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Abstract
Global rates of mental health concerns are rising, and there is increasing realization that existing models of mental health
care will not adequately expand to meet the demand. With the emergence of large language models (LLMs) has come great
optimism regarding their promise to create novel, large-scale solutions to support mental health. Despite their nascence, LLMs
have already been applied to mental health–related tasks. In this paper, we summarize the extant literature on efforts to use
LLMs to provide mental health education, assessment, and intervention and highlight key opportunities for positive impact
in each area. We then highlight risks associated with LLMs’ application to mental health and encourage the adoption of
strategies to mitigate these risks. The urgent need for mental health support must be balanced with responsible development,
testing, and deployment of mental health LLMs. It is especially critical to ensure that mental health LLMs are fine-tuned
for mental health, enhance mental health equity, and adhere to ethical standards and that people, including those with lived
experience with mental health concerns, are involved in all stages from development through deployment. Prioritizing these
efforts will minimize potential harms to mental health and maximize the likelihood that LLMs will positively impact mental
health globally.
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Introduction
Globally, half of all individuals will experience a mental
health disorder in their lifetimes [1], and at any given point,
1 in 8 people are experiencing a mental health concern
[2]. Despite greater attention provided in the recent years
to mental health, the rate of mental health concerns has
increased [2,3], and access to mental health care has not
expanded to adequately meet the demand [4]. In the United
States alone, the average time between the onset of mental
health symptoms and treatment is 11 years [5], and nearly
half of the global population lives in regions with a shortage
of mental health professionals [2].

To overcome inadequate access to effective and equitable
mental health care, large-scale solutions are needed. The
emergence of large language models (LLMs) brings hope

regarding their application to mental health and their potential
to provide such solutions due to their relevance to mental
health education, assessment, and intervention. LLMs are
artificial intelligence models trained using extensive data
sets to predict language sequences [6]. By leveraging huge
neural architectures, LLMs can organize complex and abstract
concepts. This enables them to identify, translate, predict,
and generate new content. LLMs can be fine-tuned for
specific domains (eg, mental health) and enable interactions
in natural language, as do many mental health assessments
and interventions, highlighting the enormous potential they
have to revolutionize mental health care. In this paper, we
first summarize the research done to date applying LLMs to
mental health. Then, we highlight key opportunities and risks
associated with mental health LLMs and put forth suggested
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risk mitigation strategies. Finally, we make recommendations
for the responsible use of LLMs in the mental health domain.

Applications of LLMs to Mental
Health
Overview
Initial tests of LLMs’ capabilities across mental health
education, assessment, and intervention are promising. When
considering this literature base, which we review next,
it is important to first distinguish between general-pur-
pose, consumer LLMs (eg, ChatGPT [OpenAI] and Gem-
ini [Google]) and domain-specific LLMs (eg, Med-LM
[Google]). General-purpose LLMs are trained on large
corpora of text and are designed to perform a wide range
of tasks. Domain-specific LLMs, on the other hand, typically
build upon general-purpose LLMs through various strategies
of fine-tuning with curated data to complete tasks within an
area of focus. Given that general-purpose LLMs are largely
trained with unrestricted text, they risk generating inaccurate,
biased, stigmatizing, and harmful information about mental
health. Developers of domain-specific LLMs can mitigate
some of this risk by incorporating strategies during fine-tun-
ing and evaluation such as using high-quality evidence-based
information and attribution techniques [7], but it remains
difficult to remove all possible risk from LLM-generated
content. Given these important distinctions, in the paper that
follows we clarify when findings are specific to general-pur-
pose versus domain-specific LLMs where possible.
Education
One area of opportunity for LLMs in the mental health
domain is to provide education about mental health (see
Figure 1) [8]. Although lagging behind the success of LLMs
in the medical domain [9], there is evidence that LLMs
are capable of generating accurate, helpful, and immediate
mental health information. The psychological support with
LLM (Psy-LLM), for example, is a domain-specific LLM
designed to answer mental health questions [10]. Psy-LLM
was pretrained with a data set of psychology articles,
question-answer pairs from psychologists, and by crawling
social media platforms. The model achieved moderate levels
of helpfulness, fluency, relevance to the question asked, and
logic based on human ratings of Psy-LLM responses.

The abilities of general-purpose LLMs to answer questions
about mental health has also been evaluated. Sezgin et al
[11] compared Google Search, GPT-4 (using ChatGPT),
and LaMDA (using Bard [Google DeepMind]) responses to
questions about postpartum depression relative to responses
from an American College of Obstetricians and Gynecolo-
gists (ACOG) frequently asked questions document. Board-
certified human physicians rated ChatGPT responses as more
in line with ACOG responses than Bard or Google Search
responses, and on average, ChatGPT responses were rated
at near ceiling for clinical accuracy, scoring a 3.93 out of
a possible 4. Importantly, however, general-purpose LLMs
differ in their policies regarding the generation of medical or
mental health advice. Bard’s accuracy ratings were impac-
ted by Bard’s policy to advise consulting a health care
provider when asked questions about mental health. This
practice protects individuals from potential harm, though such
responses received lower ratings of quality in this study.

LLM-generated answers to mental health questions may
not be comparable to human-generated answers, however.
It is critical for LLMs to meet or exceed human perform-
ance in order for LLMs to be trusted and to ease the
demand for human providers. In the case of Psy-LLM and
ChatGPT, there is evidence that responses to mental health
and substance use questions fall short of human-generated
responses in dimensions such as accuracy, quality, and
alignment with evidence-based practice (EBP) [10,12].

Another way that LLMs may serve to educate is to
support provider training. Barish et al [13] used ChatGPT
to generate content and associated learning objectives for an
online learning platform for behavioral health professionals.
Researchers compared the time providers needed to write
their own content versus the time needed to edit ChatGPT-
generated content, finding that using ChatGPT improved
provider efficiency by 37.5%. LLMs can also be leveraged
to train providers to optimize interactions with their patients.
As two examples, Chan and Li [14] developed a chatbot
trained to mimic a patient capable of describing their mental
health symptoms in colloquial terms, and Sharma et al [15]
used artificial intelligence to coach peer support providers to
increase empathetic responding. These approaches illustrate
ways that LLMs can support provider training and potentially
enhance provider efficacy without providers becoming reliant
on LLMs for in the moment critical thinking or decision-mak-
ing.
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Figure 1. Potential opportunities for LLMs in mental health education. CBT: cognitive behavioral therapy; EST: empirically supported treatment;
LLM: large language model.
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Assessment
A second function of LLMs within the domain of mental
health is to assess mental health symptoms, identify diag-
noses, and track changes in mental well-being (see Figure
2). LLMs can at times predict mental health symptoms and
diagnoses accurately. Ji et al [16] initially developed two
domain-specific models, MentalBERT and MentalRoBERTa,
pretrained on mental health information. Compared with
existing models pretrained in different domains, specifically
clinical notes and biomedicine, MentalBERT and MentalRo-
BERTa were generally better able to detect depression and
suicidal ideation from social media posts (notably, these
results were achieved with Bidirectional Encoder Repre-
sentations From Transformers [BERT]-based models that
represent early-genderation LLMs, with newer models and
architectures demonstrating potential for even more advanced
capabilities). LLMs such as Mental-Alpaca, a mental health
domain–specific LLM, Med-PaLM 2, a medical domain–
specific LLM, and ChatGPT, which is general-purpose, have
also been shown to screen for possible depressive symptoms
and suicide risk, with varying degrees of accuracy [17-20].

When it comes to predicting mental health diagnoses
specifically, there is evidence that Med-PaLM 2 can do
so accurately. When presented with a series of case
studies from the American Psychiatric Association book
of DSM-5 (Diagnostic and Statistical Manual of Mental
Disorders, Fifth Edition) case examples [21], Med-PaLM
2 predicted the correct diagnosis 77.5% of the time, and
performance increased to 92.5% when asked to specify
the correct diagnostic category (eg, depressive disorder vs
major depressive disorder) [20]. Similarly, when PaLM 2
was fine-tuned with medical domain data and optimized
for differential diagnosis, the model was able to generate
more appropriate and comprehensive lists of diagnoses than

specialist medical doctors in response to challenging case
studies, some of which involved psychiatric diagnoses [22].

LLM-predicted assessments do not, however, always
match those of human mental health clinicians, suggesting
that more work is needed before LLMs can engage in
assessment without human oversight. In one study [23], four
iterations of a case vignette [24] were presented to ChatGPT.
Each vignette varied in levels of perceived burdensomeness
and thwarted belongingness—two primary risk factors for
suicide [25,26]. ChatGPT appropriately determined that the
risk for suicidal ideation and suicide attempts was highest
for the vignette with both high perceived burdensomeness
and high thwarted belongingness, but it predicted lower
suicide risk overall than did mental health professionals who
reviewed the same vignettes. Med-PaLM 2 also at times
does not achieve human clinician-level performance. The
model predicted more severe posttraumatic stress disorder
symptoms than human clinicians from clinical interview data,
classified possible cases of posttraumatic stress disorder with
high specificity (0.98) but low sensitivity (0.30), and the
model only correctly predicted whether a case example had
a comorbid diagnosis or diagnostic modifier 20% of the time
[20].

In all the efforts described thus far, LLMs had been
provided with information about symptoms and tasked with
determining whether those symptoms indicated a possible
mental health concern or diagnosis. LLMs also may be
leveraged to ask the questions needed to screen for a mental
health concern or to predict a mental health diagnosis.
Chan and Li [14] developed a chatbot trained to engage
in mental health assessment with patients. Compared with
human psychiatrists, the chatbot displayed more empathy and
asked more thorough questions about some symptoms (eg,
sleep), but was less likely to rule out associated conditions.
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Figure 2. Potential opportunities for LLMs in mental health assessment. LLM: large language model.

Intervention
A third opportunity for LLMs in the mental health domain
is to implement mental health interventions (see Figure
3). To date, such efforts have largely focused on chat-
bots. Prominent chatbots, some of which are LLM-based,
include Woebot [27], Wysa [28], Tess [29], Replika [30],
Ellie [31], and Sibly [32]. Many of these chatbots were
trained in empirically supported treatments such as cogni-
tive behavioral therapy, dialectical behavior therapy, and
motivational interviewing. There is initial evidence that
such chatbots may be effective in reducing depressive
and anxiety symptoms, as well as stress [33-36]. Addition-
ally, research finds that chatbots can be trained to express
empathy [37-39], provide nonjudgmental responses [40], and

maintain therapeutic conversations [14] and that individuals
can establish therapeutic rapport with chatbots [41].

Caution is warranted when using chatbots to deliver
mental health interventions. To date, chatbots are not
effective in treating all types of mental health distress [36]
and at times have difficulty personalizing interventions [38],
forget information (eg, that they had talked with someone
previously) [37], and provide nontherapeutic and iatrogenic
advice including encouraging substance use, dieting, and
weight loss [40,42,43]. Also concerning is that chatbots do
not consistently or adequately respond to suicide risk, at times
being dismissive and neglecting to provide crisis resources or
referals to human providers [38,44].

JMIR MENTAL HEALTH Lawrence et al

https://mental.jmir.org/2024/1/e59479 JMIR Ment Health 2024 | vol. 11 | e59479 | p. 5
(page number not for citation purposes)

https://mental.jmir.org/2024/1/e59479


Figure 3. Potential opportunities for LLMs in mental health intervention. CBT: cognitive behavioral therapy; EBP: evidence-based practice; LLM:
large language model.
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Risks Associated With Mental Health
LLMs
Overview
To maximize the positive impact of LLMs on mental health,
LLM development, testing, and deployment must be done
ethically and responsibly (see Textbox 1). This requires
identification and evaluation of risks, taking preemptive

steps to mitigate risks, and establishing plans to monitor
for ongoing or new and unexpected risks [45,46]. It is also
important to recognize that the risks associated with the use of
LLMs for mental health support may differ across education,
assessment, and intervention (see Table 1). Here, we highlight
primary risks that largely cut across uses of LLMs for mental
health-related tasks and identify potential steps that can be
taken to mitigate these risks.

Textbox 1. Recommendations for responsible use of LLMs to support mental health.
• LLMs should only engage in mental health tasks when trained and shown to perform well.
• Mental health LLMs should advance mental health equity.
• Privacy or confidentiality should be paramount when LLMs operate to support mental health.
• Informed consent should be obtained when people engage with mental health LLMs.
• Mental health LLMs should respond appropriately to mental health risk.
• Mental health LLMs should only operate within the bounds of their competence.
• Mental health LLMs should be transparent and capable of explanation.
• Humans should provide oversight and feedback to mental health LLMs.

Table 1. Potential risks to people when LLMsa engage in mental health education, assessment, and intervention.b
Mental health education Mental health assessment Mental health intervention

Perpetuate inequalities, disparities, and stigma Medium Higher Higher
Unethical provision of mental health services

Practice beyond the boundaries of competence Lower Higher Higher
Neglect to obtain informed consent Lower Higher Higher
Fail to preserve confidentiality or privacy Lower Higher Higher
Build and maintain inappropriate levels of trust Lower Medium Higher

Lack reliability Lower Higher Higher
Generate inaccurate or iatrogenic output Medium Higher Higher
Lack transparency or explainability Lower Medium Medium
Neglect to involve humans Lower Medium Higher

aLLM: large language model.
bThis table aims to represent the potential for negative impacts on individuals should LLMs perform problematically across mental health education,
assessment, and intervention. As depicted here, there may be additional risks to consider when LLMs engage in direct provision of mental health
assessment and, perhaps especially, mental health intervention, relative to mental health education. As such, greater caution is warranted when
considering use of LLMs for mental health interventions, and rigorous testing is needed before deployment of these LLMs. Risk estimates provided
here are not meant to represent the risk associated with every possible LLM use case nor to minimize the negative impacts that are possible (eg, if
LLMs were to perpetuate stigma when engaging in mental health education).

Perpetuating Inequalities, Disparities,
and Stigma
There exists the risk that LLMs perpetuate inequities and
stigma, further widening mental health disparities [47].
Mental health concerns are highly stigmatized [48], and there
are disparities in who is at risk for mental health concerns,
in who is diagnosed with mental health disorders, and with
which mental health disorders people are diagnosed [49-51].
There are also inequities in who receives mental health
care [52,53]. Much of the publicly available information
and discourse about mental health contains inaccurate and
stigmatizing information about mental health, and the existing
research literature on mental health largely represents the
perspectives of people who are White, are educated, are of
high socioeconomic status, and speak English [54]. Far less
information is available about the etiology of mental health

concerns and effective assessments and interventions for
populations that have been pushed to the margins. Training
LLMs on existing data without appropriate safeguards and
thoughtful human supervision and evaluation can, therefore,
lead to problematic generation of biased content and disparate
model performance for different groups [45,55-57] (of note,
however, there is some evidence that clinicians perceive less
bias in LLM-generated responses [58] relative to clinician-
generated responses, suggesting that LLMs may have the
potential to reduce bias compared to human clinicians).

LLMs should disseminate accurate, destigmatizing
information about mental health and be trained to identify
and combat stigma and discrimination. To do so, models
need to be fine-tuned and evaluated for the mental health
domain. Training models with data representative of the
diverse populations being served is helpful, but new types
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of bias, such as semantic biases, may arise in LLMs [59].
Opportunities to train models to identify and exclude toxic
and discriminatory language should be explored, both during
the training of the underlying foundation models and during
the domain-specific fine-tuning (see Keeling [59] for a
discussion of the trade-offs of data filtration in this context)
[45]. If LLMs perform differently for different groups or
generate problematic or stigmatizing language during testing,
additional model fine-tuning is required prior to deployment.
Individuals developing LLMs should be transparent about
the limitations of the training data, the approaches to data
filtration and fine-tuning, and the populations for whom LLM
performance has not been sufficiently demonstrated.

There is also hope that LLMs can be scaled to increase
people’s access to mental health information, assessment, and
treatment. LLMs have the potential to support delivery of
mental health interventions in regions where access to mental
health providers is limited and where significant barriers
(eg, cost) exist. They can additionally help to personalize
treatments to better fit people’s unique preferences, inter-
ests, identities, and language, hopefully improving treatment
outcomes. LLMs may support increased access through more
direct provision of mental health services, or LLMs can
aid the expansion of the mental health workforce, training
novice providers and community members in EBP at scale.
There will undoubtedly be challenges in implementing and
scaling LLMs globally. Revising and testing implementation
frameworks for this new and evolving context and engage-
ment in thoughtful public health and industry partnerships
could all increase the likelihood that when mental health
LLMs are scaled globally, implementation is sustained and
best supports the populations most in need.
Failing to Provide Mental Health Services
Ethically
A second risk is that LLMs will engage in unethical prac-
tices. When human mental health providers behave unethi-
cally, harm is done to patients and public trust is eroded
[60]. LLMs will similarly do harm if they are not designed
and implemented in consideration of and are not consistent
with relevant ethical principles and standards when operating
in the domain of mental health. Core ethical principles in
the health care context include beneficence, nonmaleficence,
justice, and autonomy [61]. Next, we highlight additional
standards of ethical professional conduct that should apply
when LLMs engage in mental health service provision (see
the American Psychological Association Ethical Principles
of Psychologists and Code of Conduct for parallel ethical
principles and standards).

LLMs should operate within the boundaries of their
competence and only engage in mental health tasks they have
rigorously been proven to accomplish well. LLM developers
should clearly communicate the limits and relevant evaluation
results of LLMs, education should be provided to individuals
about when it is and is not appropriate to use LLMs, and
LLMs should withhold output when they are not competent in
a task. LLM competence should be assessed and maintained
over time. When competence is lacking in a certain domain,

the LLM should no longer be deployed until the needed
competence is gained (eg, via retraining and fine-tuning
models with human validation).

Individuals should provide informed consent when
interacting with mental health LLMs. They should be fully
informed about the nature of mental health services they
will receive and what role LLMs will have in that service.
Information presented to individuals to help make decisions
about consent should be understandable and include the
possible risks and benefits of engaging with LLMs. Individu-
als should have the ability to choose not to consent to the
use of LLMs in the direct provision of their mental health
care, as well as the ability to withdraw their consent and opt
out of the use of LLMs even if consent was initially given.
As LLMs become further integrated into health care contexts,
care should be taken to ensure that clients’ decisions to opt
out of LLM involvement or to confine LLM involvement to
less direct (eg, administrative) tasks do not limit their access
to mental health care.

Confidentiality should be protected when individuals
interact with LLMs to support their mental health. Indi-
viduals should be clearly informed about expectations for
confidentiality. This should include information about the
limits of confidentiality (eg, in the case of imminent risk
for suicide), the foreseeable uses of information generated
through engagement with LLMs, where and how their data
are stored, and whether it is possible to delete their data.
Policies related to data security should be strict and in line
with relevant mental health data protection regulations [34].
Solutions such as developing on-device storage that does not
require transmission of personal data [62] or systems with
robust cloud-based encryption, pursuing LLMs that support
compliance with relevant data protection laws (eg, Health
Insurance Portability and Accountability Act [HIPAA]), and
responsibly aggregating and deidentifying mental health data
to fine-tune and test models all help to protect confidentiality.

Human mental health providers establish trusting
relationships with those with whom they work and are
obligated to ensure that the nature of the trusting provider-
patient relationship does not lead to exploitation or harm.
Appropriate trust is built through effective mental health
assessment and treatment and, perhaps even more crucially,
ethical practice. Trust should be evaluated through feedback
from individuals engaged with LLMs. If and when trust is
broken, this should be acknowledged and work should be
done to repair trust. On the other hand, people may trust
LLMs more than is warranted because of LLMs’ ability to
produce humanlike natural language and to be trained to
express emotion and empathy (this may especially be the
case for individuals experiencing mental health concerns such
as anxiety [63]) [64]. Unearned trust can have consequen-
ces, leading people to disclose personal information or trust
content generated by LLMs even when it is not accurate.
Education should be provided about the limits of LLMs and
individuals should be cautioned against blanket trust in these
models.
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Insufficient Reliability
A third risk is that LLMs will not generate reliable or
consistent output. When prompted to complete the same
task or provide an answer to the same question multiple
times, LLMs at times produce different responses [46,65].
Varied and creative output is a benefit of LLMs; however,
the underlying response should be consistent even when
articulated in different ways. Take for example an LLM
repeatedly presented with a client’s description of depressive
symptoms. The LLM should reliably reach the conclusion
that the client meets the criteria for major depressive disorder
even if this diagnostic conclusion is communicated to the
client using different phrasing. Issues of low reliability of
LLMs can erode trust and increase the possibility of harm,
including leading some individuals to be misdiagnosed or
to pursue treatments that are not best suited to their mental
health concern.

LLM reliability should be measured and enhanced.
Prompting approaches may help to improve LLM reliabil-
ity. Self-consistency [66] and ensemble refinement [9] are
strategies that sample multiple model answers to arrive at
a more consistent response, improving model reliability [9].
Grounding models in data other than linguistic descriptions of
symptoms (eg, objective behavioral or physiological signals)
is another way of reducing variability in LLM performance,
as words alone may not fully capture all of the necessary
information to complete a given mental health task [67].
Finally, LLMs should not be deployed until they exceed
prespecified thresholds of adequate reliability.
Inaccuracy
LLMs risk producing inaccurate information about men-
tal health [46,68]. If LLMs are trained on data that con-
tain inaccurate or outdated information, iatrogenic treatment
options, or biased representations of mental health, that
information can be reproduced by LLMs [45]. An additional
consideration is that accuracy of LLM outputs has multiple
dimensions and is not as simple to evaluate as answers to
multiple-choice questions. Accuracy can be a function of
how factual an answer is, how specific it is, or how devoid
of irrelevant information it is. Generating inaccurate mental
health information may be more damaging than no informa-
tion, especially when it may be difficult for an individual to
detect inaccuracies or inconsistencies (eg, about a complex
mental health diagnosis).

Standards for accuracy should be defined a priori and
should be high. When thresholds for LLM accuracy are
not met, the risk of harm is too high and LLMs should
not generate output. The accuracy of LLMs depends on
the quality of data the model is trained and fine-tuned on
[47,69,70]. LLMs should be adapted to the domain of mental
health; models fine-tuned on mental health data perform
better than models trained on non-domain-specific data [42]
or general medical domains [16]. When data are limited, it
is recommended that smaller but more variable data sets be
prioritized over a larger single data set [19]). Training data
should be highly curated, be grounded in authoritative and

trusted sources, be specific to evidence-based health care, and
represent diverse populations [46,58]. In mental health, the
nature of consensus is continuing to evolve, and the amount
of data available is continuing to increase, which should
be taken into account when considering whether to further
fine-tune models. Strategies such as implementing a Retrieval
Augmented Generation system, in which LLMs are given
access to an external database of up-to-date, quality-verified
information to incorporate in the generation process, may
help to improve accuracy and enable links to sources while
also maintaining access to updated information. Accuracy
of LLMs should be monitored over time to ensure that
model accuracy improves and does not deteriorate with new
information [45].

Measuring the accuracy of mental health LLMs is
complex. It is not sufficient for models to merely outperform
previous models. Rather, performance of LLMs should be
compared with the performance of human clinicians, both of
which should be compared against gold-standard, evidence-
based care. When LLMs are tasked with mental health
evaluation, their ability to predict scores on reliable and valid
mental health assessments should be tested, and LLMs should
meet human clinician performance in diagnostic accuracy.
When LLMs are tasked with aiding mental health intervention
delivery, their ability to detect, support, and engage in EBP
is critical. Additional criteria to consider when evaluating the
accuracy of LLMs include the level of agreement between
human clinicians and LLMs, metrics of effect size rather than
only statistical significance, and the balance of sensitivity and
specificity in making diagnostic predictions.

LLMs should communicate confidence in the accuracy
of generated output and limit or withhold output when
confidence is lacking [58]. As an example, Med-PaLM 2’s
accuracy improved when results were weighted based on
confidence scores and when a cutoff threshold was set for
confidence [20]. Communicating confidence in generated
output and withholding output when confidence is low both
help to enhance transparency and trust in LLMs’ ability to
perform on mental health tasks and to limit potential harms
associated with generating inaccurate information.

Prompt fine-tuning can boost LLM accuracy [9,19,58].
When applied to mental health, instruction fine-tuning
improved performance of Mental-Alpaca relative to zero-
shot and few-shot prompting and allowed Mental-Alpaca
to reach a performance level across multiple mental health
tasks (eg, identifying stress and classifying individuals as
depressed or not based on Reddit posts) similar to that of
Mental-RoBERTa, a task-specific model [19]. Prompting to
concentrate on the emotional clues in text was also shown
to improve ChatGPT performance on a variety of mental
health-related tasks [71]. Conversely, however, instruction
prompt fine-tuning can also increase inaccurate or inappropri-
ate content [55]; thus, LLMs should continue to be evaluated
for accuracy at all stages of prompt tuning.
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Lack of Transparency and Explainability
LLMs risk generating output without being able to explain
how they came to the decisions they did or without being
able to identify the source of information used to generate
the output [72]. There remains much that is not known about
how LLMs generate reasoning for their responses and how
sensitive these reasons are to context and prompting. It should
be apparent when information is generated using LLMs,
how LLMs were developed and tested, and whether LLMs
are general-purpose or fine-tuned for the domain of mental
health [46,58,68]. Additional steps to enhance transparency
include explicitly telling individuals to exercise caution when
interpreting or acting on LLM output and being clear about
the bounds of LLMs’ competence [39].

Explainability, one aspect of transparency, was identified
as a key priority by individuals engaged in mental health
LLMs [39]. If asked to explain why they decided on a mental
health diagnostic prediction or intervention, LLMs should
explain what information was used to come to that decision.
ChatGPT has been shown to be able to explain why an
individual was classified as experiencing stress or depres-
sive symptoms [71], and Med-PaLM 2 communicated why
it predicted a particular symptom score and diagnosis [20].
Although LLMs are capable of producing plausible explana-
tions through techniques such as chain-of-thought reasoning
[73], more research is needed to ensure that explanations
are internally consistent. Explainability is perhaps especially
beneficial in the domain of mental health, as part of mental
health assessment and intervention is communicating results
of an evaluation or justification for an intervention to patients.
Neglecting to Involve Humans
There are risks associated with LLMs providing anonymous
mental health services. Unlike mental health apps, where
content can be highly curated, the content generated by LLMs
is unpredictable. This makes interacting with LLMs more

engaging, more appealing, and perhaps also more human-
like. However, it also increases the risk that LLMs may
produce harmful or nontherapeutic content when tasked with
independently providing mental health services. Legal and
regulatory frameworks are needed to protect individuals’
safety and mental health when interacting with LLMs, as
well as to clarify clinician liability when using LLMs to
support their work or to clarify the liability of individuals
and companies who develop these LLMs. There are ongoing
discussions regarding the regulation of LLMs in medicine
[74-76] that can inform how LLMs can support mental health
while limiting the potential for harm and liability.

Humans should be actively involved in all stages of
mental health LLM development, testing, and deployment.
For mental health LLMs to be effective, rigorous, and
ongoing, human supervision and input are needed (see Figure
4) [46]. Reinforcement learning through human feedback
can improve model accuracy and uncover problematic LLM
responses [14,42]. This feedback should be obtained from
individuals who reflect the diverse populations the LLM
aims to help, including members of the public, patients, and
human clinicians [9,14,34,58,68,77,78]. Their input should be
leveraged to identify and correct biases, to ensure generated
content is inclusive, culturally appropriate, and accurate, and
to reduce the likelihood of harm. Particularly important is
prioritizing the perspectives of individuals at heightened risk
for mental health concerns (eg, sexual and gender minorities)
and individuals with lived experience with mental health
concerns. These individuals should play a central role in
co-defining the role LLMs will play in mental health care
and in co-designing tools that leverage LLMs. Practically,
use cases should focus on opportunities to support and
augment provider care. As just one example, LLMs may
have a role in suggesting language used in clinical notes,
but clinicians should have the final say in whether they adopt
those suggestions or not.
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Figure 4. Examples of human involvement across all stages of LLM development through deployment and evaluation. LLM: large language model.

Conclusions
The need for mental health services is pressing, and the
potential of LLMs to expand access to information about
mental health and to mental health care is great. LLMs
are advancing rapidly and have been applied across mental
health education, assessment, and intervention. Especially
promising is the potential for LLMs to provide mental
health education and assessment—tasks that are well aligned
with LLM strengths. LLMs have made exceptional progress
in related tasks such as answering medical questions and
assessing medical conditions, reaching and in some cases
exceeding the performance of human clinicians. Greater
caution is warranted when applying LLMs to mental health
intervention, but there is also cause for optimism that LLMs
could eventually help to support or augment human pro-
vision of mental health treatments. Additional research is
needed in testing LLMs’ ability to deliver or train provid-
ers in empirically supported treatments, to responsibly adapt
approaches for youth and marginalized populations, to build

appropriate rapport, and to detect risk for high-acuity mental
health concerns for progress to be made in these areas.

Critical to effectively engaging in mental health care
tasks is fine-tuning LLMs specifically for the domain of
mental health and the prioritization of equity, safety, EBP,
and confidentiality. No widely used, general-purpose LLM
has been fine-tuned for mental health, trained on evidence-
based mental health content, or sufficiently tested on mental
health-related tasks. When LLMs are developed specifically
for mental health, tested to ensure adherence with EBP,
and aligned with the goals of people with lived experience
with mental health concerns and those who have expertise
in mental health care, there is great hope that they will
expand access to evidence-based mental health information
and services. Investing in developing, testing, and deploying
mental health LLMs responsibly has the potential to finally
reverse rising global mental health rates and to improve the
mental health of the millions of people in need of mental
health support.
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