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Abstract

Background: The field of mental health technology presently has significant gaps that need addressing, particularly in the
domain of daily monitoring and personalized assessments. Current noninvasive devices such as wristbands and smartphones are
capable of collecting a wide range of data, which has not yet been fully used for mental health monitoring.

Objective: This study aims to introduce a novel dataset for personalized daily mental health monitoring and a new macro-micro
framework. This framework is designed to use multimodal and multitask learning strategies for improved personalization and
prediction of emotional states in individuals.

Methods: Data were collected from 298 individuals using wristbands and smartphones, capturing physiological signals, speech
data, and self-annotated emotional states. The proposed framework combines macro-level emotion transformer embeddings with
micro-level personalization layers specific to each user. It also introduces a Dynamic Restrained Uncertainty Weighting method
to effectively integrate various data types for a balanced representation of emotional states. Several fusion techniques, personalization
strategies, and multitask learning approaches were explored.

Results: The proposed framework was evaluated using the concordance correlation coefficient, resulting in a score of 0.503.
This result demonstrates the framework’s efficacy in predicting emotional states.

Conclusions: The study concludes that the proposed multimodal and multitask learning framework, which leverages
transformer-based techniques and dynamic task weighting strategies, is superior for the personalized monitoring of mental health.
The study indicates the potential of transforming daily mental health monitoring into a more personalized app, opening up new
avenues for technology-based mental health interventions.
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Introduction

Background
Mental health, recognized as a critical component of overall
well-being, has garnered increasing attention and concern. The
World Health Organization [1] defines mental health as a state
of well-being where individuals realize their potential, cope
with normal life stresses, work productively, and contribute to
their community. However, mental health issues continue to
present a significant burden globally, affecting individuals’
quality of life and posing challenges. In response to these
challenges, the concept of “daily mental health monitoring” has
emerged as a critical area of research and application [2,3]. This
concept refers to the regular, continuous observation and
assessment of an individual’s emotional states, using a variety
of methods and tools to capture data in real time [4]. Such
monitoring aims to provide a comprehensive understanding of
an individual’s mental health, facilitating early detection of
patterns, changes, or emerging issues. Consequently, accurate
monitoring and understanding of daily mental health have
become imperative for timely interventions and sustained mental
well-being.

However, the field of daily mental health monitoring remains
surprisingly underdeveloped, particularly regarding real-life
applications [4]. The challenges faced by existing datasets and
methods are not merely academic concerns but represent
significant barriers to the effective and widespread adoption of
mental health monitoring in everyday life. These challenges
include the following.

• Real-world representation where a significant portion of
existing datasets lack data derived from real-world settings,
instead relying on artificial or laboratory conditions.

• Lack of self-annotation. many datasets do not use
self-annotation [5-8], relying instead on experts’observation
or clinical interpretation. This approach often fails to capture
the subjective experience of the individual, crucial for a
person-centered understanding and monitoring of mental
health [4,9]. In addition, clinical assessments typically occur
at discrete time points, potentially missing the dynamic,
moment-to-moment fluctuations in mental states that
individuals experience in their daily lives [10].

• Challenges in accessibility of monitoring data. Many studies
use electroencephalography (EEG) [11,12] while providing
valuable insights into brain activity and emotional states,
requiring specialized equipment and expertise, making it
impractical for daily monitoring. Similarly, facial expression
data [13,14] capture often necessitates continuous video
monitoring, posing substantial privacy and practicality
challenges for everyday use.

• Limited modalities and single-model approach. Most
available research focuses on a single modality [15,16],
this overlooks the inherently multimodal nature of human

emotional expression and mental states, reducing the
systems’ reliability.

To address the aforementioned challenges, our study adopts an
innovative methodology aimed at forging more accurate, and
efficacious tools for mental health monitoring. The contributions
of our research are manifold, highlighted by the following key
developments.

• Introducing a novel dataset collected from 298 individuals
using noninvasive, everyday devices including
wristband-type devices and smartphones, our dataset
captures physiological signals: zero crossing mode (ZCM),
proportional integration mode (PIM), and speech data.
Participants provided self-annotated emotional states over
2 weeks, creating a rich, multimodal resource for
understanding daily mental health dynamics.

• Developing a macro-micro framework for personalized
daily mental health. Our framework develops a multimodal
and multitask learning (MTL) strategy, innovatively built
global emotion embeddings with individual personalization
embedding.

In our research, the decision to focus on physiological signals
and speech data, while excluding modalities such as facial
expressions and EEG, was driven by several key considerations:
Physiological signals have been shown to have a significant
association with mental health and well-being. These signals,
such as heart rate, skin conductance, and activity levels, can
provide valuable insights into an individual’s emotional and
psychological state [17]. The relationship between physiological
signals and mental health is complex and multifaceted. For
example, changes in heart rate variability (HRV) have been
linked to stress, anxiety, and depression [18]. Reduced HRV
has been observed in individuals with mental health disorders,
suggesting that it may serve as a potential biomarker for mental
well-being [19].

In our research, we apply the wrist-worn device used in our
study which is equipped with a highly sensitive piezoelectric
accelerometer that can detect even the most subtle wrist
movements, with a resolution as fine as 0.01 G/rad/s. This allows
for the capture of a wide range of daily activities and movements
that may be relevant to mental health assessment [20]. The
device uses 2 key modes for processing the accelerometer data:
ZCM and PIM [21].

In addition to physiological signals, our study also incorporates
speech data as a key modality for assessing mental health.
Speech provides a rich source of information about an
individual’s emotional state, cognitive functioning, and overall
well-being [22]. There are several reasons why speech is a
valuable tool for mental health assessment. First, speech carries
emotional information through various features such as tone,
pitch, and intonation. Changes in these features can reflect an
individual’s emotional state, such as increased monotonicity in
speech being associated with depression [23]. Second, speech
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patterns and characteristics can provide insights into an
individual’s cognitive processes. For example, changes in speech
fluency, coherence, and word choice have been linked to
cognitive impairments and mental health conditions [24]. In
addition, speech data can be collected noninvasively using
readily available devices such as smartphones or voice recorders.
This makes it a convenient and accessible modality for mental
health assessment, especially in remote or telehealth settings
[25].

Ecological momentary assessment (EMA) is a key
methodological approach used in our study. EMA involves the
repeated sampling of individuals’ current behaviors and
experiences in real time, in their natural environments [26].
While EMA offers several advantages, such as reducing recall
bias and capturing the dynamics of mental states in real-world
contexts [10], it also has limitations. These include potential
reactivity (ie, the act of self-reporting influencing the very
experiences being reported) and compliance issues [27]. In this
study, we aim to mitigate these limitations through careful
design and participant training, which will be discussed in the
Methods section.

Furthermore, our study introduces the Dynamic Restrained
Uncertainty Weighting (DRUW) fusion method, a novel
approach for integrating multimodal data in the context of
mental health monitoring. The DRUW fusion method adaptively
weights the contribution of each modality based on its
uncertainty and distinct characteristics, ensuring a balanced
representation of the fused data. This method builds upon the
principles of uncertainty weighting [28] and extends them to
the multimodal fusion context. The key novelty of the DRUW
fusion method lies in its ability to dynamically adjust the
weighting of each modality based on the inherent uncertainty
and complementary nature of the physiological signals and
speech data [29].

By collecting and analyzing data on emotional states, speech
characteristics, and physiological patterns, our study aims to
contribute to the development of more effective, personalized,
and accessible mental health interventions. The data collected
in our study can contribute to better mental health outcomes in
several ways.

Early Detection and Intervention
By correlating objective measures with subjective emotional
states, we can develop tools for early detection of mental health
issues, enabling timely interventions [30].

Personalized Treatment and Monitoring
Insights from our study can inform personalized treatment plans
and monitoring strategies, tailoring interventions to individual
needs [31].

Remote Monitoring and Telemedicine
Our use of wearable devices and speech analysis can contribute
to remote monitoring tools, crucial for mental health support,
especially in light of recent global events [32].

Reducing Stigma and Increasing Access
By demonstrating objective measures for mental health
assessment, we can potentially reduce stigma and increase access
to care, particularly for underserved populations [33].

Related Work
This section delves into various aspects of mental health
monitoring research domain, including mental health data, EMA,
personalization, and their real-world implications.

Recent research efforts, particularly in mental health detection
and monitoring, have gained significant momentum. Key studies
like the systematic review by Hickey et al [34] and Long et al
[35] have critically evaluated the use of smart devices and
wearable technologies. These investigations underline the
capability of these devices in detecting stress, anxiety, and
depression through physiological measures such as HRV,
electrodermal activity, and EEG data. However, they also
identify a notable gap in the availability of commercial
depression-detecting devices, emphasizing the need for
integrating multimodal data to enhance both accuracy and
predictive power.

Recent advancements in multimodal data analysis have shown
promising results in mental health diagnosis [36]. For instance,
a study by Xu et al [36] proposed a measurement method for
mental health based on dynamic multimodal feature recognition.
This approach integrates various data sources, including
physiological signals, speech patterns, and behavioral indicators,
to provide a more comprehensive assessment of an individual’s
mental state. Similarly, Huckins et al [37] developed a
multimodal machine learning approach that combines
smartphone sensing data with self-reported mental health scores
to predict changes in depression and anxiety among college
students.

Building on this, the role of mental health datasets becomes
crucial in understanding the complex and varied nature of mental
health conditions across different populations. The
comprehensive analysis of datasets, such as those examined
during the COVID-19 pandemic [38], offers deep insights into
the mental health effects of global crises on specific
demographics, like the Bangladeshi population. These datasets
are instrumental not only in assessing the prevalence and
severity of mental health conditions across various groups but
also in supporting longitudinal studies vital for tracking changes
over time.

Recent studies have also focused on improving data collection
methods for mental health monitoring. For example, Morshed
et al [39] introduced a novel approach using passive sensing
and machine learning to predict mood instability in bipolar
disorder. This method leverages smartphone usage patterns and
environmental data to provide continuous, unobtrusive
monitoring of mental health states.

In this study, we apply EMA [40], which represents a method
for recording participants’ behavior, psychological state, and
physical symptoms in real-time and at multiple time points. The
primary advantage of EMA lies in its ability to minimize the
biases often associated with retrospective recall in self-report
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data. Traditional self-report measures, which ask participants
to remember and report past feelings, behaviors, or symptoms,
can be influenced by memory distortions and subjective
interpretations of past events, Thus, it reduces the likelihood of
recall errors and increases the accuracy and reliability of the
data collected.

Further, personalization in mental health monitoring systems
is increasingly important [4]. Innovations in digital phenotyping
[41] exemplify this trend. This is further advanced by
groundbreaking approaches like those proposed by Gerczuk et
al [42], using zero-shot personalization strategies for large
speech foundation models in mood recognition.

The application of artificial intelligence and deep learning
techniques in mental health monitoring has seen significant
growth. A comprehensive review by Su et al [43] highlights the
potential of deep learning models in analyzing multimodal data
for mental health assessment. These advanced techniques allow
for more nuanced interpretation of complex, high-dimensional
data, potentially leading to more accurate and personalized
mental health interventions.

In summary, the related work shows the dynamic nature of
mental health detection and monitoring. However, bridging the
gap between technological capabilities and personalized mental
health care presents numerous challenges. The integration of

multimodal data, advancements in data collection methods, and
the application of sophisticated artificial intelligence techniques
represent promising avenues for overcoming these challenges
and improving mental health monitoring and diagnosis.

Methods

Methodology and Data Collection

Overview
The study followed a 2-week data collection protocol, during
which participants wore wrist-worn devices and used a
smartphone app to record their speech and self-report their
emotional states. The collected data included physiological
signals from the wrist-worn devices and speech recordings from
the smartphone app. To collect data, we developed a platform
called Mental Healthcare Internet of Things (MHIT) system.

The MHIT System
The MHIT system, as shown in Figure 1, is a cloud-based
platform specifically crafted to gather and analyze data from
Internet of Things devices. This state-of-the-art system combines
the collection of physical activity signals with speech data. The
MHIT system is comprised of 2 key components: a cloud server
(MHIT server) and a smartphone app (MHIT app).

Figure 1. The MHIT system designed for data collection. MHIT: Mental Healthcare Internet of Things.

Participants
A convenience sample of 298 Japanese office workers
participated in our study. They were recruited by sending digital
flyers. Those who agreed to participate in the study were asked
to open a URL link on the flyer and complete a web-based
registration form. Subsequently, the in-house wrist-worn device
(ScienceNet device; ScienceNet Inc), survey progression guide,
and informed consent form were mailed to them. Participants
were instructed on the aim and procedure of the study through
the survey progression guide. In addition, by scanning a QR
code on the guide, they were able to watch a tutorial video to
learn the use of the device and the MHIT app. After completing
the informed consent form, they commenced the study. This
recruitment process was conducted fully on the web, which

contribute to achieve data collection from workers in different
residential locations.

Annotation and EMA
This study used an EMA paradigm to capture participants’
emotional states in real time, thus avoiding potential distortions
of retrospective recall in self-report data. The EMA protocol
involved the following.

Sampling Scheme

Participants were prompted to report their emotional states by
using the MHIT app at randomly selected times within –10
minutes to +10 minutes of predetermined times (11 AM, 3 PM,
and 7 PM). In addition, they were instructed to voluntarily
complete the same EMA questionnaires when they woke up
and went to bed.
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Data Collection

At each EMA, participants self-reported the intensity of 9
different expressed emotions on a (0:100) visual-analogue scale
(slider) displayed on the MHIT app. These 9 emotions
correspond to the items of the Depression and Anxiety Mood
Scale (DAMS) [44]. To prevent response bias and
predetermination, the order of the DAMS items was randomized
for each evaluation.

Speech Data
Before the mental state evaluation, participants recorded their
voices by speaking, for example, “the current date and time are
September 5, 2022, at 10:23 PM” on the MHIT app. The
reasoning behind this is to keep the content emotionally neutral.
Participants also recorded activities, and the actual time was
recorded by the system.

Physiological Signals
The instrument is fitted with a sensitive piezoelectric
accelerometer that detects minute wrist accelerations (as fine
as 0.01 G/rad/s), capturing even the most subtle daily
movements. The ZCM within the device tallies the instances
the accelerometer’s signal traverses the 0 mark over a predefined
duration, known as the epoch time. Conversely, the PIM assesses
the integral of the root-mean-square for the triaxial
accelerometer signals. For the purposes of this investigation,
we have configured the epoch interval at 1 minute, aggregating
60 data points (representing 1 hour) prior to each participant’s
DAMS entry within their routine activities. To ensure the
integrity of our dataset, we have meticulously curated instances
that comprise both ZCM and PIM recordings, each consisting
of 60 data points.

Annotation Scheme
The DAMS serves as a self-reported measure of an individual’s
emotional state, providing a subjective assessment of their
mental well-being. This scale, which encompasses nine distinct
emotions—vigorous, gloomy, concerned, happy, unpleasant,
anxious, cheerful, depressed, and worried—is used for
comprehensively assessing mental health experiences pertinent
to depression and anxiety. DAMS’s effectiveness in measuring
depressive and anxious moods is particularly notable, as it uses
a variety of descriptors, including adjectives, adjectival verbs,
and phrases, to delineate depressive, anxious, and positive
moods with high discriminant validity [44]. Moreover, its
psychometric soundness has been established through methods
such as parallel testing and test-retest evaluations [44],
confirming its high convergent, discriminant validity, and
reliability. The scale’s sensitivity to mood fluctuations is
evidenced by the variance in scores observed between normal
and stressful periods, underscoring its use in detecting mood
changes. These features of DAMS, combined with its thorough
statistical analysis across 9 emotional labels, confirmed it is a
comprehensive choice for our study.

Previous research has shown that speech characteristics and
patterns can reflect an individual’s emotional state. For example,
depression has been associated with changes in prosody, such
as reduced pitch variability and slower speaking rate [22].
Similarly, anxiety has been linked to increased vocal tension

and higher fundamental frequency [45]. By analyzing speech
features such as pitch, intonation, and speaking rate, we can
potentially identify objective markers that correlate with the
subjective emotional states reported through DAMS.

Physiological data, collected through wrist-worn accelerometers,
can also provide an indirect measure of an individual’s
emotional state. Studies have demonstrated that mood disorders,
such as depression and anxiety, can influence an individual’s
activity levels and patterns [46]. Depression, for instance, has
been associated with reduced physical activity and increased
sedentary behavior [47]. By examining the activity data captured
by the accelerometers, we can explore potential correlations
between the objective measures of physical activity and the
subjective emotional states assessed by DAMS.

While speech and physical activity data do not directly measure
the emotional states captured by DAMS, they can offer
complementary and objective insights into an individual’s
mental well-being. By combining these different
modalities—self-reported mood, objective speech
characteristics, and objective physiological signal patterns—we
aim to develop a more comprehensive understanding of an
individual’s mental health status.

Self-Annotation
Self-annotation is a cornerstone in daily mental health
monitoring for important reasons such as capturing subjective
emotional experience and ecological validity. Using the MHIT
app, participants self-reported their emotional states 5 times
daily over 2 weeks, using the 9 emotional states outlined in
DAMS.

Capturing Subjective Emotional Experiences

Emotions are inherently subjective, and self-annotation allows
individuals to express their emotional states based on personal
experiences. This method ensures an authentic portrayal of their
mental state, which is crucial for accurate mental health
assessment.

Ecological Validity

By self-reporting in real-time within their usual environments,
participants provide data that more accurately reflect their
day-to-day emotional experiences, enhancing the ecological
validity of our study.

Data Preprocessing
In our research, the preprocessing of collected data was a critical
step for both speech and physical activity. This process involved
several stages, each tailored to the specific nature of the data
being processed.

Preprocessing of Speech Data
For speech data, audio files were standardized in terms of their
sampling rate and format for subsequent analysis.

Data Cleansing

Any recordings that were unsuccessful or contained data
anomalies were removed. This step was crucial to ensure the
integrity and quality of the speech dataset.
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Voice Activity Detection

We used algorithms to detect and eliminate silences in voice
recordings. This focus on active speech segments helped in
isolating meaningful data.

Denoising

Background noise within the recordings was reduced using
digital signal processing techniques. While the specific method
may vary depending on the characteristics of the noise and the
recording environment, common approaches include spectral
subtraction, Wiener filtering, or more advanced techniques such
as deep learning-based noise suppression algorithms [48].

Preprocessing of Physical Activity Data
The preprocessing of physical activity data includes the
following approaches.

Signal Cleaning

Similar to speech data, physical activity data were cleaned to
remove any erroneous signals.

Signal Standardization

The raw data from the physical activity sensors were
standardized to ensure consistency across different participants.

Normalization Process
The intensity ratings of the emotional states reported by
participants were normalized to a uniform scale ranging from
0 to 1.

Multimodal Multitask Analysis
In transitioning from data collection to the analysis of daily
mental health in our study, we shift our focus toward developing
a robust multimodal multitask analysis framework. The initial
step involves defining the analytical task, which in our case is
predicting various mental health indicators as outlined by
DAMS. To effectively achieve our goals in daily mental health
monitoring, we need to address three pivotal questions.

• How to fuse different modalities: specifically, how do we
integrate physical activities and speech data?

• How to achieve personalization: what strategies can we use
to tailor the analysis to individual participants?

• How to balance different emotional states: how can we
ensure that our analysis provides a balanced view of various
emotional states?

To respond to these questions, our approach involves the
introduction of a comprehensive framework architecture. We
plan to detail each component of this framework, starting with
multimodal fusion, then moving on to personalization, and
concluding with multitask balancing. This sequence is carefully
chosen by allowing multimodal fusion to initially integrate and
align different data types (physiological signals and speech)
after feature extraction, creating a whole picture of data for
further analysis. Personalization subsequently adapts this
integrated data to individual differences, ensuring the model
accurately represents each participant’s unique mental health
profile. The final stage, multitask balancing, refines the network
to efficiently manage multiple analytical tasks.

Framework
The proposed framework commences with a robust feature
extraction phase. For physiological signals, PIM and ZCM are
input into individual 2-layer feed-forward neural networks
(FFNNs). Concurrently, speech signals are preprocessed through
a specialized wav2vec-l-emo model [49], which is a pretrained
model. These speech features are then similarly processed by
a 2-layer FFNN. This standardization of feature dimensions
across modalities primes the data for integration.

The fusion of these data streams is executed through a DRUW
fusion block, effectively merging the standardized features from
physiological signals and speech. This fusion process not only
integrates the data but also applies DRUW fusion.

Upon fusion, the data advances into a specific emotional FFNN
and a transformer layer, means, the combined features into a
global emotional space. This space is not user-specific; rather,
it serves as a shared domain, namely, macro space.

Personalization is introduced at the micro stage. Here, the
framework uses additional FFNN layers tailored to individual
users, enabling the selection of embedding elements pertinent
to their unique emotional profiles. This adaptation leverages
DRUW loss.

DRUW Multimodal Fusion
A fundamental question in our study of mental health monitoring
is “how to fuse different modalities,” specifically the integration
of physical activity and speech data. To answer this, we have
developed the DRUW fusion method.

The DRUW fusion formula can be represented as follows.

where and are the uncertainty parameters for the physical

activity data and the speech data , respectively. The

term acts as a constraint, similar to in the DRUW loss,
the weighting of each modality in the fusion process is regulated,
ensuring that neither modality is disproportionately represented
in the fused data and maintaining a balanced integration. This
adjustment, based on the uncertainty and distinct characteristics,
ensures that each modality contributes appropriately to the
combined dataset. Meanwhile, the complementary nature of
these data types is capitalized upon by the DRUW fusion
method. Physical activity data provides objective, quantifiable
measures of movement and physiological responses, while
speech data offers subjective insights into emotional states and
mental well-being. Furthermore, a key advantage of the DRUW
fusion method is its straightforward implementation.

Macro-Micro Personalization
A key aspect of our multimodal analysis framework is the
implementation of macro-micro personalization.
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To quantitatively define the macro-micro personalization
approach, we can formulate the integration of the macro
emotional space with the micro personalization layer. This can
be represented as follows.

where represents the personalized output for the 

participant, denotes the embeddings or features extracted

from the macro emotional space, represents the

embeddings or features specific to the participant, and is a
weighting factor that determines the balance between the
influence of the macro and micro layers. It can be a fixed value
or adaptively determined based on factors such as the diversity
of the dataset or the specificity of the micro data.

Macro Emotional Space
Initially, we establish a macro emotional space that serves as a
common ground for all participants. This space is built using
FFNN-transformer embeddings, capturing generalized emotional
patterns and trends observed across the entire participant pool.
It reflects the shared aspects of emotional experiences and is
crucial for understanding the broader context of mental health
states.

Micro Personalization Space
After macro space, a micro layer is designed for each participant.
This layer allows for the customization of the model based on
microspecific data. It adapts the general insights from the macro
space to the nuances of each participant’s emotional profile.

DRUW Loss for Multitask
MTL is a crucial component in our study, particularly relevant
to the diverse nature of mental health monitoring. MTL is a
form of learning that involves training a model on several related
tasks simultaneously. This approach is underpinned by the
principle that “transfer should always be useful”; essentially,

any pair of tasks should share some commonalities in their
underlying distributions [50].

In addressing the critical challenge of “how to balance different
emotional states” in our study, we use the DRUW loss [29], a
solution developed in our previous work. This approach is
particularly crucial in the context of multitask learning, where
balancing the contribution of each task—especially when dealing
with a spectrum of emotional states—is key to the overall
model’s performance. This method allows for the adaptive
balancing of tasks, taking into account the varying degrees of
complexity and uncertainty inherent in each task. The equation
of the DRUW loss function is as follows.

Where and are uncertainty parameters corresponding to

different tasks in our model, with and representing

the respective task-specific loss functions. The inclusion of 
serves as a constraint, regulating the sum of these weights to
prevent trivial solutions and maintain the balance among tasks.

Evaluation

Experimental Setup
To construct a reliable evaluation scheme, the dataset is
partitioned into training, development, and test sets based on
time-dependent criteria, as outlined in Table 1. Given that the
dataset is collected over a 2-week period, we allocate the first
70% of the data from each participant to the training set. The
subsequent 15% forms the development set, and the remaining
15% constitutes the test set. This partitioning strategy ensures
that the evaluation is robust and reflects the temporal dynamics
of the data.

Table 1. Data partitioning.

SamplesData (%)Set

434070Training

93115Development

92915Test

Evaluation Metrics
In this study, the concordance correlation coefficient (CCC) is
used as a key evaluation metric. CCC considers both the scale
and location shifts between the predicted and actual data,
providing a comprehensive measure of the model’s predictive
performance. In our context, this metric is crucial for assessing
the accuracy of our model in reflecting the true emotional
experiences of participants.

The CCC is defined as follows.

Where represents the Pearson correlation coefficient between

the predicted and actual values, and are the SDs of the

predicted and actual values, respectively, and and are
their means.

Benchmark Model
To effectively evaluate our macro-micro framework, it is crucial
to establish a benchmark for comparison. This benchmark model

JMIR Ment Health 2024 | vol. 11 | e59512 | p. 7https://mental.jmir.org/2024/1/e59512
(page number not for citation purposes)

Song et alJMIR MENTAL HEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


consists of the following key components: pure concatenation
for modality fusion, 2-layer FFNN for presentation, and equal
weight strategy for MTL. This benchmark model, with its
straightforward concatenation, basic personalization, and
uniform task weighting, provides a solid foundation for
comparison.

Pure Concatenation for Modality Fusion

This approach linearly combines features from both physical
activity and speech data without weighting or transformation.

2-Layer FFNN for Personalization

We designed FFNN to adapt the concatenated features to get
personalized embeddings.

Equal Weight Strategy for MTL

In handling multiple tasks, we applied an equal weight strategy
across all tasks.

Comparison Methods

Multimodal Fusion Techniques
In our exploration of multimodal fusion techniques, we first
investigated the use of separate transformer embeddings for
each modality. This approach aimed to capture unique features
within physical activity and speech data independently before
combining them. The results indicate that while this method
was effective in isolating modality-specific characteristics, it
also necessitated sophisticated alignment strategies during the
fusion stage.

We also applied attention mechanisms, including solo attention
[51] and postconcatenation attention. These techniques allowed
the model to dynamically focus on the most informative features
from each modality. The solo attention mechanism, applied
before concatenation, proved particularly effective in enhancing
the model’s sensitivity to contextually relevant multimodal cues.

A more straightforward approach, the pure weighted method,
involved assigning fixed weights to each modality during fusion.
Despite its simplicity, this method displayed limitations in
adaptability, especially in scenarios where the relative
importance of each modality varied.

Besides, max fusion [52] was used to capture the most
significant features across modalities by taking the maximum
value across feature dimensions. This method was found to be
particularly useful in scenarios where the dominant features in
the data were more predictive of the outcome.

We tested gated fusion [53], which was designed for dynamic
control over the contribution of each modality based on the
data’s contextual information. This adaptability resulted in
improved performance, especially in complex scenarios where
the relevance of each modality changed.

Personalization Strategies
The FFNN was used as a baseline for personalization, adapting
concatenated multimodal features to individual profiles.
Comparatively, we used a transformer model without separate
emotional FFNN for personalization.

We also applied an adapter [54] to compare. The adapter method
involved integrating small, trainable modules into a pretrained
model. This approach facilitated efficient and effective
personalization without the need for extensive retraining.

MTL Approaches
Using a single embedding to produce outputs for multiple tasks
with equal weighting provided a baseline for multitask
performance. We also compared the pure weighted approach,
assigning fixed weights to each task, which showed some
improvements over the equal weight strategy but still lacked
the dynamic adaptability required for more complex multitask
scenarios. The architecture of the proposed model is given in
Figure 2.
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Figure 2. Macro-micro personalization framework for multimodal-multitask learning in mental health monitoring. W: weight; DRUW: Dynamic
Restrained Uncertainty Weighting; DRUWF: Dynamic Restrained Uncertainty Weighting Fusion; FFNN: feed-forward neural network. The framework
integrates physiological signals and speech data through feature extraction, DRUWF, macro layers with transformer encoder, and micro personalized
layers.

Model Training Procedure
All models in our study were trained over 100 epochs using
stochastic gradient descent with an initial learning rate set at
0.001, using a Nesterov momentum of 0.9 to enhance
convergence. The learning rate was adaptively reduced by a
factor of 0.9 if no improvement was observed on the
development set after 5 consecutive epochs, ensuring efficient
optimization. The training was conducted with a batch size of
16, balancing computational resources and model performance.
Additionally, a weight decay of 0.0001 was applied to prevent
overfitting. The final model configuration selected for evaluation
on the test set was the one yielding the best performance on the
development set, ensuring the reliability and robustness of our
results. Before producing the final output, we used a sigmoid
function to ensure that the predicted values ranged from 0 to 1.
This adjustment was necessary because our labels had been
normalized to a scale of 0 to 1.

Ethical Considerations
This study was approved by the Ethics Committee of the
University of Tokyo (21-353). The study participants provided
written informed consent.

Results

Overview
Our results first show CCC for various emotional dimensions
using different single-modal data types (physical activity and
audio), with and without personalization in Table 2. Our analysis
also investigated the efficacy of various multimodal fusion
techniques and their capacity for personalization in assessing
different emotional dimensions in Table 3. The multimodal

fusion approaches examined included basic, max fusion, gated
fusion, attention fusion, solo-attention fusion, cross-modal
attention, and a number of proposed methods. Each of these
techniques was also analyzed in conjunction with various
multitasking frameworks such as basic, transformer, adapter,
equal, multioutputs, and our proposed method. In comparison
between the 2 tables, multimodal results generally outperform
single-modal ones.

The results indicate a differential impact on the CCC across
emotional states and fusion methods. For instance, the max
fusion approach yielded a CCC of 0.451 for vigorous, which
was a notable improvement over the basic approach’s 0.415.
However, this method seemed less effective for gloomy, with
a CCC of 0.356. In contrast, the gated fusion technique exhibited
a more consistent performance across different emotional states,
with CCCs ranging from 0.277 for anxious to 0.537 for worried.

Of particular interest were the results from the proposed
methods, which showed promising CCC values across several
emotional states. The highest recorded CCC of the proposed
methods was for worried, with a value of 0.581. Conversely,
gloomy showed the lowest CCC at 0.377 using the same
proposed methods.

Overall, the mean CCC values across all emotional states
suggested that the proposed methods combined with our
proposed multitasking framework outperformed the other
techniques, achieving a mean CCC of 0.503. This mean value
was computed by averaging CCCs across all the emotional
states for each method. Notably, the proposed methods
consistently yielded CCC values above the overall mean,
underscoring their potential for enhancing emotion recognition
tasks in multimodal settings.
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In conclusion, our results underscore the importance of choosing
the appropriate fusion and multitasking methods to maximize
the agreement between predicted and actual emotional states.

The proposed methods, when tailored for individual emotional
dimensions, demonstrate significant promise for personalization,
which is a critical aspect of effective emotional state prediction.

Table 2. CCCa for various emotional dimensions using different single-modal data types (physical activity and audio), with and without personalization.
The emotional dimensions covered are vigorous, gloomy, concerned, happy, unpleasant, anxious, cheerful, depressed and worried.

Mean

(SD)b
WorriedDepressedCheerfulAnxiousUnpleasantHappyConcernedGloomyVigorousSingle model and

personalization

ZCMc

0.281
(0.069)

0.3340.2820.2240.1790.3640.3410.3250.1870.287No

0.441
(0.071)

0.5350.4540.3220.3490.4870.4850.4990.4260.407Yes

PIMd

0.225
(0.121)

0.2910.3020.0060.2440.3740.2510.3680.1420.130No

0.341
(0.172)

0.5370.4930.0510.2720.4890.3680.4990.3150.145Yes

Speech

0.281
(0.069)

0.3340.2820.2240.1790.3640.3410.3250.1870.287No

0.441
(0.071)

0.5350.4540.3220.3490.4870.4850.4990.4260.407Yes

aCCC: concordance correlation coefficient.
bThe “Mean” column represents the average CCC across the emotional dimensions.
cZCM: zero crossing mode.
dPIM: proportional integration mode.
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Table 3. CCCa for various emotional dimensions, measured using participant-dependent partitions on our dataset. The table also demonstrates the
effectiveness of different fusion methods and indicates whether personalization was used. The emotional dimensions covered are vigorous, gloomy,
concerned, happy, unpleasant, anxious, cheerful, depressed, and worried.

Mean

(SD)b
WorriedDe-

pressed
Cheer-
ful

AnxiousUnpleas-
ant

HappyCon-
cerned

GloomyVigorousMultitaskPersonaliza-
tion

Multi-
modal fu-
sion

0.416
(0.099)

0.5140.4720.3040.2120.4990.4520.4690.4040.415BasicBasicBasic

0.428
(0.067)

0.5090.4210.3250.3560.5010.4650.4640.3560.451BasicBasicMax fusion

0.431
(0.086)

0.5370.4460.3170.2770.4970.4730.4950.4170.417BasicBasicGated fu-
sion

0.435
(0.102)

0.5740.4470.3170.3860.5540.4130.5240.2810.414BasicBasicAttention
fusion

0.434
(0.082)

0.5400.4700.2980.3940.5130.4670.4880.3370.403BasicBasicSolo-atten-
tion fusion

0.447
(0.084)

0.5270.4630.3230.2680.4970.4550.4830.4430.436BasicBasicCross-
modal at-
tention

0.449
(0.069)

0.5560.4650.3220.4690.4880.4350.5040.4010.393BasicBasicProposed

0.466
(0.09)

0.5780.4210.3250.5380.5480.4700.5470.3300.434BasicTrans-
former

Basic

0.472
(0.098)

0.5860.4320.3200.5430.5490.4630.5540.3290.457BasicAdapterBasic

0.484
(0.080)

0.5850.4410.3510.5570.5440.4620.5540.4010.460BasicProposedBasic

0.431
(0.090)

0.5630.3810.2980.4460.5110.4360.5210.3210.420EqualBasicBasic

0.454
(0.067)

0.5310.4670.3240.4690.5260.4700.4930.3990.407Multiout-
put

BasicBasic

0.466
(0.095)

0.5790.4220.3250.5380.5480.4700.5470.3300.434ProposedBasicBasic

0.489
(0.091)

0.5890.4190.3640.5810.5560.5220.5640.3890.414BasicProposedProposed

0.497
(0.079)

0.5830.4240.3580.5810.5540.5190.5490.4500.454ProposedProposedBasic

0.469
(0.091)

0.5430.4370.2960.5730.5540.4660.5250.3770.449ProposedBasicProposed

0.503
(0.075)

0.5810.4200.3730.5810.5540.5380.5490.4640.464ProposedProposedProposed

aCCC: concordance correlation coefficient.
bThe “Mean” column represents the average CCC across the emotional dimensions.

Statistical Validation
We also conducted a statistical analysis to complement the CCC
results from our deep learning model, crucial for validating the
model’s reliability and generalizability across different datasets
and conditions. Our mixed linear model analysis [55], presented
in Table 4, reveals 2 critical insights. First, the highly significant
within-individual associations (Q) across 9 emotional scales
underscore the model’s capability to capture nuanced emotional
responses, indicating its robust predictive power. Second, the

observation of group and residual variances highlights the
variability that the model does not account for, signaling areas
that require further refinement. This unexplained variability
invites a deeper investigation into potential factors, such as the
model’s sensitivity to specific data characteristics or the
necessity for incorporating a more diverse range of training
data. Understanding these elements can guide targeted
improvements in the model’s architecture and training process,
ultimately enhancing its accuracy and applicability in
personalized mental health monitoring.
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Table 4. Mixed linear model regression results for emotional dimensionsa.

Residual vari-
ance

Group vari-
ance

95% CIP value>|z|z scoreSERegression coeffi-
cient

InterceptEmotional dimen-
sion

0.0570.0390.399-
0.698

<.0017.1760.0760.5490.155Vigorous

0.0670.0230.482-
0.733

<.0019.5120.0640.6070.087Gloomy

0.0570.0430.356-
0.644

<.0016.8130.0730.5000.153Concerned

0.0640.0300.295-
0.598

<.0015.7710.0770.4460.236Happy

0.0610.0280.501-
0.760

<.0019.5340.0660.6300.071Unpleasant

0.0610.0350.439-
0.716

<.0018.1770.0710.5770.127Anxious

0.0720.0220.333-
0.621

<.0016.4750.0740.4770.210Cheerful

0.0620.0210.529-
0.765

<.00110.7580.0600.6470.044Depressed

0.0520.0480.390-
0.688

<.0017.0970.0760.5390.138Worried

aThe table summarizes the intercept, regression coefficients, standard errors, z scores, P values, CIs, group variances, and residual variances for each
emotion studied. The emotional dimensions covered are vigorous, gloomy, concerned, happy, unpleasant, anxious, cheerful, depressed, and worried.

Discussion

Overview
This study introduces a novel dataset and a macro-micro
framework for personalized daily mental health monitoring,
leveraging multimodal and MTL strategies. The results
demonstrate the efficacy of our approach in predicting emotional
states, with a mean CCC of 0.503 across 9 emotional
dimensions.

The proposed macro-micro framework, which combines
macro-level emotion transformer embeddings with micro-level
personalization layers, shows superior performance compared
to traditional approaches. This suggests that incorporating both
general emotional patterns and individual-specific adaptations
is crucial for accurate mental health monitoring. The
effectiveness of our DRUW fusion method in integrating
multimodal data further underscores the importance of adaptive
weighting strategies in handling diverse data types.

Our findings align with previous studies highlighting the
potential of multimodal approaches in mental health monitoring.
However, our work extends beyond existing research by
incorporating personalization at both macro and micro levels,
addressing a critical gap in current mental health technology.

The high significance of within-individual associations across
emotional scales, as revealed by our mixed linear model
analysis, validates the model’s capability to capture nuanced
emotional responses. This has important implications for the
development of personalized mental health interventions, as it
suggests that our model can detect subtle changes in an
individual’s emotional state over time.

However, the observed group and residual variances in our
statistical analysis indicate that there is still unexplained
variability in emotional states. This highlights a limitation of
our model and suggests that additional factors, not captured in
our framework, may influence daily emotional states. These
could include external stressors, social interactions, or
physiological factors not measured in our study.

Another limitation is the reliance on self-reported emotional
states, which, while valuable for capturing subjective
experiences, may be subject to reporting biases. Future research
could explore the integration of objective measures of emotional
state, such as facial expression analysis or additional
physiological markers, to complement self-reports.

Looking ahead, several avenues for future research emerge from
our findings. First, expanding the dataset to include a more
diverse range of participants and longer monitoring periods
could enhance the generalizability of our model. Second,
investigating the incorporation of additional modalities, such
as sleep patterns or social media activity, could provide a more
comprehensive picture of mental health. Finally, exploring the
application of our framework in clinical settings could help
bridge the gap between research and practical mental health
interventions.

Conclusions
In conclusion, this study introduces a groundbreaking dataset
and a macro-micro framework that significantly advances
personalized daily mental health monitoring. By leveraging
multimodal and MTL strategies, we have demonstrated a robust
model capable of predicting emotional states. The statistical
analysis further validates the model’s reliability, highlighting
its potential for wider application in the mental health domain.
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Moving forward, our focus will be on expanding the dataset,
incorporating additional modalities, and refining our model to
address these variances, with the ultimate goal of making daily

mental health monitoring a more accessible, nonintrusive, and
personalized practice.
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