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Abstract
Background: The rise of wearable sensors marks a significant development in the era of affective computing. Their popular-
ity is continuously increasing, and they have the potential to improve our understanding of human stress. A fundamental aspect
within this domain is the ability to recognize perceived stress through these unobtrusive devices.
Objective: This study aims to enhance the performance of emotion recognition using multitask learning (MTL), a technique
extensively explored across various machine learning tasks, including affective computing. By leveraging the shared informa-
tion among related tasks, we seek to augment the accuracy of emotion recognition while confronting the privacy threats
inherent in the physiological data captured by these sensors.
Methods: To address the privacy concerns associated with the sensitive data collected by wearable sensors, we proposed
a novel framework that integrates differential privacy and federated learning approaches with MTL. This framework was
designed to efficiently identify mental stress while preserving private identity information. Through this approach, we aimed to
enhance the performance of emotion recognition tasks while preserving user privacy.
Results: Comprehensive evaluations of our framework were conducted using 2 prominent public datasets. The results
demonstrate a significant improvement in emotion recognition accuracy, achieving a rate of 90%. Furthermore, our approach
effectively mitigates privacy risks, as evidenced by limiting reidentification accuracies to 47%.
Conclusions: This study presents a promising approach to advancing emotion recognition capabilities while addressing
privacy concerns in the context of empathetic sensors. By integrating MTL with differential privacy and federated learning, we
have demonstrated the potential to achieve high levels of accuracy in emotion recognition while ensuring the protection of user
privacy. This research contributes to the ongoing efforts to use affective computing in a privacy-aware and ethical manner.
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Introduction
Background
Imagine awakening in the morning to find yourself dealing
with stress, perhaps stemming from a disagreement with a

friend, a pressing financial concern, or an unresolved work–
related matter. In this scenario, an advanced digital assistant,
akin to Siri or Alexa, seamlessly detects the user’s stress
level through the analysis of physiological signals captured
by wearable technology. Leveraging this data, the digital
assistant dynamically adjusts its language and tone to suit the

JMIR MENTAL HEALTH Benouis et al

https://mental.jmir.org/2024/1/e60003 JMIR Ment Health 2024 | vol. 11 | e60003 | p. 1
(page number not for citation purposes)

https://doi.org/10.2196/60003
https://mental.jmir.org/2024/1/e60003


user’s mood. Moreover, it proactively recommends person-
alized relaxation techniques, drawing from past successful
interventions such as yoga, mindfulness practices, listen-
ing to favorite music, and watching uplifting videos. Such
a sophisticated stress recognition and intervention system
holds promise for enhancing the well-being and emotional
resilience of individuals. Although most of the studies use
facial expressions [1] and speech [2] for recognizing stress
and emotions (ie, affects as an umbrella term), physiology-
based methodologies also emerged as an alternative since
they can offer promise for seamless, continuous monitoring
within everyday contexts. Notably, 330 million smartwatches,
fitness trackers, and wearables were sold in 2020, which
are capable of gathering quantitative physiological data [3].
They are promising tools for affect recognition due to their
unobtrusive data collection capabilities.

Multitask learning (MTL) is a method proposed to tackle
training multiple related tasks at the same time. It works
by sharing knowledge between these tasks to make each
model perform better [4]. Essentially, MTL acts like a
behind-the-scenes helper, enhancing the ability of machine
learning (ML) models to generalize different types of data
[5]. This technique has been particularly useful in improv-
ing ML models across various fields, including affective
computing [6]. For instance, if we want to improve how a
system recognizes emotions, we can also train it to recognize
gender [7]. By doing this, the system can learn from both
tasks simultaneously, making it more effective in recogniz-
ing emotions and enhancing performance. The motivation
for using identity and emotion has also a psychological
basis. Connolly et al [8] examined whether facial responses
are shared between identity and emotion. They showed that
there is a strong positive correlation between face emotion
recognition and face identity recognition tasks, and the 2
recognition tasks share a common processing mechanism.
Sheng and Li [9] also confirmed the dependence of identity
and emotion tasks by using a gait signal. Inspired by the
MTL idea and previous studies, we used MTL to perform
each task separately, stress recognition and identity recogni-
tion, respectively, by using physiological signals. However,
there is a concern when third parties gain access to addi-
tional information, like gender, identity, or age, which could
be misused for targeted advertising or even discrimination
in things like job opportunities [10]. Moreover, if sensitive
information like biometric data gets leaked, it could lead to
cybercrimes such as identity theft. Therefore, it is crucial for
MTL systems to incorporate privacy-preserving methods.

Researchers have introduced federated learning (FL) as a
way to address privacy issues. FL allows users to train their
data locally while sharing only the trained model parameters
rather than the original data itself. The philosophy behind FL
is to bring code to the data instead of moving the data to
the code [11]. This method complies with privacy regula-
tions such as the European Union’s General Data Protection
Regulation [12] and the California Consumer Privacy Act
[13]. FL has shown promise in safeguarding user privacy in
Internet of Things networks.

Although FL is a significant step forward in protecting
user privacy, it is not invincible. There is still a risk of
sensitive information being uncovered by reverse engineer-
ing the local model parameters. To further enhance privacy,
researchers have integrated privacy-preserving techniques
into ML for physiological data. One such method is dif-
ferential privacy (DP), which adds random noise to each
model in the client or server, disrupting updates and limiting
the leakage of sensitive information between nodes [14].
However, it is worth noting that DP can reduce the perform-
ance of ML models.

In practice, protecting the privacy of users without
degradation in model utility is still an open problem. In
this study, we first implemented an MTL architecture for
recognizing stress and identity from multimodal physiological
signals. We further added FL and DP mechanisms to preserve
privacy. To obtain a robust performance, we separated the
2 tasks and added noise to only the privacy task, which is
biometric identity recognition. In this way, we were able to
improve the stress recognition performance with the help of
MTL and hide identity information by adding noise to the
identity task model by using DP. To the best of our knowl-
edge, this study is the first MTL-based affect recognition
study using FL and DP to preserve privacy at the same time.

In the next section, we mentioned the related works using
MTL and FL for affect recognition. We then presented our
approach in the Methods section. In the Results section,
we compared multitask centralized, decentralized FL, and
decentralized FL with DP approaches on selected public
datasets for recognizing stress levels and identity of users.
We concluded the study with the lessons learned, limitations,
and future works in the Discussion section.
Related Works
To develop a robust affective computing system that can
be used in practical applications, researchers tested var-
ious modalities with state-of-the-art deep learning tech-
niques. MTL has also raised significant attention from
various domains over the past few years, including affec-
tive computing. Chen et al [14] applied it to audiovisual
signals in the Audio/Visual Emotion Challenge and achieved
a significant performance increase compared to baseline ML
algorithms by detecting arousal and valence levels simultane-
ously. Since the human face source can be used for several
tasks, such as gender recognition or age estimation, Sang et al
[7] used MTL with convolutional neural network (CNN) for
smile detection, emotion recognition, and gender classifica-
tion.

They outperformed the state-of-the-art techniques in
selected 3 benchmark datasets (Internet Movie Database and
Wiki dataset, GENKI-4K dataset [a dataset containing images
labeled with facial expressions, commonly used in emotion
recognition research], and Facial Expression Recognition
Challenge-2013 dataset). MTL-based centralized learning
(CL) for affective computing is beneficial for simultaneously
sharing features and learning auxiliary tasks. However, when
private tasks (ie, face, gender, and person detection) are
included in MTL to improve affect recognition performances,
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the models create the risk to reveal this sensitive information
to possibly malicious parties especially while uploading the
features to the central server for both utility and auxiliary
tasks for learning.

Data privacy has become an issue of great concern in
affect recognition using either verbal or nonverbal data,
as gender, age, and identity of the user can be revealed
in the process. FL is proposed to preserve privacy while
taking advantage of ML and has attracted significant attention
from various domains over the past few years, but affective
computing research and applications on emotion-related tasks
are rarely discussed. Most existing works are conducted on
private datasets or in limited scenarios, making it difficult for
researchers to compare their methods fairly [15].

FL has been widely applied for facial features for affect
recognition. Somandepalli et al [16] investigated FL for
2 affective computing tasks: classifying self-reports and
perception ratings in audio, video, and text datasets. Using the
speech modality, Latif et al [17] investigated an FL approach
in emotion recognition tasks while sharing only the model
among clients. They implemented a long short-term memory
classifier and tested it on the interactive emotional dyadic
motion capture dataset with 4 emotions: happy, sad, angry,
and neutral. Face and speech modalities were also often
combined to get a more robust performance [18]. Chhikara et
al [19] combined emotion recognition from facial expressions
and speech with an FL approach. For the face modality, they

used a combination of CNN and support vector machine
models, whereas for the audio modality, they applied a 2D
CNN model to extract spectrogram images. Their proposed
framework has been validated and tested on 2 datasets, Facial
Expression Recognition 2013 for facial emotion recognition
and Ryerson Audio-Visual Database of Emotional Speech
and Song for speech emotion recognition, respectively.

On the contrary, FL has been seldom used in the context
of affect recognition from physiological signals, as indicated
in Table 1. Can and Ersoy [15] implemented an FL learning
model to forecast perceived stress using physiological data.
Each subclient uses an multilayer perceptron classifier to
locally train its data on the edge, and the sharing of individ-
ual updating parameters of multilayer perceptron is facilita-
ted using the federated averaging (FedAvg) algorithm. FL
has also been extended to handle multimodal physiological
signals. Nandi and Xhafa [20] proposed Federated Repre-
sentation Learning for Multi-Modal Emotion Classification
System, an FL framework-based ML model for emotion
recognition. They applied wavelet feature extraction and a
neural network to electrodermal activity (EDA) and respi-
ration data from the Dataset for Emotion Analysis using
Physiological signals to recognize valence arousal levels,
validating their approach. These studies demonstrate the
successful application of FL without compromising affect
recognition performance.

Table 1. Studies using MTLa or privacy-preserving approaches for various applications.
Study Application Signal MTL FLb DPc Multimodality
Zhao et al [21] Network anomaly detection Network signals ✓ ✓
Smith et al [22] Activity recognition Acceleration, gyroscope ✓ ✓ ✓
Somandepalli et al [16] Affect recognition Speech, video, text ✓ ✓
Sang et al [7] Affect recognition Face images ✓
Shome and Kar [23] Affect recognition Face images ✓
Chhikara et al [19] Affect recognition Face and speech ✓ ✓
Feng et al [24] Affect recognition Speech ✓ ✓
Can and Ersoy [15] Affect recognition PPGd ✓
Nandi and Xhafa [20] Affect recognition EEGe, EDAf ✓ ✓
Wang et al [18] Biometric Face

speaker
✓ ✓ ✓

This study Affect recognition PPG, EDA, ACCg, STh ✓ ✓ ✓ ✓
aMTL: multitask learning.
bFL: federated learning.
cDP: differential privacy.
dPPG: photoplethysmography.
eEEG: electroencephalography.
fEDA: electrodermal activity.
gACC: acceleration.
hST: skin temperature.

While FL has been introduced to enhance model training
in terms of privacy, the privacy vulnerabilities inherent
in the stochastic gradient descent (SGD) algorithm remain
unresolved. DP mechanisms have primarily been discussed
in FL settings, involving the injection of noise into each
model client or server to perturb updates and limit gradient

leakage shared among nodes (ie, client and server) [25].
In one of the initial applications, authors introduced a new
private training method termed differential private SGD,
which reduces local and global gradient information leakage
between the client and server. Instead of using the standard
composition theorem to calculate the final distribution of
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overall noise clients, they used a moments accountant metric
to adaptively monitor the overall privacy loss. Recognizing
that servers are often curious or untrustworthy, Wei et al
[26] proposed a local DP mechanism algorithm by intro-
ducing Gaussian noise distribution into user models before
uploading them to servers. To address the communication
overhead required for optimal convergence upper bound for
DP, they introduced a novel approach known as communi-
cation rounds discounting method, which achieves a better
trade-off between the computational complexity of searching
and convergence performance. DP has also been leveraged
for affect recognition. Feng et al [24] used user-level DP to
mitigate privacy leaks in FL for speech emotion recognition.
Recently, Smith et al [22] showcased promising performance
in preserving privacy via multitask federated learning (MFL)
for activity recognition.

When examining the affective computing literature, we
find studies using MTL to improve performance and others

using FL or DP to preserve privacy. However, there are
no studies that leverage MTL for performance enhancement
while also preserving privacy in this literature. The overall
idea of our approach is to separate the utility and the privacy
tasks preventing DP from compromising the performance
of the utility task (affect recognition) and introducing noise
exclusively to the privacy task (biometric identity recogni-
tion). Consequently, our work represents the first MTL-based
approach to affect recognition using FL and DP to preserve
privacy at the same time.

Methods
Overview
Our proposed framework is divided into 3 main substeps:
feature extraction, FL model, and FL with DP settings (see
Figure 1 for the block diagram).

Figure 1. Block diagram of the proposed MTL system. CNN: convolutional neural network; MTL: multitask learning.

Ethical Considerations
This study did not require formal ethics approval, as it
exclusively used publicly available datasets, which were
obtained from open-access repositories with no personally
identifiable information. According to the General Data
Protection Regulation, studies involving the use of anony-
mized, publicly accessible data that do not engage human
participants directly are exempt from ethics review. There-
fore, no ethics approval was sought or required.

Data Description and Feature Extraction
For our experiments, we use 2 datasets, wearable stress and
affect detection (WESAD) [27] and virtual environment for
real-time biometric interaction and observation (VERBIO)
[28], which have been created for affective state monitoring.

WESAD Dataset
In the WESAD dataset, each participant recorded physiolog-
ical signals such as blood volume pulse, electrocardiogram
(ECG), EDA, electromyogram, respiration, body temperature,
and 3-axis acceleration measured from the chest and wrist
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using Plux RespiBAN and Empatica E4 devices. In total, 15
(12 male and 3 female) people participated in this experi-
ence. There were 4 states: baseline, amusement, stress, and
meditation. More details can be found in Schmidt et al [27].

VERBIO Dataset
The VERBIO dataset [28] consists of biobehavioral respon-
ses and self-reported data during public speaking presenta-
tions, both in front of real-life and virtual audiences. In
total, 55 participants conducted 10 distinct presentations, each
lasting approximately 5 minutes, across the 3 segments of
the study, spanning 4 days: PRE (1 session, day 1), TEST (8
sessions, days 2‐3), and POST (1 session, day 4). The PRE
and POST segments involved real-life audiences, while the
TEST segment featured various virtual audiences. To prevent
participant exhaustion, the TEST segment was divided into 2
days, each comprising 4 sessions. In total, the study yielded
10,800 minutes of acoustic and physiological data from 82
real and 216 virtual reality presentations. In total, 35,174
segments were created. We solely used physiological data
collected using the Empatica E4 device, possessing identical
sampling rates and modalities as those used in the WESAD
dataset.

Preprocessing
Each modality of the signal is segmented using 700 sample
windows size with 50% overlap, as suggested in the literature
[29]. To maximize the correlation among interparticipants and
minimize among participants, these segments were further
processed for extracting features [15] such as mean, variance,
root mean square, frequency domain features, average first
amplitude difference, second amplitude difference, skewness,
kurtosis, and entropy as a nonlinear feature.
Decentralized MFL Model
For privatizing the user identity while preserving stress
recognition accuracy, we adopted an MFL approach that
can effectively improve the performance of stress recogni-
tion while limiting the risk of inferring sensitive information
from the training model since the client does not want to
be exposed to the cloud service provider. MFL architecture-
based stress recognition is developed as follows:

1. The dataset is partitioned into K clients. The data size
of all the clients is the same. The client distribution is
also assumed as independent and identically distributed
(IID) and no IID [10].10

2. For the local training process, there is only 1 iteration
for SGD local training for each client. In particular, w is
the local model parameter [10] given by:

(1)wUDi = argminwU FU wU + μ2 wU −w Di − 1 2
where μ is the learning rate and FU is the local loss function
of the kth user.

3. The local data of different clients cannot be communi-
cated, and only the models can be shared.1010

4. Following the FedAvg algorithm [10], the server uses
a global averaging approach to aggregate all local
training models to compute the final global model.
Formally [10], the server aggregates the weights sent
from the K clients as follows:

(2)w = ∑U = 1
K piwUDi

where wi is the parameter vector trained at the kth client, w is
the parameter vector after aggregating at the server, K is the
number of participating clients, Di is the dataset size of each
participating client, D = UDi is the whole distributed dataset,
and Pi=|Di|/|D|.

5. The global training epoch is set to M rounds (aggrega-
tions). The server solves the optimization problem [10]:

(3)W* = argminwU ∑U = 1
M PUFU wU,Di

where FU is the local loss function of the kth client. Gener-
ally, the local loss function is given by local empirical risks.
Decentralized FL With DP
In conventional FL, the global model is computed through
averaging over model client participants, which performs
better within homogeneous FL settings. However, using
inference or adversarial attack, this shared model may contain
sensitive and private information such as gender, age, and
biometric template user. In such cases, the MFL framework
is required to reduce the leakage of the black box gradient
exchanged model. To overcome this limitation, researchers
have used the DP scheme to protect either local or global data
training FL model. However, the perturbed gradient using DP
with a low budget has high variance, which leads to worse
performance and slower convergence. We also compared
adding noise to whole model and task-specific last layers in
addition to the shared layers and demonstrated the perform-
ance of these 3 different approaches (Multimedia Appendix
1). Motivated by personalized FL [26], our work focuses on
client-level privacy, which aims at a private specific layer of
the client model rather than perturbing the entire whole local
model. This is because the base layers are mostly redundant
information, while the most important information that holds
private and public information is located in the upper layers.
To meet the utility privacy trade-off, the DP mechanism
is used to perturb the gradients using Gaussian noise at a
specific layer or task. Here, we use all steps in the FL model
except step 4, that is, before uploading the local SGD model
client to the global server, we inject an amount of noise to the
updated local parameters. In that sense, we perturb the local
gradient training inference with two kinds of noise distribu-
tions:

1. An additive Gaussian noise η∼N (0, σ) to each weight.
This operation can be mathematically described as
follows:

(4)wt + 1 = wt + η

JMIR MENTAL HEALTH Benouis et al

https://mental.jmir.org/2024/1/e60003 JMIR Ment Health 2024 | vol. 11 | e60003 | p. 5
(page number not for citation purposes)

https://mental.jmir.org/2024/1/e60003


2. A set of noise distributions can be sampled from the
DP mechanism. A randomized mechanism ℳ on the
training set with domain X and range R satisfies (ϵ, δ)
− DP for 2 small positive numbers and if the following
inequality holds [25]:

(5)Pr ℳ x ∈ S ≤ eϵPr ℳ x` ∈ S + δ
where x and x`∈ X are 2 input neighbor datasets, and S ⊆ R,
where R is the set of all possible outputs, δ is privacy loss or
failure probability, and ϵ is privacy budget.
An ideal DP mechanism provides a lower value of δ and a
smaller value of ϵ. Unfortunately, these values decrease the
function utility (eg, accuracy metric), so the main question
is how much DP values we must perturb its output while
guaranteeing trade-off privacy-utility. Intuitively, an output
perturbation mechanism takes an input x and returns a
random variable s x . This operation can be modeled by:

(6)M x = s x + Nσ
where N is scaling noise sampled from a specific distribution.
In this work, we chose Laplace and Gaussian mechanisms
[25] that use L1 and L2 norm sensitivity, respectively. The
sensitivity function can be expressed as:

(7)Δf = maxD,D` s x − s x` 1,2
Scaling noise can be computed as:

(8)σ = Δf/ε
Output perturbation satisfies ϵ, δ − DP when we properly
select the value scaling noise. Thus, it sampled from Laplace
and Gaussian distributions [25] as:

(9)MLaplace x,f, ε, δ = s x + Lap μ = 0, b

(10)MGaussian x,f, ε, δ = f x +N μ = 0,σ2
The gradient information leakage can be reduced by applying
a gradient thresholding or clipping algorithm. As explained
by Abadi et al [11], gradient clipping is crucial in ensuring
the DP of FL algorithms. So, each provider or client model
update needs to have a bounded norm, which is ensured by
applying an operation that shrinks individual model updates
when their norm exceeds a given threshold. Clipping impacts
of an FL algorithm’s convergence performance should be
known to create FL algorithms that protect DP.

Results
Overview
Three scenarios are created to tackle the aforementioned
challenges with the DP learning approaches: centralized,
decentralized FL, and decentralized FL with DP. Their
performances are evaluated on WESAD and VERBIO
datasets on 2 different tasks. The first task is identifying
users from a set of registered and recorded users. The second
task is perceived binary stress recognition, which tries to
distinguish the user’s stress level, stress versus nonstress.
We train a multitask deep learning model for handling these
tasks simultaneously. In addition, for better training and to
avoid overfitting, an early stopping regularization technique
is used as gradient descent. The accuracy metric is used for
measuring identification and stress recognition performance.
In each simulation scenario, we run 5-fold cross-validation,
where each fold is tested based on the training of the other 4.
Inspired from a successful architecture [30] and as descri-
bed in Table 2, the multitask 1D-CNN model is based on
3 convolutional layers, a pooling layer, 2 fully connected
layers, and 2 linear classifiers to classify the studied tasks.
The multitask model uses the cross-entropy loss function and
SGD learning rate (β=.0005).

Table 2. Hyperparameters of the multitask 1D-convolutional neural network–based architecture.
Layer Type Hyperparameters
Input Input Features size
Conv1D Convolution Input=1, output=20, K=8, stride=1, padding
ReLu Activation function ReLu
Pooling Pooling Stride=2, max pooling
Conv Convolution layer Input=20, output=40, K=8, stride=1, padding
Relu Activation function ReLu
Pooling Pooling Stride=2, max pooling
Conv Convolution layer Input=40, output=60, K=8, stride=1, padding
Relu Activation function ReLu
Pooling Pooling Stride=2, max pooling
Fully connected 1 Fully connected layer Input=360, output=100
Fully connected 2 Fully connected layer Input=100, output=300
Linear 1 Input: 100, output: 2 Output=2 affect classes, activation function:linear
Linear 2 Input: 300, output: N Output=N identity classes, activation function:linear
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For each target task, the individual loss is determined by
the cross-entropy for both stress recognition (Loss1) and
identification tasks (Loss2). The individual losses are summed
and form the total cost function (LossT).
CL Approach
Most existing stress recognition studies in conventional
centralized ML settings use WESAD to position their works
against state of the art [31-33] and achieve over 95% accuracy
for binary stress recognition. Similarly, we used the CL
approach on the WESAD dataset as a baseline experiment.
We measured the performance of stress levels for each
participant independently and then computed the average
performance accuracy. Each individual participant model is
trained using 5-fold cross-validation.

Multimedia Appendix 2 shows the results of our CL
approach using a 1D-CNN multitask model for stress
and identity recognition tasks on 2 datasets: WESAD and
VERBIO. After training, the output layers are used to infer
the stress level and the identity of the user, resulting in quite
similar average scores of 99%. The results reveal a potential
information leakage in this case, wherein model accuracy is
preserved at the expense of the user’s privacy. As a result,
this approach fails to ensure the users’ privacy since their data
are transmitted to the server for training purposes.
Multitask Decentralized FL Approach
(MFL)
Here, K (ie, participating clients) training models were
created to train the whole dataset and the size of local samples

Di=1000. We set the number of training epochs (communica-
tion round) to T=40 and local training epochs to 1. Overall,
the average accuracy result achieved is 97% and 95% for
stress mood recognition and 93% and 90% for user identifica-
tion on WESAD and VERBIO, respectively.

To examine the effect of client participation within the
MFL model, we tested different numbers of clients, that
is, K=5, K=10, and K=20. As reported by Wang et al
[34] and confirmed in Figure 2, an increasing number of
clients and more client participation provide better perform-
ance for MFL training. The client distribution is different
in assessing the MFL model in real-world conditions. We
compare the convergence performance of the MFL model
under IID and no IID for both tasks: stress recognition
and subject identification (Figure 3). We note that the data
distribution dramatically affects the quality of the FL training
and obviously affects MFL’s convergence performance. IID
is a more idealistic case, whereas no IID is a more realistic
case. Therefore, we expect the result to be lower in no IID
cases. The performance difference proves the importance of
data distribution.

Adjusting FL hyperparameter setting results can achieve a
better performance than the CL approach. However, it may
lead to a lower privacy level. As a result, SGD training
may still reveal sensitive information about the client while
exchanging the ML model with the global server.

Figure 2. The impact of the user participant size (various number of clients) on the multitask federated learning performance (wearable stress and
affect detection).
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Figure 3. The impact of IID versus no IID distribution on the multitask federated learning performance. IID: independent and identically distributed.

MFL With DP Approach
1. To highlight the benefits of our proposed approach, we

examine the impact of injecting noise into the local
client training network according to these 3 scenarios:
the full layers, shared layers, and task-specific layers
(Figure 2). The used noise is sampled via the following
mechanisms:

2. With DP technique–based Laplace and Gaussian
mechanisms, the noise scale is drawn from the output
perturbation mechanism. DP parameters are computed
at each local training round to generate appropriate
noise injected from specific distributions (ie, Laplace
and Gaussian). Besides appropriate (ϵ,δ)−DP initializa-
tion, there are a few hyperparameters to be tuned, such
as the number of clients N, the number of maximum
communication rounds T, and the number of chosen
clients K.

a. Laplace distribution [11] is computed as:

(11)σ = Δfϵ

b. Gaussian distribution—2 distributions are given
by Abadi et al [11] and Schmidt et al [27],
respectively:

(12)σ1 = 2log1.25δε
(13)σ2 = Δf 2qTlog 1δε

 where Δf = 2CUi , q = KN , and C = clipping threshold. We set
the clipping factor to 1 and δ to 0.00001.

Figures 4-6 show the accuracy comparison when add-
ing Gaussian distribution levels into local training accord-
ing to the 3 scenarios on the WESAD dataset. Compared
to the baseline scenario, that is, no private mechanism,
the perturbing share layer scheme with σ=0.1 and σ=0.3
only provides better results for utility tasks; however, the
identification task reached an accuracy of around 86%.
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Figure 4. Decentralized multitask federated learning approach results under different Gaussian noise levels (σ=0.1).

Figure 5. Decentralized multitask federated learning approach results under different Gaussian noise levels (σ=0.3).
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Figure 6. Decentralized multitask federated learning approach results under different Gaussian noise levels (σ=0.6).

In this case, the amount of noise drawn from the Gaussian
distribution is used to balance the utility and privacy and does
not consider the FL settings parameters. The Gaussian levels
are set to σ=0.1, σ=0.3, and σ=0.6. For instance, increasing
Gaussian noise leads to poor performance, as depicted in
Figure 6.

To examine the DP impact on the utility-privacy trade-off,
we assessed the performance of MFL with a DP mechanism
in WESAD and VERBIO datasets under the aforementioned
scenarios. The DP budgets are set as follows ϵ=1, ϵ=15,

ϵ=50 and ϵ=2000 for this experiment. As depicted in
Figures 7-14 compared to the baseline scenario, that is, no
privacy enhancing mechanism, adding DP noise into both
shared and specific layers provides better results for utility
performance; however, in terms of privacy, the perturbing
specific task layer scheme provides better results than the
perturbing shared layer. Results show that FL with perturb-
ing all layers slows the convergence compared to others,
although it provides better privacy (ie, decreasing identifica-
tion accuracy).

Figure 7. Multitask federated learning performance under the differential privacy mechanism “different layer perturbations” (wearable stress and
affect detection, ϵ=1).
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Figure 8. Multitask federated learning performance under the differential privacy mechanism “different layer perturbations” (virtual environment for
real-time biometric interaction and observation, ϵ=1).

Figure 9. Multitask federated learning performance under the differential privacy mechanism “different layer perturbations” (wearable stress and
affect detection, ϵ=5).
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Figure 10. Multitask federated learning performance under the differential privacy mechanism “different layer perturbations” (virtual environment
for real-time biometric interaction and observation, ϵ=5).

Figure 11. Multitask federated learning performance under the differential privacy mechanism “different layer perturbations” (wearable stress and
affect detection, ϵ=15).
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Figure 12. Multitask federated learning performance under the differential privacy mechanism “different layer perturbations” (virtual environment
for real-time biometric interaction and observation, ϵ=15).

Figure 13. The evaluation results of the multitask federated learning approach with 3 differential privacy (DP) distributions (various layer task
perturbation, ϵ=15).
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Figure 14. The evaluation results of the multitask federated learning approach with 3 differential privacy (DP) distributions (full perturbation, ϵ=15).

Intuitively, our results demonstrate that adding noise to upper
layers (identity recognition layers) effectively achieves a
better privacy-utility trade-off. This advantage comes at the
expense of a formal quantification of the relationship between
learning features, that is, what we aim to share, and private
variables, that is, what we aim to protect, which is rarely
available in practice. We also evaluate the impact of noise
distribution type on the proposed framework performance.
The results from the WESAD dataset demonstrate that adding
Laplace noise in our local training model preserves the stress
recognition accuracy better than the Gaussian noise types
(Figures 13 and 14). However, it also maintains the identity
recognition task performance.

Nevertheless, using the Gaussian mechanism (ie, Gaussian
2) increases the privacy level of the local training model
because increasing the number of global iterations will also
negatively affect its global convergence performance, that is,
a larger T would increase the noise level variance, dramat-
ically decreasing the global accuracy model (equation 13).
In addition, we have found that a larger K contributes to
avoiding the vanishing local SGD gradient problem; however,
a larger N leads to a scale-down in the variance of injected
noise level to model parameters and fools the SGD training
inference.

When DP is also used in FL settings, our experiments
suggest that it achieves encouraging performance even on
lower budget values (ie, increasing privacy requirements).
The compromise of physiological data privacy can have
significant consequences for a life of individuals. It provides
an opening for data attackers and puts them at danger of
data breaches, which can result in several threats [35]. For
instance, Shen et al [36] provided an analytic study to
estimate the leakage level of the global training FL model
about user’s information, and they generated a membership
attack system on the global model to check if the target user

is participated in training FL model or not. The experiences
have been validated and tested on health data, called the
University of Michigan Intern Health Study. The authors
suggested to use DP to protect user-level privacy while
maintaining the utility task performance. In similar work [37],
applied personalized FL in recognizing stress using mobile
health data (ie, WESAD) to decrease the information leakage
from the global FL model.

Besides, there are also other risks including the possibil-
ity of revealing a soft biometric (eg, gender, location, and
authenticity) and a hard biometric (ie, identity). So far, most
of the research in using physiological modalities in both
biometric domains focused on ECG, electroencephalography,
EDA, and photoplethysmography [35,38]. We found that
the model obviously achieves a better balance between the
stress and identification classification task when multimodal
signals are combined and used as an input compared to
the single modality. However, as aimed in our work, it is
difficult to provide privacy guarantees since there is no study
that provides an investigation on which modality can reveal
sensitive information about the subject. In this experiment,
we provide a comparative study among these used modalities
for both tasks, subject identification and emotion recogni-
tion. According to Tables 3 and 4, we found that the
ECG and acceleration modalities always led to an increase
in the performance of the identification task. This fact
might have contributed to their popularity in the biometric
field [38]. This observation hints us that discarding model
parameters containing sensitive information learned from
modalities associated with identity information might help
to effectively achieve a good privacy-utility trade-off to a
certain extent, that is, decrease information leakage. Although
for these modalities (eg, ACC and ECG for WESAD), the
identification accuracy is higher than binary stress recogni-
tion accuracy, in general, it is lower than stress recognition
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performance. We can interpret this fact by the number of
labels and the complexity of the task. For WESAD, there are
15 participants and for VERBIO, there are 55 participants,
which corresponds to 15 and 55 different labels for biomet-
ric identification ML systems. If we think that the signals
of some people can be similar under the same experimental

conditions, it can cause some confusion for the ML algorithm
and can cause some performance decrease. On the other hand,
for stress, we used binary labels, and although the stress
response can change from individual to individual, it can be
stated that it is a relatively simpler task with 2 labels.

Table 3. The effect of modality on the stress and subject identification performance (wearable stress and affect detection).
Modalities and task Approach

Centralized FLa FL+DPb

ACCc F1 AUCd ACC F1 AUC ACC F1 AUC
ACC

Stress 91.60 86.09 92.01 89.90 84.81 90.35 84.46 79.23 85.00
Subject identification 95.50 91.70 96.00 94.88 90.76 96.34 58.19 52.01 60.00

BVPe

Stress 98.34 96.14 99.13 96.05 92.01 97.00 90.97 86.92 92.46
Subject identification 94.96 90.88 95.00 92.05 88.03 92.88 54.95 49.89 55.00

EDAf

Stress 99.00 98.01 99.00 95.29 91.09 95.57 91.27 86.03 92.00
Subject identification 86.15 70.06 86.88 85.89 80.78 86.27 50.05 43.00 50.05

ECGg

Stress 97.01 95.00 97.02 93.37 89.03 94.00 91.60 86.45 92.10
Subject identification 98.62 96.54 99.00 90.96 82.89 91.50 68.20 61.03 69.00

TEMPh

Stress 99.00 98.00 99.00 94.88 90.76 95.23 90.00 85.00 90.00
Subject identification 97.88 95.78 98.00 91.22 86.01 92.00 51.23 43.00 52.00

All
Stress 99.86 96.72 99.86 95.56 91.38 96.13 90.00 85.00 90.00
Subject identification 98.56 96.47 99.00 92.00 88.00 92.00 47.00 40.00 47.00

aFL: federated learning.
bDP: differential privacy.
cACC: acceleration.
dAUC: area under the curve.
eBVP: blood volume pulse.
fEDA: electrodermal activity.
gECG: electrocardiogram.
hTEMP: skin temperature.

Table 4. The effect of modality on the stress and subject identification performance (virtual environment for real-time biometric interaction and
observation).
Modalities and task Approach

Centralized FLa FL+DPb

ACCc F1 AUCd ACC F1 AUC ACC F1 AUC
ACC

Stress 90.61 82.56 91.50 85.48 80.13 86.45 82.18 77.02 83.03
Subject Identification 86.42 83.00 87.12 84.40 79.16 85.00 63.60 58.46 63.60

BVPe

Stress 92.96 88.87 93.00 88.95 83.84 90.56 85.00 80.00 85.00
Subject Identification 85.63 80.31 86.33 80.86 74.37 90.13 48.64 42.51 49.00

EDAf

Stress 93.16 89.01 94.56 92.46 88.23 93.00 89.24 84.06 90.01
Subject identification 88.30 83.12 88.30 83.83 78.65 84.23 45.12 38.01 46.00
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Modalities and task Approach

Centralized FLa FL+DPb

ACCc F1 AUCd ACC F1 AUC ACC F1 AUC
TEMPg

Stress 92.64 88.37 93.34 90.42 85.12 90.42 86.32 81.12 87.06
Subject identification 85.34 80.07 86.17 82.56 76.33 82.56 39.59 31.42 40.00

All
Stress 95.00 91.01 95.00 93.96 89.88 94.00 90.94 85.89 90.94
Subject Identification 90.00 85.01 90.00 88.92 83.84 89.10 38.46 30.18 39.35

aFL: federated learning.
bDP: differential privacy.
cACC: acceleration.
dAUC: area under the curve.
eBVP: blood volume pulse.
fEDA: electrodermal activity.
gTEMP: skin temperature.

Comparison With State of the Art
The proposed approach is also compared with existing
approaches used for stress recognition in FL settings, and
the results are reported in Table 5. Most similar works have
mainly focused on the benefits of FL in affective comput-
ing by generating data clients from unique datasets (ie, as
used in the FL framework with standard benchmarks, namely
Modified National Institute of Standards and Technology,
Canadian Institute for Advanced Research-10, and Canadian
Institute for Advanced Research-100). To the best of our
knowledge, the number of studies using physiological signals

in FL settings is relatively low compared to other case
studies in affective computing, such as speech and facial
expression–based studies. According to Table 5, we can see
that existing works used only FedAvg with the WESAD
dataset and achieved similar performance, as confirmed by
our previous study. To the best of our knowledge, our paper
both improves privacy protection and provides slightly higher
accuracies when compared with similar studies. Consistent
with compared works, for both databases, WESAD and
VERBIO, the obtained performance behaves similarly.

Table 5. Comparison of affect recognition studies using federated learning (FL) and privacy-preserving approaches.a
Study Dataset FL algorithm Data split Accuracy
Almadhor et al [39] WESADb FedAvgc+logistic regression N/Ad 86.82
Fauzi et al [40] WESAD FedAvg+DNNe network N/A 85.75
Can and Ersoy [15] Private dataset FedAvg+MLPf N/A 88.55
Lee et al [29] WESAD FedAvg+MLP LOOCVg 75.00
Our previous study [38] WESAD FedAvg+1 DCNNh+DPi 5-fold CVj 90.00
This study VERBIOk FedAvg+1 DCNN+DP 5-fold CV 88.67

aThe table reports the main approaches have been applied for stress detection by using a physiological dataset.
bWESAD: wearable stress and affect detection.
cFedAvg: federated averaging.
dN/A: not applicable.
eDNN: deep neural network.
fMLP: multilayer perceptron.
gLOOCV: leave-one-out cross-validation.
hDCNN: deep convolutional neural network.
iDP: differential privacy.
jCV: cross-validation.
kVERBIO: virtual environment for real-time biometric interaction and observation.

Unlike the compared works [15,29,38,40], which analyze
privacy concerns in stress recognition, we introduced a
multitask model enabling us to strike a balance between
utility and privacy. This is achieved by selectively adding
noise to layers prone to subject information leakage. The
comparison provided in Table 5 reveals that prior studies
achieved performance comparable to our case study when
using FedAvg on WESAD or a private dataset. Through

our experiments, we provided a comprehensive investigation
of how to balance privacy preservation and stress recogni-
tion. The obtained results demonstrate that the combination
of MFL and DP can maintain good performance without
sacrificing the user’s privacy.
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Discussion
The overall objective of our work was to present an approach
to stress recognition that ensures robustness while protect-
ing the user’s privacy. To this end, we developed a person-
alized multitask federated model framework with DP. We
used a user-level DP mechanism by injecting an amount
of noise into personalized layers for perturbing identity
while preserving task-specific utility. Using multitask and
DP (ε=15), we obtained 90% and 87% accuracy for recogniz-
ing emotions while limiting the reidentification accuracies
to 47% and 38% on WESAD and VERBIO, respectively.
We extensively tested different parameters including layer of
neural network, privacy budget, and different noise distribu-
tions. As expected, adding noise to the upper layer decrea-
ses the affect recognition performance less when compared
to the last task-specific layers. We also demonstrated the
effect of data distribution on the performance. Having said
that, the paper is not without limitations. Although we tested
our algorithms with state-of-the-art datasets (WESAD 15
participants and VERBIO 55 participants), especially for the

biometric task, larger datasets with a more heterogenous and
higher number of participants should be used. Furthermore,
these datasets were recorded in a controlled environment.
Real-life or in-the-wild datasets will create more challenges
and might require more advanced and complex architec-
tures. However, with the available data, we managed to
develop an automatic stress recognition system with around
90% accuracy by keeping biometric identification accuracy
below 40%. We believe that our results will help research-
ers in determining suitable parameters and distributions for
achieving the desired trade-off between utility and privacy
for affective computing applications. Currently, new gradient-
based unsupervised adversarial attackers are attacking deep
neural classification models to infer the privacy of the
distributed training gradient. In future works, to address this
threat, we are planning to conduct additional experiments
with federated differentially private generative adversarial
networks that can provide better privacy protection and
data diversity for widespread applications of physiological
computing systems.
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