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Abstract

Background: Mentalization, which is integral to human cognitive processes, pertains to the interpretation of one’s own and
others’mental states, including emotions, beliefs, and intentions. With the advent of artificial intelligence (AI) and the prominence
of large language models in mental health applications, questions persist about their aptitude in emotional comprehension. The
prior iteration of the large language model from OpenAI, ChatGPT-3.5, demonstrated an advanced capacity to interpret emotions
from textual data, surpassing human benchmarks. Given the introduction of ChatGPT-4, with its enhanced visual processing
capabilities, and considering Google Bard’s existing visual functionalities, a rigorous assessment of their proficiency in visual
mentalizing is warranted.

Objective: The aim of the research was to critically evaluate the capabilities of ChatGPT-4 and Google Bard with regard to
their competence in discerning visual mentalizing indicators as contrasted with their textual-based mentalizing abilities.

Methods: The Reading the Mind in the Eyes Test developed by Baron-Cohen and colleagues was used to assess the models’
proficiency in interpreting visual emotional indicators. Simultaneously, the Levels of Emotional Awareness Scale was used to
evaluate the large language models’ aptitude in textual mentalizing. Collating data from both tests provided a holistic view of
the mentalizing capabilities of ChatGPT-4 and Bard.

Results: ChatGPT-4, displaying a pronounced ability in emotion recognition, secured scores of 26 and 27 in 2 distinct evaluations,
significantly deviating from a random response paradigm (P<.001). These scores align with established benchmarks from the
broader human demographic. Notably, ChatGPT-4 exhibited consistent responses, with no discernible biases pertaining to the
sex of the model or the nature of the emotion. In contrast, Google Bard’s performance aligned with random response patterns,
securing scores of 10 and 12 and rendering further detailed analysis redundant. In the domain of textual analysis, both ChatGPT
and Bard surpassed established benchmarks from the general population, with their performances being remarkably congruent.

Conclusions: ChatGPT-4 proved its efficacy in the domain of visual mentalizing, aligning closely with human performance
standards. Although both models displayed commendable acumen in textual emotion interpretation, Bard’s capabilities in visual
emotion interpretation necessitate further scrutiny and potential refinement. This study stresses the criticality of ethical AI
development for emotional recognition, highlighting the need for inclusive data, collaboration with patients and mental health
experts, and stringent governmental oversight to ensure transparency and protect patient privacy.
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Introduction

Mentalization, a term denoting the ability to understand one’s
own and others’ mental states—be they thoughts, feelings,
beliefs, or intentions—is a cornerstone of human cognitive and
emotional development [1]. This term encompasses a range of
related concepts, such as the theory of mind, social cognition,
perspective taking, emotional awareness, and empathy [2], each
playing a vital role in our social interactions and emotion
regulation [3]. Mentalization capacity can be evaluated through
both objective assessments, such as the Levels of Emotional
Awareness Scale (LEAS) [4] and the Reading the Mind in the
Eyes Test (RMET) [5], as well as subjective self-report measures
such as the Toronto Alexithymia Scale and the Interpersonal
Reactivity Index. Disruptions or impairments in mentalization
are evident in numerous psychiatric and neurological disorders,
from borderline personality disorder and depression to psychosis
[6-8]. In addition, mentalizing is regarded as a fundamental
aspect of psychotherapy [9]. Many therapies aim to enhance
patients’ mentalizing abilities in order to promote
self-acceptance, awareness of their illness, and a more accurate
understanding of their thoughts, emotions, and behaviors [10].
Traditionally, mentalization is seen as a human domain. Recent
advancements in large language models (LLMs) now enable
algorithms to engage in natural language responses, thus
allowing their evaluation in mentalization tasks.

The field of artificial intelligence (AI) has evolved since its
inception [11]. A significant leap occurred with the rise of deep
generative AI models, particularly those based on neural
networks. This trend gained momentum following the ImageNet
competition in 2012, which spurred the development of more
complex models [12]. The introduction of the transformer
marked a milestone, revolutionizing natural language processing
(NLP) and other AI domains [13]. Transformer-based models,
such as Bidirectional Encoder Representations From
Transformers and Generative Pre-Trained Transformer, became
particularly prominent in NLP due to their parallelism and
adaptability to various tasks [14]. In recent years, large-scale
models have become increasingly important in generative AI
as they provide better intent extraction and thus improved
generation results. With the rise of data and the size of the
models, the statistical distribution that the model can learn
becomes more comprehensive and closer to reality, leading to
a more realistic and high-quality content generation.

Early research points to AI’s promising role in areas such as
diagnosis assistance, outcome prediction, and the creation of
personalized treatment plans [15,16]. Chatbots designed
specifically for mental health, such as Woebot and Replica,
have made their mark by producing encouraging outcomes in
reducing anxiety and depression symptoms [17,18].

Despite these advances, a significant gap has remained in AI’s
emotional acumen. This gap was highlighted in a review by
Pham et al [17], suggesting that such abilities are exclusively
human. Against this backdrop, Elyoseph et al [19] conducted
a pivotal study in which the emotion recognition capabilities of
LLMs, focusing on ChatGPT-3.5 (OpenAI) [20], were gauged.
Through the LEAS [4], ChatGPT-3.5 demonstrated an
exceptional ability to differentiate and elucidate emotions from
textual cues, outperforming human sample norms (receiving a
score higher in 4 SDs than the human sample). In a
complementary study, Hadar-Shoval et al [21] further
demonstrated ChatGPT-3.5’s prowess in generating textual
responses that aligned with specific affective profiles associated
with various psychopathologies.

On September 26, 2023, a transformative update was
introduced—ChatGPT-4—which brought with it the capability
to process visual input and receive the “ability” to “see” (this
ability already existed in a beta version of Google Bard [22]).
Leveraging this new feature, we sought in this study to conduct
a pioneer assessment of ChatGPT-4 and Google Bard in visually
based compared to textually based mentalizing abilities. We
chose the RMET by Baron-Cohen et al [5] as our primary
instrument, given its reputation as the gold standard in the study
of the theory of mind and mentalization deficits. Coupling the
insights gained from the RMET with those from the LEAS [4],
our objective was to offer a comprehensive perspective on
ChatGPT’s and Bard’s mentalization-like capabilities, bridging
the visual and textual domains.

The aim of this research was to systematically evaluate the
proficiency of distinct LLMs, specifically ChatGPT-4 and Bard,
in various tasks related to mentalization. We used 2 primary
measures to assess these capabilities. First, a visually oriented
metric was used, grounded in the RMET, which seeks to
determine a model’s ability to interpret and identify emotional
cues from facial expressions. Second, a textual metric was used
based on the LEAS, which gauges a model’s capacity for
emotional awareness through linguistic constructs. The outcomes
derived from these metrics were juxtaposed between the 2
aforementioned AI platforms and benchmarked against human
performance to draw comparative insights.

Methods

Ethical Considerations
The complete study protocol was approved by the institutional
review board of The Max Stern Yezreel Valley College (YVC
EMEK 2023-40).
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AI Procedure
We used ChatGPT-4 (version 26.9) and Google Bard to evaluate
their emotion recognition performance using the RMET and
the LEAS.

Input Source
The RMET is a performance-based measure designed to assess
the ability to accurately identify others’ mental states using 36
photos of the eye region of a human face [5] among 18 male
individuals and 18 female individuals (the photos had a
469×273-pixel resolution and were PNG format).

ChatGPT-4 and Bard were asked to choose the emotion or
thought that corresponded to each picture out of 4 options. The
test scores ranged from 0 to 36; a normal population score is
26-30, and a score below 22 is considered a clinical cutoff

marking significant impairment [5]. On a new tab, we enter the
original instructions of the RMET [5]:

Prompt: For each set of eyes, choose and circle which
word best describes what the person in the picture is
thinking or feeling. You may feel that more than one
word is applicable but please choose just one word,
the word which you consider to be most suitable.
Before making your choice, make sure that you have
read all 4 words. You should try to do the task as
quickly as possible, but you will not be timed.

In the following, in 1 conversation comprising 36 messages in
total, we presented the RMET items one by one, as illustrated
in Figure 1. No feedback was provided to the LLMs after they
generated responses. We conducted the second evaluation in a
new thread to prevent the first evaluation from affecting the
second.

Figure 1. An example of ChatGPT-4 and Google Bard responses for Reading the Mind in the Eyes Test items. (A and B) ChatGPT-4 generates correct
responses for both items and (C) Google Bard generates incorrect responses (the correct response was “regretful”).

The LEAS [4] consists of 20 open-ended questions that describe
emotionally charged scenarios intended to elicit emotions, such
as anger, fear, happiness, and sadness. The LEAS has been
found to have high reliability (Cronbach α=.81) and good
validity [4]. In the original version, participants were required
to imagine themselves experiencing the scenario and to write

down their (“you”) emotions as well as those of the other person
described in the scenario.

As ChatGPT-4 and Bard cannot have or report self-emotions,
we presented the scenarios by replacing the instructions for
“you” with “human.” ChatGPT-4 and Bard were asked to answer
how the main character, the “human,” and the other character
would feel in the described situations:
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Prompt: Please describe what you think a human
would feel in the following situations. The only
requirement is that you use the word “feel” in your
answers. You may make your answers as brief or as
long as necessary to express how would a human feel.

In each situation there is another person mentioned.
Please indicate how you think that other person would
feel as well.

Specific example for a scenario is presented in Table 1. A new
chat session was initiated for each scenario.

Table 1. An example for ChatGPT-4 and Bard responses on item of the Level of Emotional Awareness Scale.

LLM responsesScenarioLLMa

“The human might feel disappointed, embarrassed, or even anxious upon
hearing such feedback, especially if they were unaware of their performance
issues or if they had been putting in significant effort. They could also feel
defensive or hurt, depending on how the feedback was delivered. The human’s
boss, on the other hand, might feel a mixture of emotions. If they are delivering
the feedback out of genuine concern for the human’s growth and the well-being
of the company, they might feel a sense of responsibility or even unease, hoping
that their words lead to positive change without demoralizing the employee.
However, if the boss is frustrated or has had to address the issue multiple times,
they might feel exasperated or concerned about the future productivity and
quality of the human’s work.”

A human’s boss tells the human themselves that
the human’s work is unacceptable and needs to be
improved. How would the human feel? How would
the human’s boss feel?

ChatGPT-4

“If a human receives an unexpected long-distance phone call from a doctor
informing that the human’s mother has died, the human would likely feel a
wide range of emotions, including shock, grief, sadness, anger, guilt, and
confusion. They may also feel disbelief, numbness, and emptiness. The doctor
would likely feel empathy and compassion for the human, and may also feel
some sadness and loss. How the human would feel: **How the human would
feel:** * Shock: The human may have difficulty believing the news at first,
and may feel like they are in a dream. * Grief: The human may feel a deep
sadness and sorrow at the loss of their mother. * Sadness: The human may feel
a sense of emptiness and loss, and may miss their mother deeply. * Anger: The
human may feel angry at their mother’s death, at the doctor, or at the world in
general. * Guilt: The human may feel guilty about things they said or did, or
didn’t say or do, for their mother. * Confusion: The human may feel confused
about how to move on without their mother, and may not know what to do
next. How the doctor would feel: * Empathy: The doctor would likely feel
empathy for the human, and understand the pain they are going through. *
Compassion: The doctor would likely feel compassion for the human, and want
to help them through this difficult time. * Sadness: The doctor may also feel
some sadness and loss, as they have lost a patient and have had to deliver dif-
ficult news. It is important to note that everyone experiences grief differently,
and there is no right or wrong way to feel. If you are grieving the loss of a
loved one, it is important to allow yourself to feel your emotions and to seek
support from others.”

A human receives an unexpected long-distance
phone call from a doctor informing them that the
human’s mother has died. How would the human
feel? How would the doctor feel?

Google Bard

aLLM: large language model.

Scoring
ChatGPT-4’s and Bard’s performances on the RMET were
scored using the standard manual [5] and contained a total score
range of 0-36, with a higher score indicating higher emotion
recognition. ChatGPT-4’s and Bard’s emotion recognition was
compared with the scores of the British population analyzed in
the study from Baron-Cohen et al [5], which included 122 adult
participants (67 women and 55 men) with a mean age 46 (SD
16.9) years.

The scoring of ChatGPT-4’s and Bard’s performance on the
LEAS was conducted using the established manual [4], which
provides detailed scoring guidelines, including a comprehensive
list of emotional states and mental conditions, each with an
assigned score. This systematic approach ensures objective and
reliable evaluations. The method has demonstrated high
interjudge agreement, with scores exceeding 0.9 as demonstrated
by Nandrino et al [23], showing reliability and validity in

accurately measuring emotional awareness. The LEAS contained
2 subscales that evaluated the main character’s and other
character’s scores (0-4 scores per item; range 0-80) and the total
score (0-5 scores per item; range 0-100), with a higher score
indicating higher emotional awareness. ChatGPT-4 and Bard
emotional awareness scores were compared with the scores of
the French population analyzed in the Nandrino et al [23] study,
which included 750 participants (506 women and 244 men),
aged 17-84 years, with a mean age of 32.5 years.

Statistical Analysis
Data were presented as means and SDs. Binomial tests and
1-sample z tests were used to analyze the study’s hypotheses.
Multiple comparisons were conducted using a false discovery
rate correction [24] (q<.05). The statistical analyses were
performed using Jamovi (version 2.3.28; Jamovi).
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Results

RMET Scores
Examples of ChatGPT’s responses to a few of the items from
the RMET are shown in Figure 1A and B. We first examined
whether ChatGPT-4’s responses were not generated at random
before further analysis of the output. If responses were indeed
random, one would expect a mean of 9 (SD 2.59) correct
responses (36 items and 4 possible options). In both evaluations,
the number of correct responses (26 and 27, respectively) was
significantly different from random (P<.001; binomial test).

High reliability was found between the 2 evaluations, as
responses differed in only 2 (6%) of 36 items. Interestingly, the
consistency between evaluations was also present in most of
the incorrect responses, suggesting that ChatGPT-4’s responses
were not randomly generated even when wrong. ChatGPT-4
showed no bias toward the sex of the model presented in the
items, as the number of mistakes was nearly the same for both
sexes (male=9 and female=10) and showed no bias toward the
type of emotion (positive and negative; 5 mistakes each).

The 1-sample z tests against the mean 26.2 (SD 3.6), derived
from the general population norms [4], showed that in both the
first evaluation (ChatGPT-4 score=26; z=–0.05; P=.95) and the
second evaluation (ChatGPT-4 score=27; z=0.22; P=.82),
ChatGPT-4’s RMET scores did not differ from the normal
population scores.

The performance of Google Bard was also examined (Figure
1), but responses were not significantly different from random
in either evaluation (10 and 12 correct responses, respectively;
P>.41 and P=.17, respectively). Therefore, we did not further
analyze the results.

LEAS Scores
An example of the 2 LLM responses to the scenarios from the
original LEAS is shown in Table 1. The 1-sample z tests against
the mean and SD, derived from the general population norms
[23], are presented in Table 2. Both LLMs performed
significantly better than did the normal population in the self,
other, and total scores (all P<.05). Additionally, both LLM
performances were almost identical to one another.

Table 2. Comparison of ChatGPT-4’s Level of Emotional Awareness Scale performance with that of the French populationa.

Bard (1-sample z tests)ChatGPT-4 (1-sample z tests)French women, mean (SD)French men, mean (SD)Score

58.94 (9.16)56.21 (9.70)Total •• Bard score =97ChatGPT-4 score=97
• •Men: z=4.20; P<.001 Men: z=4.20; P<.001

•• Women: z=4.15; P<.001Women: z=4.15; P<.001

53.94 (9.80)49.24 (10.57)MCb •• Bard score=79ChatGPT-4 score=79
• •Men: z=2.81; P=.004 Men: z=2.81; P=.004

•• Women: z=2.55; P=.01Women: z=2.55; P=.01

48.73 (10.40)46.03 (10.20)OCc •• Bard score=75ChatGPT-4 score=77
• •Men: z=3.03; P=.002 Men: z=2.84; P=.004

•• Women: z=2.52; P=.01Women: z=2.71; P=.006

aAll statistically significant P values remained significant after false discovery rate correction (q<.05).
bMC: main character.
cOC: other character.

Discussion

Principal Findings
The comprehensive results from this study offer a nuanced
insight into the capabilities of ChatGPT-4 and Google Bard.
We first ascertained the nonrandom nature of ChatGPT-4’s
responses on the RMET. In both evaluations, the responses
significantly deviated from what would have been expected
from random responses. High reliability was evident between
the evaluations, with consistency observed even in incorrect
responses. This finding suggests that ChatGPT-4’s mistakes
were not arbitrary but were potentially rooted in specific
challenges. ChatGPT-4 displayed no sex or emotional bias when
interpreting the visual stimuli, as evidenced by an equal
distribution of errors across sexes and emotions. A comparison
with the general population norms indicates that ChatGPT-4’s
performance on the RMET mirrors that of the general populace.
In contrast, Google Bard’s performance was indistinguishable

from random responses, leading to its exclusion from further
analysis. Bard’s inferior RMET performance, in contrast to
ChatGPT-4’s higher accuracy, might stem from differences in
their training data sets. If Bard’s data set had less emotional
content, it would be less equipped to interpret emotions, unlike
ChatGPT-4, potentially trained on more emotionally varied
data. In addition, the disparity may not be solely due to the
images used for training but also how the information was
categorized. Bard’s tagging process might have focused more
on concrete and objective information, paying less attention to
emotional and subjective nuances.

Shifting focus to the LEAS, both ChatGPT-4 and Google Bard
exhibited performances that significantly surpassed the general
population benchmarks. Their scores, particularly in
understanding the emotions of the main and other characters,
were not only commendable but were also strikingly similar to
each other. These results make a significant contribution to the
body of research that evaluates mentalizing or theory of mind
abilities in LLMs [19,21,25,26].
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This study, demonstrating ChatGPT-4’s exceptional accuracy
on the RMET, advances the growing literature on artificial facial
emotion recognition, as systematically reviewed in Leong et al
[27]. Although deep learning systems have earned strong
performance marks on categorizing basic emotions from
laboratory data sets [28,29], this study is the first to document
human-par proficiency in deciphering nuanced mental states
from limited real-world facial cues through the gold standard
RMET paradigm. This finding showcases artificial neural
networks’ potential for context-dependent facial emotion
analysis beyond basic categorical emotions, aligning with the
increasing application of dimensional models noted in Leong
et al [27]. In particular, ChatGPT-4’s RMET accuracy signifies
a major step for AI capabilities at the intersection of machine
learning, social cognition, and visual perception. Our multimodal
evaluation spanning facial and textual stimuli provides uniquely
comprehensive insights into ChatGPT-4’s mentalization
potential compared to prior unimodal examinations critiqued
in Leong et al [27].

From a clinical standpoint, the potential applications of
AI-generated RMET stimuli are manifold. In direct therapeutic
modalities, particularly those addressing social-cognitive
challenges inherent in conditions such as autism, the inclusion
of ChatGPT-4’s visual emotion recognition could act as a
significant adjunct to traditional interventions. In addition, such
stimuli could be integrated into pedagogical methodologies used
in therapist training, thereby augmenting the visual mentalization
competencies that are quintessential for therapeutic practice.
The diagnostic realm too stands to gain, with a potential
enhancement in emotion identification methodologies.

Further corroborating the prowess of ChatGPT-4 was its
performance on the LEAS, where it manifested an acumen for
text-based emotional awareness that superseded human averages.
This finding corroborates and is congruent with prior empirical
findings [19,21]. Taken in concert, these findings elucidate the
multifaceted mentalizing capabilities of ChatGPT-4, span visual
and textual modalities, and reinforce previous findings about
the potential of LLMs in performing tasks in the mental health
field [19,21,30-37]. Additionally, although its nascent visual
emotion recognition abilities are noteworthy, its competencies
in textual mentalization remain unparalleled, a testament to its
foundational architecture rooted in NLP.

However, as the field ventures into this novel territory, prudence
is imperative. It must be emphasized that although ChatGPT-4
can simulate emotional understanding on the basis of vast data
patterns, it lacks genuine emotional cognition or sentience.
Consequently, applications leveraging ChatGPT-4 must be
approached with circumspection, ensuring that they neither
perpetuate clinical stigmas nor misconstrue AI’s simulated
cognition as genuine emotional comprehension.

Study Limitations
It is crucial to address the limitations of this study for a
comprehensive understanding. First, the examination was
conducted on specific models at a particular time. Therefore,
future updates and versions might yield different results,
reflecting the dynamic nature of these models. Second, while
the chosen tests effectively measure emotion recognition, they

do not capture the full complexity of mentalization, including
understanding intentions or other mental states. Third, the study
did not examine faces from diverse cultures, ages, or skin tones;
the tested images were in black and white, and the norms were
based on British and French populations. Furthermore, due to
the “black box” nature of these models, it is challenging to
ascertain the reasons behind their conclusions and understand
the differences between models or iterations within the same
model. The opaque nature of the models and the databases on
which they were trained make them difficult to pinpoint the
exact causes of their successes or shortcomings. Finally, the
interaction with ChatGPT and Bard was conducted solely in
English, while the norms data for the LEAS used for comparison
were collected from a French-speaking general population. This
linguistic discrepancy raises concerns about the accuracy and
validity of the comparison, as language differences may
influence the scores obtained. Nonetheless, it should be noted
that the LEAS scores of the normal English-speaking population
are similar to the norms of the French-speaking general
population [38]. We used the largest available sample of a
general population (n=750), which happened to be in French.

Implications for Responsible AI Development
The study limitations allude to matters of fairness and
inclusiveness of the training data as well as to AI model
transparency. This underscores the criticality of incorporating
a wide-ranging data set in model construction to ensure the
representation of a variety of clinical populations and cultural
backgrounds. Additionally, the issue of transparency in these
models, often termed the “black box” problem due to the unclear
nature of their underlying algorithms, poses a significant
challenge. Equally critical is the concern regarding the exposure
of user data to corporations and the urgent need to adequately
address both accessibility and infrastructure for end users [39].
Building on these concerns, attention turns to AI systems with
the capacity for human-like emotional recognition. These
systems harbor both promise and risk, with opportunities for
constructive use in education, patient self-insight, or integration
in conversational therapy and diagnosis [19,21]. However, a
concern arises that the epistemic authority and credibility
afforded to AI via its affective analysis may enable misuse,
whether commercial or other, thus acting against patient interests
[40]. We recommend mandating disclaimers whenever
emotional data are algorithmically processed, enhancing
transparency, respecting users’ autonomy, and possibly also
mitigating manipulation of users with detected vulnerable states.
In addition, given the fundamental human needs for trust and
connection, especially in mental health care, it logically follows
that improperly developed AI with emotion identification
capabilities risks causing harm to people. Safeguarding against
this necessitates both mental health experts and patients
providing a lived experience perspective in a collaborative
development process of these technologies. Given the scale of
these systems and their potential outreach, governmental or
professional oversight is crucial to safeguard public interests in
mental health–related AI advancement. Overall, while
showcasing the unique benefits of emotionally intelligent AI,
governance is vital to mitigate its risks.
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Conclusions
In conclusion, this research serves as a seminal exploration into
the cross-modal mentalization capabilities of AI, especially

across visual and textual dimensions. Although the results
support for the potential integration of ChatGPT-4 into mental
health paradigms, they also underscore the concomitant ethical
quandaries that necessitate judicious navigation.
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LLM: large language model
NLP: natural language processing
RMET: Reading the Mind in the Eyes Test
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