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Abstract

Background: Mental stress and its consequent mental health disorders (MDs) constitute a significant public health issue. With
the advent of machine learning (ML), there is potential to harness computational techniques for better understanding and addressing
mental stress and MDs. This comprehensive review seeks to elucidate the current ML methodologies used in this domain to pave
the way for enhanced detection, prediction, and analysis of mental stress and its subsequent MDs.

Objective: This review aims to investigate the scope of ML methodologies used in the detection, prediction, and analysis of
mental stress and its consequent MDs.

Methods: Using a rigorous scoping review process with PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses extension for Scoping Reviews) guidelines, this investigation delves into the latest ML algorithms, preprocessing
techniques, and data types used in the context of stress and stress-related MDs.

Results: A total of 98 peer-reviewed publications were examined for this review. The findings highlight that support vector
machine, neural network, and random forest models consistently exhibited superior accuracy and robustness among all ML
algorithms examined. Physiological parameters such as heart rate measurements and skin response are prevalently used as stress
predictors due to their rich explanatory information concerning stress and stress-related MDs, as well as the relative ease of data
acquisition. The application of dimensionality reduction techniques, including mappings, feature selection, filtering, and noise
reduction, is frequently observed as a crucial step preceding the training of ML algorithms.

Conclusions: The synthesis of this review identified significant research gaps and outlines future directions for the field. These
encompass areas such as model interpretability, model personalization, the incorporation of naturalistic settings, and real-time
processing capabilities for the detection and prediction of stress and stress-related MDs.

(JMIR Ment Health 2024;11:e53714) doi: 10.2196/53714
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Introduction

Background
Mental health has become a public health concern. According
to the Institute of Health Metrics and Evaluation, in 2019, about
53 million people in the United States and about 1 in 8
individuals worldwide (about 1 billion people) have at least 1
mental health disorder (MD) [1]. An MD is defined as an
impairment in a person’s cognition, emotional control, or
behavior patterns that has clinical significance and is often
linked to distress or functional impairment [2]. MDs severely
limit people’s daily functioning and can be fatal [3,4]. In 2019,
mental health (MH) problems accounted for 6.6% of all
disability-adjusted life years in the United States, making it the
fifth most significant cause of disability overall [1,5].

Some of the more prevalent MDs are anxiety disorders,
depression or mood disorders, bipolar disorders, psychotic
disorders (including schizophrenia), eating disorders, social
disorders, disruptive behavior, and addictive behaviors [2]. In
2019, anxiety and depression have been the most prevalent
forms of MDs (301 and 280 million people affected worldwide,
respectively). Anxiety disorder encompasses emotions of
concern, anxiety, excessive fear, or associated behavioral
problems that are severe enough to affect everyday activities
[2]. Symptoms include an unproportionate level of stress
compared to the significance of the triggering event, difficulty
in putting worries out of one’s mind, and nervousness [6,7].
Generalized anxiety disorder, panic attacks, social anxiety
disorder, and posttraumatic stress disorder (PTSD) are all
examples of different types of anxiety disorders [2,8].
Depression is characterized by a long-lasting sadness and a lack
of desire to be active. One of the main symptoms of depression
is the inability to enjoy or find pleasure in most of one’s daily
activities as well as feeling sadness, anger, or emptiness [2,9].
A depressive episode typically lasts for at least 2 weeks. In
addition, a loss of self-worth, feelings of hopelessness for the
future, and suicidal thoughts are indicators and symptoms of
depression. People who are depressed are more prone to commit
suicide [2,9,10].

Stress is categorized into distress, which typically has chronic
negative effects on health, and eustress, which is short-term and
positively influences motivation and development [11].
Throughout this paper, the term stress is specifically used to
denote distress rather than eustress. Mental stress has been
shown to significantly contribute to developing and worsening
anxiety and depression disorders [12-14]. Mental stress is the
body’s natural response to various events in which a person
feels that the demands of their external environment exceed
their psychological and physiological resources for dealing with
those demands [15]. Mental stress leads to an asynchrony
between the sympathetic and parasympathetic nervous systems
(SNS and PNS), which are the main divisions of the autonomic
nervous system [16] and serve an important role in regulating
vital biological activities [17,18]. The SNS is an integrative
system that responds to potentially dangerous circumstances.
Activation of the SNS is part of the system responsible for

controlling “fight-or-flight” responses. The PNS is responsible
for the body’s “rest-and-digest” processes.

Given the important role and impact of stress in MDs, previous
research has investigated various qualitative and quantitative
methods to measure and monitor stress to inform effective stress
mitigation approaches. While majority of stress literature relies
on self-reported measures, recent literature has used
physiological variables such as heart rate (HR); HR variability
(HRV) [19-23]; and behavioral data (eg, speech, movement,
and facial expressions) [24] to understand changes to SNS and
PNS associated with stress. The recent advances in sensor and
mobile health technologies have resulted in the emergence of
big data related to MH, as well as advanced bioinformatics
methods, tools, or techniques to use such data for modeling or
inference. One such tool that has recently emerged as a robust,
rapid, objective, reliable, and cost-efficient technique for
studying chronic illnesses and MDs is machine learning (ML).
ML uses advanced statistical and probabilistic techniques to
construct systems that can automatically learn from data. Several
characteristics of ML make it suitable for applications in MH
monitoring including significant pattern recognition and
forecasting capabilities [25], the capacity to extract crucial
information from various data resources and the opportunity to
create personalized experiences [25], and the ability to analyze
large amounts of data in a short time [26]. As such, ML has
gained popularity and has been applied to MH data to enable
detection, monitoring, and treatment [27]. The objective of this
research is to review the literature to summarize and synthesize
the application of ML in the detection, monitoring, or prediction
of stress and stress-related MDs, in particular, anxiety and
depression. This paper documents method-specific findings
such as data types, preprocessing methods, and different
algorithms used, as well as the type and characteristics of studies
that used ML.

Traditional statistical methods, such as linear regression, logistic
regression (LR), 1- or 2-tailed t tests, and ANOVA [28], have
been widely used in the past to detect and analyze stress and
stress-related MDs. These methods have proven useful in
specific contexts, such as comparing means of different groups
or modeling linear relationships between variables. As
demonstrated by Machado et al [21], Adjei et al [22], Yoo et al
[23], Chen et al [24], and Jordan and Mitchell [25], these
methods have provided valuable insights in situations wherein
the data are relatively simple and adhere to the underlying
assumptions of the statistical techniques. However, when faced
with complex, high-dimensional MH data, which have become
increasingly available, thanks to advancements in technology
and data collection techniques, these traditional statistical
methods might not be sufficient. The limitations of these
methods stem from their inherent simplicity and the assumptions
they rely on, which might not hold true in the context of MH
data. For example, linear regression and LR analyses assume
linear relationships between variables, while t tests and ANOVA
require specific assumptions about the data distribution. These
assumptions may not be applicable in the case of intricate and
heterogeneous MH data, potentially leading to inaccurate or
incomplete conclusions.
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Advanced data analytics methods, such as ML, offer a more
powerful and flexible alternative to traditional statistical
methods. ML algorithms, with their significant pattern
recognition and forecasting capabilities [25], are capable of
capturing complex, nonlinear relationships between variables
and can adapt to various data distributions. These capabilities
enable ML techniques to provide more accurate and insightful
predictions, classifications, and associations in the context of
MH data [29]. In addition, ML algorithms can handle
large-scale, high-dimensional data more efficiently than
traditional methods, allowing researchers to analyze vast
amounts of information from diverse sources, such as eHealth
records, wearable devices, and web-based platforms [26]. This
capacity for handling big data is crucial for understanding the
multifaceted nature of MDs and developing tailored
interventions. ML techniques also offer the advantage of
automation and adaptability, allowing them to continuously
learn and improve as new data become available [25]. This
iterative learning process enables the development of more
sophisticated and accurate models for detecting, monitoring,
and predicting stress and stress-related MDs over time.

While traditional statistical methods have contributed
significantly to our understanding of stress and stress-related
MDs in specific contexts, the growing complexity and volume
of MH data necessitate the adoption of advanced data analytics
methods such as ML. By leveraging the power of ML,
researchers can gain deeper insights into the underlying patterns
and relationships between stress and MDs [29], ultimately
leading to the development of more effective stress mitigation
approaches and improved care for individuals who have anxiety,
depression, and other MDs.

Acknowledging the substantial contributions of traditional
statistical methods, it becomes evident that the escalating
complexity and scale of MH data demand the adoption of more
sophisticated approaches such as ML. This advancement stands
not as a replacement but as an essential evolution in the
analytical toolbox available to researchers. As this paper delves
into the myriad ways that ML has been applied to MH,
particularly in the realms of stress, anxiety, and depression, it
seeks to consolidate the current knowledge on the subject.

Objectives
By examining the types of data, preprocessing methods, and
the algorithms used in existing studies, this review aspires to
offer a detailed synthesis of the field. It aims to provide a clearer
understanding of ML’s effectiveness in the detection,
monitoring, and prediction of MDs, setting a foundation for
future research and the enhancement of therapeutic strategies
for those impacted by these conditions.

Methods

Protocol and Registration
This scoping review adhered to the PRISMA-ScR (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
extension for Scoping Reviews) guidelines [30]. No formal
review protocol was registered due to the exploratory nature of
this study, which aimed to map out existing research rather than
address a prespecified hypothesis. This approach aligns with
the methodological flexibility often required in emergent areas
of research.

Eligibility Criteria
We included studies published in English from 2017 to 2022
that used ML techniques to evaluate MDs, specifically focusing
on stress and stress-related conditions. Studies were excluded
if they did not use ML as the primary analysis method or if they
were published in languages other than English.

Information Sources
The literature search involved databases such as EI Engineering
Village, Web of Science, ACM Digital Library, and IEEE
Xplore. Additional sources were identified through contact with
experts and review of references in relevant articles.

Search Strategy
A comprehensive search was conducted using a combination
of keywords related to ML and MDs (Textbox 1). The search
strategy was designed to capture a broad spectrum of ML
applications within this field. The full search list from all
databases is available in Multimedia Appendix 1 [31-50].

Textbox 1. Keywords and search strategy for articles since 2017 (last 5 years).

Search strategy

First keyword: predict OR detect

AND

Second keyword: mental health OR mental disorder OR depression OR anxiety OR stress

AND

Third keyword: machine learning OR deep learning OR data mining OR pattern classification OR artificial intelligence OR neural networks

Study Selection, Inclusion, and Exclusion Criteria
Articles that did not fully use ML for stress or stress-related
MDs evaluations were excluded from the research. Studies
published in languages other than English were also excluded.

The initial search yielded 1241 results. After duplicate articles
were deleted and eligibility was confirmed using Rayyan (Qatar
Computing Research Institute) [51], 1204 (97.02%) articles
remained. After applying the exclusion criteria, 98 (8.14%)
papers were selected for full review (Figure 1).
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Figure 1. Preferred items for scoping literature review and meta-analysis flowchart (modified from Tricco et al [30]). DL: deep learning. ML: machine
learning.

Data Charting Process
Data charting was conducted by 2 reviewers independently
using a standardized form, which had been pretested on a subset
of included studies. Discrepancies were resolved through
discussion or consultation with a third reviewer. Study authors
were contacted for clarification or additional data where
necessary.

Data Items
Data extracted included publication year, study design,
population characteristics, ML techniques used, outcomes
measured, and key findings. Other variables sought included
data preprocessing methods and performance metrics of the ML
models. Simplifying assumptions, such as considering different
ML algorithms within the same family as a single technique,
were made to facilitate synthesis.

Synthesis of Results
Data were synthesized descriptively, and the findings were
grouped by ML techniques, data type, and preprocessing
techniques. Where possible, quantitative performance metrics
were extracted or derived. Results were analyzed in the context
of the overall study designs and populations to highlight trends
and identify gaps in the current research landscape. No formal
critical appraisal or quantitative meta-analysis was conducted
due to the diversity of the included studies and the scoping
nature of this review.

Results

In this section, types of data, preprosessing techniques, and ML
techniques used on the data in the literature have been reviewed
and compared with the existing literature.
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Types of Data

Overview
Various data types were used in the studies (n=98) that used
ML algorithms for stress and stress-related MDs. Studies used
questionnaires (n=31, 32%); HRV (n=25, 26%); skin response
(eg, skin temperature, skin conductance, etc; n=24, 24%);
photoplethysmogram (PPG; n=21, 21%); electrocardiogram

(ECG; n=19, 19%); HR (n=17, 17%); electroencephalogram
(EEG; n=9, 9%); acceleration or body movement (n=8, 8%);
text data (n=7, 7%); respiratory signals (n=7, 7%);
electromyogram (EMG; n=3, 3%); eye tracking (n=3, 3%);
speech signals (n=3, 3%); and others (n=4, 4%) including audio
signals (n=2, 2%), blood pressure (BP; n=1, 1%), and hormones
(n=1, 1%). Table 1 shows the distribution of the type of data
used for stress detection using ML techniques.

Table 1. Number of articles by type of data (n=98).

Articles, n (%)Type of data

31 (32)Questionnaire

25 (25)HRVa

24 (24)Skin response

17 (17)HRb

9 (9)EEGc

8 (8)Body movement

7 (7)Respiratory

7 (7)Text

3 (3)EMGd

3 (3)Eye-tracking

3 (3)Speech signals

aHRV: heart rate variability.
bHR: heart rate.
cEEG: electroencephalogram.
dEMG: electromyogram.

Heart Measures
Heart metrics are primarily used for stress detection and are
typically gathered through 2 main methods: ECG and PPG.
ECG is a noninvasive diagnostic test that records the heart’s
electrical activity, while PPG is a noninvasive optical technique
that detects changes in blood volume within the tissue’s
microvascular bed. By using these methods, it is possible to
measure various heart-related parameters, including HR, as well
as time and frequency domain features of HRV and BP.

HRV Measures
HRV (n=25, 26%) has been used to assess MH issues, such as
stress, anxiety, and depression, due to its rich time and frequency

domain features [53]. The blood volume pulse signal is another
effective method for capturing HRV features, as it represents
the heart’s beat-to-beat volume changes. From the blood volume
pulse signal, time-domain measures such as the root mean square
of successive RR interval differences (RMSSD), SD of neural
network (NN) intervals, and SD of RR intervals can be derived.
In addition, the frequency domain aspects of HRV, including
total power (frequencies <0.4 Hz), low frequencies (LFs; ranging
from 0.04 to 0.15 Hz), and high frequencies (HFs; between 0.15
and 0.4 Hz), reflect the autonomic nervous system’s dynamics
during beat-to-beat measurements of the HR (Figure 2) [54,55].
These HRV measures, both in the time and frequency domains,
provide a nuanced view of the physiological underpinnings
associated with various MH conditions.
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Figure 2. Depiction of heart’s beat-to-beat measurements using blood volume pulse (BVP) signal (A) and power spectral density (PSD) of RR intervals
(the signal is bandpass filtered with cutoff frequencies of 0.04 Hz and 0.4 Hz) (B). HF: high frequency; LF: low frequency.

HR Measures
One of the most important indicators of stress is an abrupt
increase in HR (n=17, 17%). Among the physiological signals,
HR is among the top measures that explain stress in ML models,
and it has been used in different studies with almost all ML
algorithms [56-58].

BP Measures
BP (n=1, 1%) can be obtained by pulse transit time or by
pressure cuffs [59]. Stressful conditions create an influx of
hormones that increase HR and constrict blood vessels, leading
to a temporary BP elevation [60]. In most cases, BP recovers
to its prestress level after the stress response diminishes [61].
Schultebraucks et al [62] used systolic BP as one of the measures
in predicting one’s level of susceptibility to PTSD.
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EEG Data
EEG (n=9, 9%) detects brain electrical activity. Compared with
other brain mapping techniques for stress detection, it is more
practical due to several factors including affordability,
noninvasiveness, nonintrusiveness, and, most importantly, its
high temporal resolution [63]. The high temporal resolution of
EEG makes it appropriate for real-time stress detection, as well
as deep learning (DL) approaches, which require large data sets
for training [63-67].

The most commonly used EEG features for the detection of
stress are the power of different frequency bands (α, 8-13 Hz;
β, 12.5-30.0 Hz; θ, 4.5-7.5 Hz; γ, 30-40 Hz), average and SD
of a specific time window of EEG signal, and time-frequency
features obtained by discrete wavelet transform algorithm
[67-69]. It has also been shown that statistical features of EEG
signals, such as kurtosis and entropy, are useful features in stress
prediction using ML algorithms [66]. Moreover, power spectral
density (PSD), correlation, divisional asymmetry, rational
asymmetry, and power spectrum are other EEG features that
have been used in different studies for stress detection [70].

Since EEG signals are collected from the scalp, they include
excessive noise and have high uncertainty. Therefore, signal
processing and feature selection or extraction are important
steps while dealing with EEG data. Several well-developed
methods are available for treating the EEG data. Among them,
latent space derived from auto-encoders and signal
reconstruction techniques such as artifact subspace
reconstruction (ASR) are well-known methods that can be
applied on EEG data to significantly reduce the artifacts [65].
These methods are also fast enough to make real-time detection
feasible.

The amygdala and hippocampus are the parts of the brain that
have the major responsibility for human reactions to stress [71].
Brain activity caused by stress in those regions would affect the
prefrontal cortex. Studies collecting data from the prefrontal
cortex have also verified that EEG data from this brain region
can be used for stress detection [72]. EEG can be collected from
the prefrontal cortex using off-the-shelf EEG recording products
such as Muse and Neurosky Mindwave [66,69,70,72].

Eye Tracking
Eye-tracking features (n=3, 3%) can be indicators of stress. For
example, to diagnose the level of stress, the changes in the
striations of muscle material in the iris as a response to stress
can be used as features for ML algorithms. In other words, pupil
diameter, which is controlled by iris sphincter muscles, can be
used as a feature [73]. Other eye-tracking features that have
been used for stress detection are visual fixations, saccade
movements, pupil size, microsaccades, and the number of eye
blinks in a specific time window during a certain task [74-76].

Skin Response
A skin response (n=24, 24%) can be defined as a
stimulus-regulated electrodermal response and is typically
measured using electrodes placed on the fingertips or hands.
Skin response is usually associated with an increase in
sympathetic activity on inducing stress events [77]. The skin

becomes a better conductor of electricity when it is stimulated
either externally or internally by physiologically stimulating
factors, including stressful conditions [78].

Respiratory Signals
Mental stress can affect different respiratory cycle phases and
breathing patterns (n=7, 7%) [79,80]. For example, it has been
discovered that stress had no impact on overall breath duration
(respiration rate) but that exhalation periods were longer and
pause periods were shorter in the stress experiment than in the
neutral condition [81].

On the basis of the findings of several studies, it can be
concluded that respiratory signal is one of the top contributing
factors in the explanation of stress in ML models. The most
common time-domain respiratory signal features that are
extracted for stress detection are root mean square, IQR, and
mean square differences between adjacent elements of breathing
rate and blood oxygenation levels. The most commonly used
frequency domain features of the respiratory signal are the power
of LFs (<2 Hz), the power of HFs (>2 Hz), and the ratio of the
power of LFs over the power of HFs (LF and HF)
[58,62,63,82-84].

EMG Data
EMG (n=3, 3%) detects the electrical activity of muscles at rest,
during a modest contraction, and during a strong contraction
[85]. Similar to acceleration data, several studies have shown
that using EMG data can help increase the performance of ML
models trained on ECG data. The action potential intrigued in
the EMG during stress can reduce the variance for
decision-making of classification models that use ECG
[58,86,87].

Hormones
It has been shown that stress can alter the levels of
glucocorticoids, catecholamines, growth hormones, and prolactin
in the bloodstream. Therefore, in ML models, levels of
hormones such as cortisol, dehydroepiandrosterone sulfate,
thyroid-stimulating hormone, free triiodothyronine, and free
thyroxine can be used as predictors for the detection of
stress-related disorders (n=1, 1%) [62].

Acceleration and Body Movement
Mental stress may cause a wide variety of behavioral and body
movement symptoms such as shaking hands and feet, which
can be measured by the acceleration data (n=8, 8%) [88].
Moreover, research has shown that people with a greater stress
score had less variance in their activity level and body
movements [89-91]. For example, in older adults, stressful life
events can be related to a reduced rate of regular physical
exercise [92]. Time and frequency features such as mean
absolute deviation from the mean, the total power of
acceleration, SD, the mean norm of acceleration, absolute
integral, and peak frequency of each axis are the features of
hand and body acceleration used for stress detection [31,57,93].
One practical characteristic of motion and acceleration data is
that they can be used to identify sources of noise in other signals.
For example, motion data can help distinguish stress from
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physical activity (eg, exercise) when other physiological
measures, such as ECG, have uncertainty in prediction [94,95].

Audio and Speech Signals

Speech Signals
Using speech signals (n=3, 3%), it is feasible to diagnose and
assess neurological disorders and MDs [96]. Moreover, studies
have shown that like body acceleration and EMG, features of
speech signals can make stress predictions of heart
measurements more robust. The best explanatory parameters
of speech signals are frequency domain parameters (eg, PSD,
strongest frequency from fast Fourier transform) and
time-frequency features such as Mel-frequency cepstral
coefficient [56,97,98]. Since time-frequency measures are
2-dimensional measurements with a high number of samples,
they make this signal suitable for use in convolutional NN
(CNN) models of stress and depression detection [99].

Audio Signals
For laboratory-based studies, audio signals (eg, beeping sounds;
n=2, 2%) can be used to stimulate stress events in participants
[100,101].

Text Data
Social media content (n=7, 7%) is frequently subjected to
reviews, opinions, and influence, as well as sentiment analysis.
Natural language processing methods may be used to evaluate
social networking posts and comments for mood and emotion
to detect whether a user is stressed [102-108].

Questionnaire
Different questionnaires (n=31, 32%) are used for the diagnosis
of stress and MDs including anxiety and depression. The scores
from different items on these questionnaires can be used as
dependent and independent variables in ML studies. The
questionnaires mentioned here were selected based on their
prevalence in the literature as well as their relevance to the ML
outcomes being predicted. For instance, some studies have
successfully leveraged scores from multiple questionnaires,
such as the Diagnostic and Statistical Manual of Mental

Disorders, Depression Anxiety and Stress Scale, Edinburgh
Perinatal/Postnatal Depression Scale, Center for Epidemiological
Studies-Depression survey, Mean Opinion Score, Hamilton
Depression Rating Scale, State-Trait Anxiety Inventory,
Posttraumatic Stress Disorder Checklist for Diagnostic and
Statistical Manual of Mental Disorders, Beck Depression
Inventory, Beck Anxiety Inventory, Hospital Anxiety and
Depression Scale, Goldberg’s Depression Scale, self-reports,
and clinician reports [109-126].

Preprocessing Techniques
In this section, important preprocessing techniques that have
yielded significant findings and how they are used to help the
detection of stress and its related MDs have been reviewed.

Synthetic Minority Oversampling Technique
In the detection of stress and its related MDs, the number of
samples for the stress or MD class is usually significantly lower
than the nonstress or non-MD class. This imbalance in the
number of samples for each class leads to a bias in prediction
(toward the majority class). To correct for data bias, it is possible
to oversample the underrepresented group. In stress detection
studies using ML models, the synthetic minority oversampling
technique is one of the most common approaches to boost the
minority class, which creates new samples by synthesizing those
already available in the data (by combining their features; n=3,
3%) [31,110,127].

Early Modality Fusion
In ML models used for the prediction of stress with a multimodal
approach, it has been shown that early fusion of multimodal
data before feature extraction is more effective and achieves a
better performance (n=1, 1%). This is because early modality
fusion better catches the important characteristics that are
coherent with each other. For example, a study showed that
combining different measures including skin response, skin
temperature, and body acceleration before feature extraction
outperforms the approach that extracts the features for each
measure separately and combines them afterward (Figure 3)
[128].

Figure 3. Early modality fusion (A) and late modality fusion (B).
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PSD Method
In physiological signals for stress detection, usually the power
of the signal changes during the moments of stress. PSD (n=13,
13%) explains the frequency-based power distribution of a time
series and reveals the locations of strong and weak frequency
variation. Welch’s method is one of the most common
approaches for calculating PSD [65]. PSD is often used in
studies that include frequency domain HRV features for stress
detection such as total HF or LF power [82-84,101,129-136].

ILIOU Method
In the detection of MDs, such as depression and anxiety, using
ML techniques, having the least error rate is significantly
important so that the person can take further actions
appropriately. In this matter, the data preprocessing step has an
important role in minimizing the noise and bias toward the false
prediction. Iliou et al [114] proposed ILIOU (n=1, 1%), a data
mapping and transformation method that identifies useful
information for the detection of MDs, especially for depression.
This method outperforms common data preprocessing
techniques such as principal component analysis (PCA),
evolutionary search algorithm, and isomap for the detection of
depression.

PCA Method
PCA (n=3, 3%) is a method for lowering the dimensionality of
such data sets while maximizing interpretability and minimizing
loss of information. It does this by generating new variables
that are uncorrelated and progressively optimize variance
[58,90,123].

Independent Component Analysis
Independent component analysis (ICA; n=4, 4%) is a
computational and statistical method for uncovering hidden
elements underlying random variables, observations, or signals.
This method is mostly used for removing artifacts from
stationary signal noises of the multichannel data. ICA optimizes
higher-order statistics such as kurtosis, while PCA optimizes
the covariance matrix of the data, which reflects second-order

statistics. In stress detection using physiological signals that
contain stationary noises (eg, eyeblink noise in EEG) it is
recommended to remove noises using ICA [63-65,67].

ASR Approach
ASR (n=1, 1%) is an adaptive approach for removing artifacts
from signal recordings on the web or offline, mostly
nonstationary signal noises. To identify artifacts based on their
statistical qualities in the component subspace, a PCA on
covariance matrices is repeatedly computed [137]. Since there
are usually substantial nonstationary noises in the EEG data, in
order to classify stress at multiple levels using EEG data, using
ASR before classification is highly recommended [65].

Latent Growth Mixture Modeling
Growth mixture modeling (n=1, 1%) is to discover numerous
hidden subpopulations, describe longitudinal development
within each hidden subpopulation, and investigate variation in
hidden subpopulations’ rates of change. Latent growth mixture
models are gaining popularity as a statistical tool for estimating
individual development over time and for probing the presence
of latent trajectories, in which people belong to the trajectories
that are not directly observable [62,138,139].

Dynamic Time Warping
It is common practice to transform data from 2 time series into
vectors and then compute the Euclidean distance between the
resulting points in vector space to determine the degree of
similarity or dissimilarity between the series, regardless of
whether they vary in time or velocity. Dynamic time warping
(DTW) method (n=1, 1%) can be applied to find such
similarities that may exist between people in terms of their mood
series. As an example, one may compare time series to find
whether they match for stress, depression, or anxiety. Moreover,
it can be used to forecast the mental condition of persons with
substantially comparable series patterns [130,140]. The
difference between DTW and Euclidian matching is that unlike
Euclidean matching, DTW considers the distance of each point
in one sequence to every point in the other sequence to
determine the similarity between them (Figure 4).

Figure 4. Dynamic time warping (left) versus Euclidian matching (right; modified from Portilla and Heintz [142]).

Kalman Filter
The Kalman filter (n=2, 2%) is a technique for making
predictions about unknown variables (eg, missing data) based
on observable data. Kalman filters include 2 iterative steps,

predict and update, that are used to estimate states using linear
dynamical systems in state-space format. Iterative cycles of
predict and update are performed until convergence is achieved
[143]. Kalman filter has been used to handle the missing data
for stress detection in some studies [144,145].
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Autoencoders
Autoencoders (n=3, 3%) are a type of NNs that learn a
representation of the data in lower dimensions than the original
data (encoding) by regenerating the input from the encodings
(decoding). For data with very high dimensionality, usually
clustering is not optimized because of the noise present in the
original data. Hence, it is an appropriate practice to use the
encoded representation of the data, obtained by autoencoders,

to have lower and more optimized dimensions for clustering
[65,108,146].

Self-Organizing Map
In ML, a self-organizing map (n=3, 3%) produces a
low-dimensional, typically 2-dimensional, representation of a
high-dimensional data set while preserving its topology by
creating clusters. Therefore, it is possible to visualize and
analyze high-dimensional data more easily (Figure 5)
[107,133,147].

Figure 5. Representation of self-organizing map (SOM) before (left) and after mapping (right; modified from Cho et al [133]).

Wrapper Feature Selection Methods
Wrapper methods try to use a subset of features while training
a model. Changes will be made to the feature subset on the basis
of the performance of the prior model (Figure 6). Therefore,
finding the best features using the wrapper method is a search

problem. These methods often have high computing costs [148].
Some of the most common wrapper methods are naive search,
sequential forward feature selection, sequential backward feature
selection, and generalized sequential search [149]. Some studies
used this approach as their feature selection technique [72,75].

Figure 6. Steps of a wrapper feature selection method.

Filter Feature Selection Methods
In general, filter methods are used as a preprocessing step
without regard to any ML algorithms. Statistic tests are used

instead to select features based on their correlation with
dependent variables (Figure 7). The filter feature selection
methods used in the literature are mentioned in subsequent
sections.
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Figure 7. Steps of a filter feature selection method.

Chi-Square Test
This test checks for independence between categorical features
and the target variable. Features with high chi-square scores are
selected, implying a strong association with the target variable,
which may be valuable for the model (n=3, 3%) [56,135,150].

Pearson Correlation
Pearson linear correlation coefficient (n=2, 2%) is a way to
quantify how closely 2 sets of data are correlated linearly. It
indicates how different measures are related to each other by a
number between –1 and 1. Therefore, among highly correlated
variables, some of them can be removed, as they do not add
useful information to ML models [113,151].

Minimum Redundancy Maximum Relevance
The maximum relevance minimum redundancy technique (n=2,
2%) chooses characteristics having a high correlation to output

(relevance) and a low correlation to one another (redundancy).
The F statistic is used to determine the correlation between
features and the output, while the Pearson correlation coefficient
(for non–time series features) and DTW (for time-series
features) may be used to calculate the correlation between
features (Figure 8). The objective function, which is a function
of relevance and redundancy, is then maximized by selecting
features one at a time using a greedy search. Mutual information
difference and mutual information quotient criteria are both
frequently used objective functions that depict the difference
or quotient between relevance and redundancy [152,153]. Using
this feature selection method, Giannakakis et al [130] have
ranked ECG measurements in the order of importance as mean
HR, LF, NN50, SD of HR, pNN50, LF or HF, RMSSD, HF,
and total power.
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Figure 8. Calculation of relevance and redundancy for (A) nontime series features and (B) time-series features. DTW: dynamic time warping.

ML Techniques
The ML algorithms used for stress and MD detection have been
reviewed in this section. The papers (n=98) used the DL
approach or NN (n=38, 39%), LR (n=26, 27%), naive Bayes
(NB; n=22, 22%), decision tree (DT; n=23, 23%), boosting (eg,
adaptive boosting, extreme gradient boosting [XGBoost], etc;
n=22, 22%), random forest (RF; n=37, 38%), discriminant
analysis (DA; eg, linear DA and quadratic DA) (n=6, 6%), fuzzy

C-means (FCM; n=2, 2%), k-nearest neighbors (KNNs; n=22,
22%), and support vector machines (SVMs; n=48, 49%). Table
2 shows the distribution of articles by ML model (refer to Table
S1 in Multimedia Appendix 2 [29-31,33,36,39-43,56-63,
6 5 , 6 6 , 6 8 , 6 9 , 7 3 , 7 5 - 7 7 , 7 9 , 8 0 , 8 4 , 8 8 , 9 0 , 9 1 ,
94,99,100,105,107-112,114-117,119,122-129,137,
139,141,142,146,147,154-160] to find which papers have used
each ML technique).

JMIR Ment Health 2024 | vol. 11 | e53714 | p. 12https://mental.jmir.org/2024/1/e53714
(page number not for citation purposes)

Razavi et alJMIR MENTAL HEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Number of articles for each machine learning (ML) model (n=98).

Articles, n (%)ML model

38 (39)NNa

26 (26)LRb

22 (22)NBc

23 (23)DTd

22 (22)Boosting

8 (8)AdaBooste

15 (15)XGBoostf

37 (38)RFg

6 (6)LDAh and QDAi

2 (2)Fuzzy

4 (4)K-means

22 (22)KNNj

48 (49)SVMk

19 (19)Other

aNN: neural network.
bLR: logistic regression.
cNB: naive Bayes.
dDT: decision tree.
eAdaBoost: adaptive boosting.
fXGBoost: extreme gradient boosting.
gRF: random forest.
hLDA: linear discriminant analysis.
iQDA: quadratic discriminant analysis.
jKNN: k-nearest neighbors.
kSVM: support vector machine.

LR Technique
LR (n=26, 27%) is a supervised parametric ML technique in
which multiple independent variables will be used to detect the
occurrence of stress or normal conditions [72,117]. Some studies
used the numerical independent variables (eg, HRV time-domain
features: RMSSD, HR, and pNN50) [94,155] or categorical
data (eg, answers to multiple choice questions) obtained from
questionnaires [107,114,115].

NB Algorithm
NB algorithm (n=22, 22%) is a supervised, generally parametric,
classification method that uses the Bayes Theorem as its

foundation and has the naive assumption of predictor
independence. In other words, the NB classifier assumes that
the existence of a given independent variable to predict the
dependent variable is independent of the presence of any other
independent variable that predicts the dependent variable.

DT Algorithm
The DT (n=23, 23%) is a supervised nonparametric ML
algorithm used in classification and regression applications. It
comprises a root node, branches, internal nodes, and leaf nodes
in a hierarchical, tree-like structure (Figure 9).
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Figure 9. Structure of a decision tree.

Boosting Algorithm
Boosting (n=22, 22%) is an ensemble learning for reducing
training errors by combining a group of weak learners. When
using the Boosting algorithm, models are fitted on random
samples of data, and then models are trained repeatedly in a
sequence. When each model starts being trained in that
sequence, it attempts to make up for the flaws of the one that
came before it. The most commonly used Boosting algorithms
are adaptive boosting, gradient boosting, and XGBoost.

RF Algorithm
RF (n=37, 38%) is a supervised nonparametric ensemble
learning algorithm that uses many DTs built during the training
process. The RF algorithm is used for both classification and
regression problems. When it comes to classification, the RF’s
output is the class that most of the DTs choose. For regression
purposes, an individual tree’s predicted mean or average is
returned as the output. Using RFs, we can overcome the
tendency of DTs to overfit their training data.

DA Algorithm
DA (n=6, 6%) is a supervised parametric classification algorithm
that works with data including a dependent variable and
independent variables and is mostly used to classify the
observation into a certain group based on the independent
variables in the data. Linear DA and quadratic DA are the 2
forms of DA.

KNN Algorithm
KNN (n=22, 22%) is a nonparametric supervised ML algorithm
that is used for both classification and regression purposes. In
classification, the algorithm determines the label of a new
sample not available in the training data by assigning the label
of the majority of k-nearest training data points to that new
sample (Figure 10). In regression, the output for each sample
is the average of the values of KNNs to that sample (not
including the sample itself). In this literature, KNN has only
been used for classification.

Figure 10. Example of k-nearest neighbor classification with K=7. In this example, the label of “Class C” is assigned to the new (black) datapoint
since the majority of the 7-nearest datapoints to the new datapoint are from “Class C.”.

JMIR Ment Health 2024 | vol. 11 | e53714 | p. 14https://mental.jmir.org/2024/1/e53714
(page number not for citation purposes)

Razavi et alJMIR MENTAL HEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


SVM Algorithm
SVM (n=48, 49%) is a parametric supervised ML algorithm
used for both classification and regression problems. It can solve
both linear and nonlinear problems using nonlinear kernels. For
classification, the SVM algorithm finds a line (or a hyperplane
for nonlinear kernels) between each pair of classes of the
training data in a way that the margin distance of that line or

hyperplane to the closest point of each of those 2 classes is
maximized (Figure 11). This is repeated for all pairs of classes
in the data set. Then, the obtained lines are used as boundaries
for the classes. In regression, the SVM tries to find the line or
hyperplane that within a very small margin of has the maximum
number of data points. That line or hyperplane was used for
regression.

Figure 11. Visual representation of support vector machine algorithm.

K-Means Clustering
K-means clustering (n=4, 4%) is an unsupervised ML algorithm
that aims to arrange objects into groups based on their similarity.
To find those similarities, it calculates the distance of data points
into K random cluster centroids and assigns each data point to
its closest centroid. The location of each centroid is then updated
by the average value of all data points associated with that
centroid. This process is repeated until there is no change in the
location of the centroids. In ML models for stress detection,
K-means clustering has been used in the literature for the
personalization of the ML models [58,67], and for labeling the
data set [146,156].

NN Method
DL methods are a subset of ML methods, and NNs are at the
heart of the DL algorithms. The NN (n=38, 39%) is a method
for implementing ML that uses interconnected nodes or neurons
arranged in a layered structure resembling the human brain. The
different types of NNs have been explained in subsequent
sections.

Artificial Neural Network
It is possible to think of a single perceptron (or neuron) as an
abstract LR. In each layer of artificial neural networks (ANNs),
a group of multiple perceptron or artificial neurons is used.
Figure 12 shows an ANN with 1 layer and its working
mechanism.
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Figure 12. (A) Representation of an artificial neural network with 1 hidden layer. Wij
(1) and Wij

(2) denote the weights of the links connecting the first
layer (input layer) to the hidden layer and the weights of the links connecting the second layer to the next layer (output layer), respectively. (B)
Representation of how a single neuron works. First, all the outputs of the previous layer are multiplied by the weights associated with the links connecting
them to the jth neuron of the next layer and summed by a bias (summation and bias step). The result is then passed through an activation function
(activation step).

CNN Approach
CNNs are a form of NN that is especially adept at handling data
structures with a grid-like layout, such as images or objects.

Classification and computer vision applications are common
uses for CNNs (Figure 13).
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Figure 13. Representation of convolutional neural network for a physiological signal.

Recurrent Neural Network Approach
A recurrent neural network (RNN) is a subset of ANNs designed
specifically for use with time-series data and other
sequence-based data. Long short-term memory (LSTM)
networks are the most common type of RNNs. In RNNs, the
attention mechanism is a method that simulates cognitive
attention in NNs. The purpose of the impact is to encourage the
network to give greater attention to the small but significant
portions of the input data by enhancing some and reducing
others. Since stress may alter a small portion of physiological
data (eg, ECG), attention mechanisms can be used to detect
stress using RNNs when large data sets are available [141].

Cong et al [102] introduced X-A-BiLSTM, which is a DL model
that includes XGBoost (to filter data and handle imbalanced
data) and attention Bi-LSTM (LSTM with forward and
backward memory and attention mechanism) NN used for stress
classification using text data.

Other ML Techniques
The total number of studies in this category include (n=19, 19%)
of studies.

Voting Ensemble Classifier
The classification is decided based on weighted voting, which
is determined by using a voting ensemble approach. The voting
classifier allows for voting in which the final class labels are
determined either by the class chosen most frequently by the
classification models or by the average of the output
probabilities from each classification model. In the literature,
this method has been used for PTSD detection [127], stress, and
stress-related MDs [84,95,118,156,157].

FCM Clustering
FCM is a clustering approach that assigns every data point to
all the clusters with a certain probability instead of assigning
each point to only 1 cluster. For instance, a data point that is
near the cluster’s center will have a high degree of membership,
while a data point that is distant from the cluster’s center will

have a low degree of membership [158]. Since depression and
anxiety are not discrete measures, some studies have used FCM
as an alternative to other clustering techniques for the detection
of these MDs [114,116].

Discussion

Principal Findings
In this review, the recent ML algorithms; preprocessing
techniques; and data (eg, physiological data, questionnaire data,
etc) used in the detection, prediction, and monitoring of stress
and the most common MDs (ie, depression, anxiety, other
stress-related MDs) have been reviewed.

On the basis of this review, it is concluded that among classic
ML algorithms (excluding DL approaches), supervised models
of SVMs and RF have been used more often and achieved better
performance in terms of model accuracy and robustness
(measured by parameters such as area under the receiver
operating characteristic curve). The accuracy of ML models is
a critical indicator of their utility in real-world applications. The
review demonstrates that SVM consistently achieves high
accuracy across various data types, including HR, HRV, and
skin response. For instance, SVM achieved 93% accuracy with
HR, PPG, and skin response data in the study by Nath et al [29]
and 96% with skin response data in the study by Srividya et al
[156]. These results underscore SVM’s robustness in handling
complex, nonlinear data. RF also shows commendable
performance, with an accuracy of 99.88% in the study by
Trevisan [159], reflecting its strength in ensemble learning to
mitigate overfitting and noise.

Moreover, among the predicting measures for stress and
stress-related MDs, HR, HRV, and skin response have been
used most often (Figure 14). These measures were the major
explaining factors in the ML algorithms to predict stress and
stress-related MDs. It is noticeable that DL approaches are
becoming more popular as these techniques provide unique
specifications that classic ML algorithms cannot provide.
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Figure 14. Distribution of machine learning (ML) models used for each type of data. In this figure, skin response and heart measures (including heart
rate, heart rate variability, and blood pressure) have been shown separately because of their high use and importance in the literature. Other
psychophysiological measures include electroencephalogram, electromyogram, eye tracking, and respiratory signals. Activity includes body movement.
Sentiment data include speech and text data. Finally, perceived measures include questionnaires and self-report data. DT: decision tree; KNN: k-nearest
neighbors; LDA: linear discriminant analysis; LR: logistic regression; NB: naive Bayes; NN: neural network; QDA: quadratic discriminant analysis;
RF: random forest; SVM: support vector machines.

Since stress is a time-dependent event, the relationship between
different lags of time can be important for detection of stress.
RNNs and CNNs will take into account the relationship between
data points in different time series for their decision-making,
and they have the potential to enhance the detections. DL
models, specifically CNNs and LSTMs, show promising results,
with CNNs achieving 92.8% accuracy in HRV and ECG data
in the study by Quintero et al [155], indicating their potential
in feature-rich physiological data. However, it is worth noting
that DL models require substantial data for training, which may
limit their applicability in studies with smaller data sets.
Attention mechanism in RNNs is a new technique that is
becoming popular for finding anomalies in physiological signals.
However, based on the review of literature, this mechanism has
only been used on text data (not on physiological signals) to
detect stress. Therefore, the attention mechanism is the
technology that can be further used for physiological signals to
detect stress.

Unsupervised ML (and DL algorithms) such as clustering
techniques have been used mostly for the preprocessing step to
label the data (if labels are not available) and also for finding a
representation of the data that achieves the best performance in
detection algorithms.

For data preprocessing, feature selection (ie, filter and wrapper
methods) and extraction techniques are commonly used. In
feature extraction approaches, latent representations of data by
transformations such as the output of encoder in autoencoders
have been useful to remove data noises and to make the data
more compact, making further computations more efficient.
PCA and ICA are other most common feature extraction
approaches used in the literature.

Among the selected features, statistical indicators of heart
measurements such as the mean and SD of HR, along with time

and frequency representations of HRV such as RMSSD and
total LF and HF power, were most widely used. Heart
measurements have also been used more often than other
measurements, as they are unobtrusive, noninvasive, affordable,
and easier to measure and describe a big portion of stress events.
After those measurements, skin response measures have been
found to be one of the most important factors in the detection
of stress and its related disorders. The time-frequency
approaches to analyzing time-series data are becoming more
popular in this area as they are proper representations of data
for DL approaches that can be more accurate and robust. As an
example, for DL algorithms, RNNs with attention mechanisms
can help to find portions of data related to stress and its related
disorders with higher confidence.

Most of the study models do not interpret the ML models and
look at them as black boxes. This limits the contribution to the
body of science. Shapley additive explanations is a technique
used by some studies to interpret the models such as the
evaluation of features to find the most important ones and how
in what direction each feature affects the predictions. Shapley
additive explanations correlation plot provides insight into the
distribution of the features themselves, as well as the relationship
between their influence on the model. In other words, it provides
the importance of each feature in the prediction of the dependent
variable by considering both the main effect and the interaction
effect of that feature with other features in the data
[31,62,120,159,161,162].

Despite progress in stress detection methodologies, the
exploration of personalized models has been limited. Most
studies have not gone beyond basic normalization techniques,
overlooking the fact that physiological measures are as distinct
to individuals as biometric identifiers. A notable exception can
be found in a select few studies [67,128,160], which have used
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more sophisticated personalization techniques, integrating
complex data transformations to account for individual
variability.

Strengths of the Review
In undertaking this scoping review, we have embarked on a rich
exploration of the applications of ML in the field of stress
detection, articulating a narrative that is both comprehensive
and detailed. The review lays out a landscape in which diverse
data types are not merely cataloged but deeply analyzed for
their roles and interconnections within the broader context of
methodological approaches. This provides a robust
understanding of the field’s current state and its complexities.

This review has documented a comprehensive assessment of
various physiological measurement techniques, including HRV,
EEG, ECG, and so on. This assessment is not just a recounting
of the types of data used in the literature but a thoughtful
consideration of how each contributes to a multifaceted
understanding of stress indicators. It is an acknowledgment that
the signals of stress are as complex as the condition itself,
necessitating a rich palette of investigative tools.

The review also examines a range of advanced preprocessing
techniques such as maximum relevance minimum redundancy,
self-organizing map, synthetic minority oversampling technique,
and PCA. This examination sheds light on how different studies
leverage these methods to refine the quality of the data fed into
ML models, thereby potentially enhancing the models’accuracy
and reliability in detecting stress. It is an illustration of how
sophisticated data treatment can lead to more nuanced insights,
even if our methodology did not directly use these techniques.

Limitations
Our scoping review acknowledges its inherent constraints,
including a possible selection bias due to potential omissions
of pertinent studies. It serves as a contemporary cross-section
of the rapidly evolving domains of ML and MH, underscoring
the imperative for periodic scholarly review to sustain its
relevance and precision. While we survey a broad spectrum of
ML techniques applied to stress detection, we do not extensively
assess their efficacy, suggesting a fertile ground for future
empirical investigations to assess these methods across diverse
data cohorts and settings. In addition, while we address the
preprocessing techniques and their impact on model
performance, our discussion does not delve into detailed
technical analysis. Finally, the crucial issue of model
interpretability is touched upon but not explored in depth,
presenting an opportunity for further scholarly explorations.

Conclusions and Future Directions

Overview
The pivotal insights from this review underscore the potential
of ML to redefine the approach to MH care, particularly in the
diagnosis and management of stress-related conditions and

MDs. As we have discerned, there is an expansive field ripe for
further exploration, with research gaps suggesting a number of
promising directions. Guided by these insights, we can now
chart a course for future research that not only expands the
boundaries of our scientific understanding but also translates
into tangible improvements in clinical practice.

Real-Time and Naturalistic ML Applications
The scarcity of real-time studies in naturalistic settings has
highlighted the importance of developing ML models that
accurately reflect and respond to the complexities of real life.
Future research must prioritize the creation of algorithms
capable of operating amidst the unpredictability of daily life,
providing immediate insights and adaptable interventions. These
models hold the potential to transform practice by offering tools
that can preemptively identify stress and MD symptoms,
enabling clinicians to intervene before conditions worsen.

Temporal Data and DL
Our review illuminates the untapped potential of time-series
data in capturing the evolution of stress and MDs. DL
techniques, specifically designed to interpret complex, sequential
data, could lead to breakthroughs in how we understand and
predict MH trajectories. For practice, this means more
sophisticated diagnostic tools that can provide a nuanced picture
of a patient’s MH over time, enabling personalized treatment
plans that are responsive to the patient’s changing condition.

Personalization in ML Models
The need for individualized care for MH cannot be overstated.
The heterogeneity of stress responses and MD symptoms calls
for personalized ML models tailored to individual physiological
and behavioral patterns. Future research should focus on
leveraging multitask learning to refine algorithms that adapt to
individual baselines, enhancing the personalization of care. For
clinicians, this means access to tools that can more accurately
reflect and respond to the unique needs of each patient, reducing
the risk of misdiagnosis and improving treatment efficacy.

Predictive analytics can be instrumental in identifying key
factors that contribute to misdiagnosis and delayed help seeking.
Future studies should look to build on this knowledge to inform
the creation of interventions that encourage timely and accurate
diagnosis. In practice, this could lead to the development of
targeted screening tools that assist clinicians in recognizing
at-risk individuals more effectively. The integration of clinical
expertise with ML innovation is crucial for the development of
tools that are both advanced and clinically relevant.
Collaboration between health care professionals, patients, and
artificial intelligence developers will be essential in creating
user-centered tools that address real-world needs. This
collaborative approach will likely result in the development of
artificial intelligence applications that are more intuitive and
effective in clinical settings.
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Abbreviations
ANN: artificial neural network
ASR: artifact subspace reconstruction
BP: blood pressure
CNN: convolutional neural network
DA: discriminant analysis
DL: deep learning
DT: decision tree
DTW: dynamic time warping
ECG: electrocardiogram
EEG: electroencephalogram
EMG: electromyogram
FCM: fuzzy C-means
HF: high frequency
HR: heart rate
HRV: heart rate variability
ICA: independent component analysis
KNN: k-nearest neighbor
LF: low frequency
LR: logistic regression
LSTM: long short-term memory
MD: mental health disorder
ML: machine learning
NB: naive Bayes
NN: neural network
PCA: principal component analysis
PPG: photoplethysmogram
PRISMA-ScR: Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping
Reviews
PSD: power spectral density
PTSD: posttraumatic stress disorder
RF: random forest
RMSSD: mean square of successive RR interval differences
RNN: recurrent neural network
SVM: support vector machine
XGBoost: extreme gradient boosting
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