately 30 days after the
last overnight PSG assessment, with a gap of up to 1
week between screening and the first visit to the sleep lab
facility. The overall study period began with the signing of
informed consent on June 28, 2019, and was completed with
the last study observation on March 3, 2020. During the
study, participants were allowed to take their usual medica-
tions, provided those medications were not deemed by the
investigators to potentially interfere with the study measures.

In the setting of a sleep lab, participants wore the RW2
patch set in engineering mode, which enabled denser data
collection than the real-world patch. The patch provided
ACC and ECG data, which were used for algorithm devel-
opment. PSG data were also collected as the gold standard
for sleep stage classification. Participants were provided a
mobile device that was paired with the wearable patch onto
which the ACC and ECG data were downloaded. This device
remained within Bluetooth range of the participant at all times
in the sleep lab to allow continuous communication with
the patch. The patch collected raw ACC and ECG data for
14 seconds, followed by being off for 6 seconds, with data
being transferred from the patch to the mobile device during
collection via Bluetooth. There were no memory limitations
on the mobile device. Bluetooth transmission sampling rate
exceeded that of the data collection rate, thus preventing data
backlog on the patch.

Each participant underwent an overnight sleep assessment
conducted in the sleep lab facility up to 4 times within
the duration of the study. The first 3 assessment nights
were followed by 1 nonassessment night at the participant’s
residence, where they continued to wear the patch and
maintained a sleep journal/diary (which included time of
sleep and waking).
Data Collection

PSG Data
The scored PSG provided one of the following sleep stage
designations at 30-second intervals: wake, non-rapid eye
movement (REM) 1 sleep, non-REM 2 sleep, non-REM
3 sleep, and REM sleep. These PSG designations were
then grouped to provide a binary classification at 30-second
intervals: wake (wake) and sleep (non-REM 1, non-REM 2,
non-REM 3, and REM). Binary classifiers were assigned for
5-minute windows of aggregated PSG data. Windows were
labeled as wake if at least five of the ten 30-second PSG
states in the 5-minute window were measured as wake and as
sleep otherwise (Figure 1 provides more details).

Figure 1. Sleep state designation per ACC, ECG, and PSG relative sampling windows. Data are displayed as aligned for ease of visualization.
In early testing, data were randomly selected from 3 possible blocks per minute of ACC data and 1 block per minute of ECG data and overlaid
with the corresponding PSG data to determine model sensitivity to real-world sampling. For the final algorithm, the first ACC block within each
minute and the first ECG block within each 5-minute window were aligned and overlaid with the PSG data to keep the time between measurements
approximately constant. ACC: accelerometer; ECG: electrocardiogram; PSG: polysomnography.

ACC Data
Figure 1 shows that ACC data were sampled over 14 seconds
within every 20-second interval, which provided three

14-second blocks of ACC data per minute. To replicate the
real-world data sampling conditions (based on the sampling
rate of the commercially available RW2) and determine the
sensitivity of our model system to this sampling, the first
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14-second ACC block within each minute was selected and
all other ACC blocks within that minute were discarded. For
each block, the step count, body angle, and mean X, Y, and
Z acceleration features were derived. ACC features were then
associated with the PSG data by aggregating the 14-second-
block features over the corresponding 5-minute intervals.

ECG Data
ECG data were sampled over 14 seconds within every
20-second interval, providing three 14-second blocks of ECG
signal data per minute. To replicate the real-world ECG data
sampling paradigm and test the sensitivity of our model
system to this sampling, one 14-second block from each
5-minute window was randomly selected (see Figure 1 for
more details). For the final model algorithm, the first ECG
block was utilized similarly to that described for the ACC
data sampling above. A peak detection algorithm was applied
to the signal data to identify heartbeat peaks (ie, the QRS
complex within the ECG signal). The vectors of time between
peaks (R-R vector) were then used to derive mean heart rate
and a mean heart rate z-score (normalized to each partici-
pant’s heart rate mean and SD) for each 5-minute window.

For both the ACC and ECG data, the 5-minute window
was chosen based on the sampling frequency of the real-
world product, for which the patch only provides ACC data at
1-minute intervals and ECG data at 5-minute intervals. While
the resolution was increased (more frequent sampling) for this
study, the interval was identified as most appropriate for the
collection of sufficient ACC and ECG data in the real-world
application.

Statistical Methods
Briefly, the validity of each raw waveform of the ACC and
ECG data was first assessed prior to feature extraction. Raw
waveforms were preprocessed with high-pass, low-pass, and
notch filters, and an algorithm that had been independently
validated (Otsuka Pharmaceutical Development & Commer-
cialization, Inc.) was used to identify ECG R-peaks from
the QRS complex to determine if data in the 14-second
ECG data blocks were valid. The quality of patch-to-skin
contact was measured through an impedance sensor on
the patch. Data transformation techniques included scal-
ing, handling of skewed data, and bias mitigation. Quality
criteria were implemented to ensure calculations were not
performed on overly noisy signal data, which included flags
for the algorithm’s ability to distinguish heartbeat peaks from
background and exclusion of blocks that resulted in physio-
logically unlikely heart rates (ie, <30 bpm or >200 bpm). A
night was considered usable if there was at least 1 hour of
valid, overlapping ACC, ECG, and PSG data.

Within a 5-minute window, at least 3 blocks of ACC
data (up to 5 total blocks) and at least 1 block of ECG
data had to be present in order for the window to be coun-
ted as valid. Figure 2 illustrates how each block within a
valid window was then classified as half-or-less sleep or
more-than-half sleep. The total step count was calculated as
the sum of the step counts across all ACC blocks within the
5-minute interval. For all other features, calculations were
made blockwise, and the mean, SD, and range of these
blockwise values were calculated over the entire 5-minute
interval.

Figure 2. Data classification for sleep and wake window designation. ACC: accelerometer; ECG: electrocardiogram; HV: healthy volunteer; SMI:
serious mental illness.

Participants were partitioned randomly into training (70%)
and testing (30%) sets.

The optimal feature set was identified using a backwards
propagation, greedy feature selection algorithm (based on the
F1-score) on the training set only, in order to keep the test
set completely independent. Feature selection methodology
followed the standard procedure outlined in [25]. A light
gradient boosting algorithm was trained for all 64 features,
which excluded a single feature in each respective run. The
model with the highest F1-score (overall model accuracy
as determined by the model ability to predict and correctly
assign a target state) of the 64 models that resulted was
retained, and the excluded feature was removed from the

feature list. This algorithm was then repeated on this model,
eliminating a single feature from the remaining set each time
until the optimal model performance was achieved.

Difference features (ie, the difference of features in 1
window from the corresponding features in each of the
previous 5 windows) were also calculated for the selected
feature subset and used as inputs to a series of classification
models. If a window was preceded by a missing window
(which could occur either due to missingness or to a window
occurring at the beginning of a night), the difference features
for the prior windows that had missing data were set to 0 (ie,
they were considered to have the same value as the current
window for the given feature). The final model included 13
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unique features, with 5 difference features for each. These
unique features are listed in Multimedia Appendix 1.

Sleep-parameter classification was performed with 3
different algorithms: light gradient boosting machine,
conditional random field (CRF), and long short-term memory
network. These models were chosen as each represents a
highly efficient machine-learning approach to classifying
sleep/wake states using a range of features; briefly, the
light gradient boosting machine determines and retains the
most useful features for deciding a state; CRF determines
the state of a given point based on context (surrounding
data); and long short-term memory determines a state based
on sequential time-dependent data input [26-28]. Details on
model types can be found in reviews by Sarker [26] and
Woodman and Mangoni [27]. Patch-derived model perform-
ance was assessed via sensitivity and specificity metrics, and
model-derived sleep parameters were compared against the
corresponding PSG-derived sleep parameters (see Table 1

for more details). The most robust algorithm was further
compared against 8 commercially available sleep devices
reported in the literature [19] to ensure that the algorithm
provided comparable performance to currently available
commercial devices, which were also tested against PSG as
the gold standard (see Figure 3 for more details) [19]. For
this primary comparison, the individual sleep parameters were
determined from a single run with the optimized algorithm
in order to maintain complete independence of the test set.
To further assess the robustness of the model performance,
ranges and uncertainty measures for the algorithm perform-
ance were generated by re-randomizing the training and test
sets in a 10-fold cross-validation analysis.

All statistical tests were computed using the Python
Pingouin software package (version 0.5.3). All statistical tests
for sleep parameters were chosen to match the tests chosen in
the comparator publication [19].

Table 1. RW2a patch–derived parameters reported for CRFb model.
Parameter Definition
Sensitivity The fraction of sleep windows accurately labeled as sleep
Specificity The fraction of wake windows accurately labeled as wake
Effc The fraction of measured time spent sleeping
SOLd The time (in minutes) from the start of measurement until the participant fell asleep
WASOe The time after onset of sleep that a participant spent awake
TSTf The total time (interrupted or uninterrupted) that a participant spent asleep

aRW2: reusable wearable sensor version 2.
bCRF: conditional random field.
cEff: sleep efficiency.
dSOL: sleep onset latency.
eWASO: wake after sleep onset.
fTST: total sleep time.

Figure 3. Sensitivity and specificity of the RW2 patch and literature-reported commercial comparator models, comparators from Chinoy et al [19].
Parameters were determined from the test set (n=18 participants; n=3319 analyzable windows). RW2: reusable wearable sensor version 2.
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Results
Participant Disposition
Of the 103 participants screened for this study, 80 were
enrolled: 47 participants with SMI (16 with bipolar I
disorder, 16 with schizophrenia, and 15 with major depressive
disorder) and 33 healthy controls. Half (40/80, 50%) of the
participants were female and male, respectively. Nearly half
of all enrolled participants were Black or African Ameri-
can (37/80, 46.3%), and most were non-Hispanic or Latino
(66/80, 82.5%). The mean age of enrolled participants was 42
years (range 20‐69 y). In total, 79 participants had at least
1 night of PSG data, and 60 of those participants (35 with
SMI [12 with bipolar I disorder, 13 with schizophrenia, and
10 with major depressive disorder], 25 healthy controls) had
at least 1 night of usable ACC and ECG data and were thus
included in the algorithm development.
Identification of Sleep and Wake
Windows
From all ECG and ACC data samples, 73% of ECG and
98% of ACC blocks were considered usable, and, overall, for

participant nights with sufficient recorded data (≥1 h of valid
overlapping PSG, ECG, and ACC data), 76% of 5-minute
windows were deemed analyzable. The primary reason for
data exclusion in all cases was a low ECG signal-to-noise
ratio resulting from poor patch contact with the skin. This
resulted in the identification of 10,574 5-minute windows
with at least 3 valid ACC blocks and 1 valid ECG block.
Over half of these windows (n=5854, 55%) were identified
in participants with SMI. Figure 2 illustrates that of these
windows, 16% (n=1744) were classified as having half or less
of all data labeled as sleep, and 84% (n=8830) were classified
as having greater than half labeled as sleep. Table 2 details
the respective number of participants and associated nights
and windows for the overall, training, and test sets.

Table 2. Sample sizes (participants and associated nights and windows) for the training, test, and overall study populations.
Parameter Training set, n Test set, n Total, n
Participants 42 18 60
Nights 118 56 174
Windows 7255 3319 10,574

Sleep windows 6207 2623 8830
Wake windows 1048 696 1744

Base Model Performance

Sensitivity and Specificity Performance
Table 3 shows the area under the curve (AUC) of the
overall performance metrics were similar across algorithms;
however, the CRF provided a better F1-score and signifi-
cantly better specificity, thus all following analyses focused
on further interrogation of the CRF algorithm. Comparison
of the CRF algorithm against literature reports of commercial
devices indicated comparable sensitivity and specificity for a
prediction probability threshold of 0.5. For thresholds above

this value, wake detection performance (specificity) improved
markedly, indicating improved classification accuracy for
wake windows; however, this led to a decrease in accuracy
for classifying sleep windows (sensitivity). Figure 4 illustrates
that these findings were largely reflected in comparisons with
other commercially available devices evaluated in a recent
review [19].

A subgroup analysis of model performance evaluated
by health status demonstrated similar AUC values for
participants with SMI (AUC=0.89) and healthy participants
(AUC=0.86) compared with those for the combined analysis.

Table 3. Model performance by algorithm type.a
Model AUCb F1-scorec Sensitivity (sleep detection performance) Specificity (wake detection performance)
CRFd 0.87 0.78 0.93 0.60
LGBMe 0.86 0.73 0.92 0.50
LSTMf 0.85 0.73 0.94 0.44

aSensitivity and specificity metrics here were calculated at a model threshold of 0.75, which maximized F1-score; parameters were determined from
the test set (n=18 participants; n=3319 analyzable windows).
bAUC: area under the curve
cF1-score: harmonic mean of precision and recall.
dCRF: conditional random field.
eLGBM: light gradient boosting machine.
fLSTM: long short-term memory.
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Figure 4. Model performance by prediction probability threshold for sensitivity (sleep detection performance) and specificity (wake detection
performance); comparators from Chinoy et al [19]. Parameters were determined from the test set (n=18 participants; n=3319 analyzable windows).

Sleep Parameters
Figure 5 shows that, for most sleep parameters (TST, Eff, and
WASO) as well as fraction of time spent waking, the CRF
algorithm was comparable to that of commercial devices [19].
However, the study sleep model did not perform as well as
commercial devices for SOL [19].

With regard to bias and associated statistical significance,
t(P), effect size, and proportional bias (R2), performance was
comparable to commercial devices and in relative agreement
with PSG data. Generally, the RW2 sleep model underestima-
ted TST, Eff, and SOL, and overestimated WASO. For most
parameters, calculated with a prediction probability thresh-
old of 0.75, the relative differences between the RW2 and
PSG data were minimal, except for SOL, where the RW2
model significantly underestimated latency compared with
the PSG. Figure 5 displays that the sleep model fell within
the top 25% of comparators for TST in all categories, for
WASO in all but R2, and for Eff in t(P) and effect size. For

categories in which these parameters were not within the top
25%, model performance was within the middle 50%. For
SOL, the sleep model performed within the bottom 25% for
t(P), effect size, and R2, and worse than all comparators for
numeric bias against the PSG standard. If the RW2 algorithm
instead used a prediction probability threshold of 0.5, the
sleep parameters were still comparable to those reported for
commercial devices, but with slightly lower performance for
TST, WASO, and Eff parameters compared to the model with
a prediction probability threshold of 0.75.

A 10-fold cross-validation provided similar AUC (mean
0.92, SD 0.02; IQR 0.90‐0.93), sensitivity (mean 0.95, SD
0.02; IQR 0.94‐0.96), and specificity (mean 0.58, SD 0.07;
IQR 0.54‐0.62) to those observed for the single-run, fully
independent test set. The full range of sleep parameters
from the 10-fold cross-validation are included in Multimedia
Appendix 1.

Figure 5. RW2 CRF algorithm performance by sleep parameters compared with PSG and commercial devices; using the Python Pingouin software
package, the 2-tailed t test is the paired student’s t test (pingouin.ttest [paired=True]), the effect size is the Hedge’s g effect size (pingouin.com-
pute_effsize [paired=True, eftype=“hedges”]), and the R2 is a linear regression R2 value (pingouin.linear_regression); tests were selected to directly
match those chosen by the comparator publication; comparators from Chinoy et al [19]. Parameters were determined from the test set (n=18
participants; n=3319 analyzable windows). CRF: conditional random field; Eff: sleep efficiency; PSG: polysomnography; R2: proportional bias;
RW2: reusable wearable sensor version 2; SOL: sleep onset latency; TST: total sleep time; WASO: wake after sleep onset.
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Discussion
Principal Results
In this study, we developed a sleep model algorithm that,
when compared with PSG data, could accurately assess sleep
and wake windows along with a number of common sleep
parameters using ECG and ACC data collected through
the RW2 (aripiprazole tablets with sensor) wearable patch.
This model was developed following industry best practices,
utilizing independent sets of participants for model training
and testing. The model was designed for use in all partici-
pants with and without SMI, with no parametric adjustments
required if participants had a diagnosis of SMI. Performance
was consistent for all participants, regardless of SMI status.
This validation of algorithm performance within the patient
population of intended use is a key step in the development of
digital measures and algorithms [24].
Comparison to Commercial Devices and
Prior Work
Compared with other commercial devices evaluated in a
recent publication, the current study model had slightly worse
overall accuracy but similar or better ability to detect and
predict wake windows (specificity) [19]. This finding is
important because the data were generally biased toward
sleep data, making wake detection more difficult. The model
performance was particularly strong regarding TST predic-
tions, with similar or better performance than commercial
comparators in all tested categories [19]. Similar performance
was achieved for calculations of Eff and WASO, with strong
performance in all tested categories, and model robustness is
further supported by the consistency of results in the 10-fold
cross-validation. These findings are aligned with prior studies
comparing PSG and actigraphy-derived data [1,2,9,11-20].
The improved performance for classifying waking windows
is promising because wake detection historically has been a
weakness of actigraphy-derived sleep parameter predictions
[1,10,19,20].

The model developed in this study had weak performance
versus commercial comparators for SOL. This may be due to
shorter TSTs for participants, compared with those reported
for commercial devices used as comparators, because the data
for these products exclusively reported outcomes in healthy
participants [19]. Shorter sleep times may be due to baseline
disrupted sleep in participants with SMI [1,2,9,10], as well
as greater overall activity and shorter sleep time allotted
in the sleep laboratory facility utilized in this study. Nota-
bly, sleep classification performance (ie, F1-score, sensitiv-
ity, and specificity) did not significantly differ for healthy
participants and those with SMI. Potential disruptions in sleep
and the observation of truncated TST mostly influenced the
prediction of sleep parameters, particularly SOL. A compari-
son of only healthy participants with the literature was not
performed for this study due to the small size of the test set.
Based on the above observations, however, the test parame-
ters would not be expected to change markedly.

Overall model performance (sleep window accuracy=96%,
wake window accuracy of 43% for a prediction probability
threshold of 0.5; sleep window accuracy=93%, wake window
accuracy of 60% for a prediction probability threshold of
0.75) was comparable to commercially available ACC-based
devices assessed in a recent review [19].
Effect of Data Sampling Density
The study model was produced with the density of ACC and
ECG data that are currently available on the RW2 patch.
In real-world use of the patch, data sampling is limited to
conserve battery life and extend the time a patient can wear
each patch, and thus, it was important for the sleep algorithm
to be sufficiently accurate using the minimum amount of
available data. Ad hoc exploration of increased sampling
density for ECG and ACC data did result in improvements
in prediction of wake windows for increased ACC sampling,
but little improvement was seen when the number of utilized
ECG blocks was increased [19].
Limitations
Recorded TSTs were shorter than those reported for other
devices, most likely due to disrupted sleep patterns in
participants with SMI; a majority of total sleep and wake
window data were acquired from participants with SMI in
this study (55%, 5854/10,574) [1,2,9,10,19]. Additionally,
total sleep may have been affected by the relatively short
measurement windows used in the sleep lab testing facility.
This is supported by the literature; in instances where TST
is lower, these parameters become more difficult to cal-
culate [1,10,19,20]. Compounding this difficulty in calcula-
tion, poorer sleep quality led to greater uncertainties in
the lower and upper limits of model bias relative to other
devices, which had been tested with larger sleep windows
in healthy participants without diagnosed SMI [19]. Dif-
ficulty in calculation of SOL has been previously repor-
ted for actigraphy-derived predictions of sleep parameters
[1,10,19,20]. Furthermore, prior work has highlighted the
difficulties associated with predictions of the most common
sleep parameters for greater levels of sleep disturbance
[1,10,19,20]. This may highlight a need in future work
to determine features, sampling methodology, or mathemat-
ical model characteristics that can improve accuracy and
reliability of sleep predictions in the face of highly disrupted
or limited sleep data. However, it is important to note that
sleep classification performance (ie, sensitivity, specificity,
and F1-score) was not influenced by disrupted sleep patterns
or truncated sleep time. Most of the primary impact of these
limitations was observed in some sleep parameters, primarily
SOL.

Additionally, for this investigation, the model was trained
and tested on datasets from the same study; however, testing
and training datasets were fully independent, following best
practices.
Conclusions
In this study, a sleep algorithm has been developed and tested
for use with the RW2 ACC and ECG data that is capable of
accurately detecting sleep and wake windows when compared
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to gold-standard PSG-derived sleep data. This algorithm
followed best practices in development and testing and could
be applied to all participants regardless of an SMI diagnosis.
Furthermore, model performance was comparable to currently
available consumer devices for sensitivity and specificity
(sleep window accuracy=93%, wake window accuracy=60%),
TST, Eff, and WASO.

Patients with SMI have known disrupted sleep patterns,
and exacerbation of sleep disruption may indicate changes

in symptomology or severity. Accurately recording sleep
can provide insights into the well-being of patients with
SMI and provide a more complete picture of the patient’s
current health status for the care provider team. Future
research should focus on sampling paradigms and modeling
approaches that can accurately and reliably provide sleep
parameter predictions in the face of heavily disrupted or
limited sleep data.
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R2: proportional bias
REM: rapid eye movement
RW2: reusable wearable sensor version 2
SMI: serious mental illness
SOL: sleep onset latency
TST: total sleep time
WASO: wake after sleep onset
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