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Abstract

Background: Identifying individuals with depressive symptomatology (DS) promptly and effectively is of paramount importance
for providing timely treatment. Machine learning models have shown promise in this area; however, studies often fall short in
demonstrating the practical benefits of using these models and fail to provide tangible real-world applications.

Objective: This study aims to establish a novel methodology for identifying individuals likely to exhibit DS, identify the most
influential features in a more explainable way via probabilistic measures, and propose tools that can be used in real-world
applications.

Methods: The study used 3 data sets: PROACTIVE, the Brazilian National Health Survey (Pesquisa Nacional de Saúde [PNS])
2013, and PNS 2019, comprising sociodemographic and health-related features. A Bayesian network was used for feature selection.
Selected features were then used to train machine learning models to predict DS, operationalized as a score of ≥10 on the 9-item
Patient Health Questionnaire. The study also analyzed the impact of varying sensitivity rates on the reduction of screening
interviews compared to a random approach.

Results: The methodology allows the users to make an informed trade-off among sensitivity, specificity, and a reduction in the
number of interviews. At the thresholds of 0.444, 0.412, and 0.472, determined by maximizing the Youden index, the models
achieved sensitivities of 0.717, 0.741, and 0.718, and specificities of 0.644, 0.737, and 0.766 for PROACTIVE, PNS 2013, and
PNS 2019, respectively. The area under the receiver operating characteristic curve was 0.736, 0.801, and 0.809 for these 3 data
sets, respectively. For the PROACTIVE data set, the most influential features identified were postural balance, shortness of breath,
and how old people feel they are. In the PNS 2013 data set, the features were the ability to do usual activities, chest pain, sleep
problems, and chronic back problems. The PNS 2019 data set shared 3 of the most influential features with the PNS 2013 data
set. However, the difference was the replacement of chronic back problems with verbal abuse. It is important to note that the
features contained in the PNS data sets differ from those found in the PROACTIVE data set. An empirical analysis demonstrated
that using the proposed model led to a potential reduction in screening interviews of up to 52% while maintaining a sensitivity
of 0.80.

Conclusions: This study developed a novel methodology for identifying individuals with DS, demonstrating the utility of using
Bayesian networks to identify the most significant features. Moreover, this approach has the potential to substantially reduce the
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number of screening interviews while maintaining high sensitivity, thereby facilitating improved early identification and intervention
strategies for individuals experiencing DS.

(JMIR Ment Health 2024;11:e52045) doi: 10.2196/52045
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Introduction

Background
Improving the identification and management of depression in
primary care remains a global challenge. A meta-analysis has
revealed that in primary care, approximately 50% of patients
with depression receive diagnoses, while around 15% acquire
treatment [1]. While screening for depressive symptomatology
(DS) holds significance, it alone falls short of being effective
[2].

When evaluating individuals with DS, one approach involves
the use of screening tools to determine who may require
treatment and further investigation. Among these tools, the
9-item Patient Health Questionnaire (PHQ-9) is a widely used,
self-administered questionnaire [3].

In certain scenarios, mental health information (such as the
PHQ-9) may not be available, whereas other health or behavioral
information that can be linked to an increased risk of depression
may be abundant. Examples of such data are demographics,
medical history, lifestyle indicators, and socioeconomic status.
In such scenarios, it may be useful to leverage the available data
to identify individuals likely to have DS such that these
individuals can be targeted proactively for interventions. This
proactive strategy has the potential to provide necessary support
and care before symptoms escalate or result in severe
consequences.

Data-driven approaches using machine learning offer an
appealing opportunity to design better prescreening
methodologies, particularly within primary care settings.
Machine learning algorithms can identify patterns in the data
that may not be obvious to human experts [4-6].

In many studies involving machine learning models, insights
beyond the model development phase are not provided. The
results usually provide a simple Yes or No for the presence of
depression, usually operating as “black boxes” with an absence
of transparency in the decision-making process [7,8]. There is
a lack of understanding as to which features are most important
in predicting DS.

There are instances where machine learning models offer some
level of explainability [9-12]. However, the insights generated
by these models often only consider the predictive power of the
predictors. While this approach can help identify the most
impactful predictor, it does not provide a probabilistic measure,
which is essential for dealing with uncertainty. The use of
probability-based measures in machine learning models can

provide clinicians with a more nuanced understanding of an
individual’s likelihood of experiencing depression.

Moreover, most machine learning models developed for
detecting DS fail to provide applications on how to use the
models effectively [13-16]. These studies do not develop
practical tools to help users benefit from the machine learning
models, focusing solely on the model development process. To
encourage the use of machine learning models in clinical
practice, it is essential to develop machine learning models that
are designed with the end user in mind. This includes creating
tools that can help practitioners effectively integrate the model
into their practice.

The current literature on the use of machine learning models
for predicting DS lacks a comprehensive integration of
explainability and transparency to identify the important features
associated with DS using only general health and socioeconomic
data and in the absence of tools such as the PHQ-9 or any other
depression-related features. In addition, there is a shortage of
practical applications using machine learning to support clinical
practice. In our proposed method, we aim to address these gaps.

Objective
The first objective of this study is to establish a replicable
prescreening proof-of-concept methodology for the detection
of individuals with DS. Using solely general health and
socioeconomic data, we aim to demonstrate the potential for
such data in identifying individuals who might benefit from
further screening. The second objective is to enable the
identification of the most influential predictors with probabilistic
insights into their importance, all based on the same general
health and socioeconomic data. The third objective is to develop
a tool that enables specialists to use the benefits of the
methodology in their practice.

This paper’s structure comprises a Methods section detailing
data preparation, the feature selection technique, and
probabilistic insight extraction. It introduces a machine learning
algorithm and its applications. The Results section presents
cleaned data sets, chosen features, the most influential
predictors, and the performance of the models and showcases
the models’utility in a practical scenario. The Discussion section
concludes by summarizing findings, acknowledging limitations,
and discussing implications.
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Methods

Overview
Our proposed methodology for developing a machine learning
model to assess people with DS was applied to 3 distinct
Brazilian data sets. The first, known as the PROACTIVE data
set [17], comprised individuals aged ≥60 years residing in
socioeconomically deprived areas of Guarulhos city. The
participants were registered in 20 primary care clinics in
Guarulhos and were approached, according to a randomly
ordered list, for a DS screening interview conducted either in
person or via phone using a personalized app [18].

The other 2 data sets, Pesquisa Nacional de Saúde (PNS) 2013
and PNS 2019 [19], resulted from a Brazilian national health
survey that assessed individuals aged ≥18 years in different
sociodemographic groups and health behaviors. The surveys
were conducted in 2013 and 2019 using a household approach
where they applied stratified sampling.

All 3 studies used the PHQ-9, which is a 9-item questionnaire
that serves as a screening tool for assessing DS. All questions
are related to the previous 2 weeks, with responses to each
question scored from 0 to 3, where 0 means “Not at all” and 3
means “Nearly every day.” The PHQ-9 cut-off score commonly
used for DS is ≥10 [20-22], and we used this to create a binary
classification target for the machine learning model. Summary
statistics of the sociodemographic data and the prevalence of
DS are presented in Tables S1, S2, and S3 in Multimedia
Appendix 1 for the PROACTIVE, PNS 2013, and PNS 2019
data sets, respectively.

Ethical Considerations
The PROACTIVE trial received approval from the Comitê de
Ética em Pesquisa Faculdade de Medicina da Universidade de
São Paulo and authorization from the Guarulhos Health
Secretary (number 2.836.569). The Brazilian National Health
Ethics Research Committee of the Brazilian National Health
Council approved the PNS 2013 (number 328.159) and PNS
2019 (number 3.529.376) surveys. Anonymized versions of the
PNS 2013 and PNS 2019 surveys are publicly available for
download and analysis. All participants provided informed
consent.

Data Preparation
First, we randomly divided each data set into training (70%)
and test (30%) sets. The development of the models is performed
using the training data set with the test data set strictly used to
test the performance of the created models on data not yet seen.
Next, we created our response variable by summing the recorded
responses of all the PHQ-9 score items for each participant and
recording a 1 when the total sum was ≥10 and 0 otherwise. We
only included participants who answered all 9 items, and the
respondents were aged ≥18 years.

We dropped all features from the data sets related to depression,
as our aim was to solely use data readily available in health
platforms, such as general health and socioeconomic
information. We also dropped features and patients with more
than 20% missing values [23] and features with just 1 level in

the responses obtained. Furthermore, we categorized all numeric
features with more than 30 levels into 4 bins by quartiles (25,
50, 75, and 100).

We then transformed all features into ordinal numbers. To
address any remaining missing values, we adopted an approach
discussed in the study by Enders [24] by creating a new missing
class and assigning it a value of 0. This choice was based on
the fact that not all features had a value of 0 and that 0 is a value
close to the range of the feature values. This also facilitates
model development, as the standardization process that we
applied after the missing imputation step is less sensitive when
the range values are close to each other. Standardization is
applied to ensure that all features have a similar scale, which
helps in comparing the importance of different features and
improving the model’s overall performance [25].

Feature Selection
The development of a machine learning model generally
involves selecting relevant features to be used as inputs. A total
of 1 approach to this task is constructing a Bayesian network
(BN), which is a directed acyclic graph composed of nodes and
edges. In this context, nodes represent the features and the
directed edges represented by arrows illustrate the relationships
among them [26].

BNs have been successfully applied in different scenarios, such
as feature selection [27-29], model prediction [30-32], and
providing insights for decision-making [33-36]. Moreover, a
BN is a useful tool for visualizing and interpreting complex
relationships between features. This enables the identification
of critical features and their impact on the outcome.

BNs can be constructed using two primary methods, namely
(1) manual node definition and edge direction [37] or (2)
learning through data [38,39].

In our approach, we apply the Incremental Association Markov
Blanket algorithm to learn the BN from data [40]. The Markov
blanket (MB) of a node X, represented by MB(X), is
characterized by its parents (nodes that have arrows pointing
toward X), children (nodes that receive arrows from X), and
spouses (nodes with arrows leading to children of X, yet not
linked to X).

To evaluate the confidence level of the BN learned from the
data, we used a bootstrap approach [41] by generating 1000
samples of the BN. We then computed the probabilities of
having an edge between every pair of nodes (Xi, Xj; known as
strength) and the probabilities of having a directed edge from
Xi to Xj and from Xj to Xi (known as direction) [42]. To
construct our final BN, we selected the edges with a strength
of 50% and higher [43] and set their direction to correspond
with the majority of the bootstrap models.

Subsequently, we conducted another test to assess the strength
of the BN by performing an independence test between every
pair of nodes using mutual information [44]. We used an
independence test because it can investigate whether 2 features
are statistically independent, implying that the occurrence or
value of 1 feature does not influence the other. If the test yielded
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insufficient evidence of nonindependence (P≥.05), then that
edge was removed from the network.

Conventionally, in the literature [45,46], BN-based feature
selection is predominantly performed using the MB of the
outcome of interest. However, we also tested the efficacy of
using all the features connected to the outcome by a path (we
call this All-path-features). A feature was considered part of
this path if it was possible to reach the outcome node by
traversing the edges and nodes in between, regardless of the
directions of the edges. Therefore, we tested 2 scenarios of the
model: 1 using All-path-features in the path and another using
only the MB of the outcome.

BN Parameter Learning
Once the BN structure is constructed, it is possible to assess the
relationships between the features. These relationships are
probabilistically expressed through conditional probability
distributions (CPDs) [47]. The process of estimating the CPD
is known as parameter learning. The CPD specifies the
probability distribution for each node given its parents. To
estimate the CPD, we used the Bayesian method [48]. The
Bayesian method is a powerful tool for estimating the CPD, as
it takes into account both prior knowledge and observed data.

In this study, we computed the CPD table of the outcome node
given its parents. The parents represent the features on which
our outcome is conditionally dependent, and the CPD table
provides the probability values of having DS for different
combinations of parent values. We examined the combinations
of parent values that exhibited the most discriminatory power
when considering individuals with DS.

The data preparation, construction, and parameter learning of
the BN were implemented using R 4.2.2 with libraries bnlearn,
parallel, and base. R is freely available open source software
(R Foundation for Statistical Computing).

Training of Prediction Models
In the training phase of model development, particularly in a
classification problem with 2 classes, it is common practice to
oversample the minority class [49-51]. This is because by
oversampling the minority class, we can improve the model’s
ability to learn from both classes and achieve better overall
performance.

For the development of the models, our approach applied
stochastic gradient descent (SGD), which is a widely used
optimization algorithm in machine learning. The objective of
SGD is to minimize an error function through an iterative
process where the model’s parameters are updated at each step
until the algorithm converges. SGD is known for its scalability
[52], stability, and robustness [53] and has shown good
performance across different domains [54-56].

One of the drawbacks of using SGD is that finding the optimal
combination of hyperparameters for each data set can be
challenging. We used BayesSearchCV from Python’s skopt
package, which applies both Bayesian optimization and 5-fold
cross-validation to evaluate each model’s performance [57].
The selection of the optimal hyperparameter set for each data
set was done by selecting the configuration that yielded the

highest area under the receiver operating characteristic curve
(AUC-ROC) metric.

The study focused on tuning 3 hyperparameters: the loss
function, penalty term, and α coefficient. The loss function
characterizes the relationship between the model’s predictions
and the actual values. A total of 3 types of loss functions were
examined: Hinge, Modified Huber, and Log [58,59].

The penalty term corresponds to a regularization technique
aimed at enhancing the model’s generalization capability. In
addition, the α coefficient, a positive value, controls the level
of regularization applied. In this study, 3 types of regularization
for the penalty term were considered: L1 [60], L2 [61], and
elastic net [62].

To explore the effect of the α coefficient on regularization, a
range of values from 0.000001 to 1,000,000 were used.

Evaluation of the Models
We evaluated the models using two scenarios: (1)
All-path-features and (2) the MB of the outcome, as mentioned
in the Feature Selection section. For each scenario, we used the
best set of hyperparameters discussed in the Training of
Prediction Models section.

To validate each model, we once again applied 5-fold
cross-validation on top of the cross-validation for
hyperparameter tuning explained in the previous section. For
each fold, we recorded the threshold that optimized both
sensitivity and specificity simultaneously determined by the
Youden index. Afterward, by averaging the thresholds obtained
from the folds, we analyzed the metrics of AUC-ROC,
sensitivity, and specificity. In addition, we calculated the mean
and SD of these metrics across the folds. Sensitivity, specificity,
and AUC-ROC were chosen as evaluation metrics to assess the
performance of the models, given their advantages in the
screening process.

To assess the performance of each machine learning model, we
used the test data, which was set aside during the data
preparation stage. We used sensitivity, specificity, and
AUC-ROC to assess the performance of the model, applying
their respective thresholds calculated according to the previous
paragraph. Then, we compared the results to those obtained
from the training data. By comparing these results, we gained
insights into the model’s generalization capabilities and its
performance on new and unseen instances.

The model development was implemented in Python 3.7.7 using
packages SGDClassifier, CalibratedClassifierCV from sklearn,
and BayesSearchCV from skopt. Python is freely available open
source software (Python Software Foundation).

Application of the Models
Having identified the most important features and created a
model to use these features to predict DS for each data set, the
next step was to analyze how the models can help target people
with DS and what benefits they offer. To this end, we used the
test data, which were previously only used to evaluate the
performance of the models, to illustrate the relationship between
the reduced screening interviews that can be obtained by
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selecting screening participants based on the developed model
and the sensitivity and specificity of the overall screening
methodology.

To illustrate the benefits of using these models for selecting
screening participants, consider a specific cohort with a DS
prevalence of 10%. If we were to screen this cohort randomly,
in a study with 100 participants having DS, 1000 individuals

would need to be screened. From a public health perspective,
10 individuals would need to be screened for every identified
individual.

To assess the effectiveness of the models, consider a scenario
where we need to screen 40 individuals using a random approach
(Figure 1). For a 10% DS prevalence, we would identify 4
people having DS.

Figure 1. Example of a random screening list. DS: depressive symptomatology; P(DS): probability of having depressive symptomatology.

The models developed by our approach can be used to prioritize
the individuals with the highest risk of DS for screening. This
is because the model provides a probability score for each
individual having DS. Hence, by ordering the cohort by this
probability, and screening individuals in order of decreasing
the probability of DS, the screening process is expected to be
much more efficient.

A ranked list example is illustrated in Figure 2. If we use our
models and start to screen individuals from 1 to 10, after

screening 5 individuals (based on the probability score of having
DS given by our models with a threshold >0.5), we would expect
to identify 4 true positives (TPs) who have DS and 1 false
positive (FP) who does not have DS. To identify 4 individuals
with DS using our models, it would be necessary to screen a
total of 5 people. Therefore, by using our models and screening
only 5 people, we achieve the same outcome as screening 40
people randomly, representing a reduction of 87.5% in screening
interviews.

Figure 2. Example of a ranked list provided by the models. Class=comparing predictions with observed values. DS: depressive symptomatology; FP:
false positive; P(DS): probability of having depressive symptomatology; TN: true negative; TP: true positive.
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We can measure the reduction in number of screening
interviews. This value will provide us with a clear understanding
of how much the model can save compared with the random
screening approach and is illustrated in equation 1:

Where R is the reduction in the number of screening interviews
in %, TP is the number of TP cases, FP is the number of FP
cases, and DSi is the prevalence rate of DS.

Another crucial aspect of the developed models is their
capability to simulate the relationship between sensitivity and
the reduction in screening efforts. For example, suppose a
practitioner believes that the achieved sensitivity using the
default threshold of 0.5 is insufficient, it is possible to fine-tune
the sensitivity by selecting a new threshold. By doing so, the
models can calculate the corresponding reduction in screening
interviews associated with the adjusted sensitivity value.

Results

Data Preparation
After preprocessing the training data as discussed in the previous
section, we were left with 12 out of 33 features and 3854 out
of 3961 observations for the PROACTIVE data set. For PNS
2013, we were left with 218 features and 77,376 observations
out of the initial 1000 and 155,432, respectively. Similarly, for
PNS 2019, we had 254 out of 1087 features and 111,548 out of
205,434 observations.

Despite PNS 2019 having an additional 87 features compared
with PNS 2013, the features present in PNS 2013 are also
included in PNS 2019. The divergence lies in the 2019 survey,

wherein certain questions were broken down into multiple
components. On the other hand, PROACTIVE incorporates
distinct features from both PNS 2013 and 2019 data sets.

Feature Selection
We built the BN from data using 1000 bootstrapped samples.
We then performed the additional independence test on all the
edges as described in the Feature Selection section. For the
PROACTIVE data set, the connection from HYPERTENSION
to AGE was dropped (P≥.05). For PNS 2013 and PNS 2019,
no edge had to be removed. The BNs for PROACTIVE, PNS
2013, and PNS 2019, with 12, 19, and 29 features, respectively,
are displayed in Figures S1-S3 in Multimedia Appendix 1.

For the PROACTIVE data set, the MB of the outcome node
consisted of postural balance problems, shortness of breath, and
how old people feel they are. In the PNS 2013 data set, the MB
nodes were related to the ability to do usual activities, chest
pain, chronic back problems, and sleep problems. Finally, in
the PNS 2019 data set, the MB nodes were related to the ability
to do usual activities, chest pain, verbal abuse, and sleep
problems. Detailed descriptions of these features can be found
in Tables S4, S5, and S6 of Multimedia Appendix 1 for
PROACTIVE, PNS 2013, and PNS 2019, respectively.

BN Parameter Learning
For each data set, we analyzed the probability of having DS
given their MB nodes. As detailed in Table 1 for PROACTIVE,
the features of postural balance and shortness of breath each
have 2 levels (“Yes” or “No”), and the feature of how old people
feel they are has 4 levels, with the minimum being up to 50
years and the maximum being >70 years. In Table 1, we present
the probabilities of DS for those not having a postural balance
problem, not having a shortness of breath issue, and feeling up
to 50 years old, against having both issues and feeling more
than 70 years old. All individuals in this data set are aged ≥60
years.

Table 1. Probability of having depressive symptomatology in PROACTIVE for 2 example scenarios.

P(DS)dShortness of breathcHow old people feel they are?bPostural balancea

0.08NoUp to 50 yearsNo

0.75Yes>70 yearsYes

aDo you have problems with postural balance?
bIn general (or most of the time), how old do you feel?
cHave you ever experienced shortness of breath while walking, climbing stairs, or with changes in temperature (eg, when it is hot or cold)?
dP(DS): probability of having depressive symptomatology.

For the PNS 2013 and PNS 2019 data sets, the MB features are
binary, with 2 possible values: “Yes” or “No.” Thus, Tables 2
and 3 present 2 distinct scenarios, one where all features have

a “Yes” value, and the other where all features have a “No”
value.
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Table 2. Probability of having depressive symptomatology in Pesquisa Nacional de Saúde 2013 for 2 example scenarios.

P(DS)eSleep problemsdChronic back problemscChest painbAbility to do usual activitiesa

0.66YesYesYesYes

0.03NoNoNoNo

aIn the past 2 weeks, have you been unable to perform any of your usual activities (such as work, school, playing, and household chores) due to health
reasons?
bDo you feel chest pain or chest discomfort when walking on a hill, going up one flight of stairs, or fast walking?
cDo you have any chronic spinal problems such as chronic back or neck pain, lumbago, sciatica, vertebral, or disc problems?
dIn the past 2 weeks, have you used any medication to help you sleep?
eP(DS): probability of having depressive symptomatology.

Table 3. Probability of having depressive symptomatology in Pesquisa Nacional de Saúde 2019 for 2 example scenarios.

P(DS)eSleep problemsdVerbal abusecChest painbAbility to do usual activitiesa

0.79YesYesYesYes

0.04NoNoNoNo

aIn the past 2 weeks, have you been unable to perform any of your usual activities (such as work, school, playing, and household chores) due to health
reasons?
bDo you feel chest pain or chest discomfort when walking on a hill, going up one flight of stairs, or fast walking?
cIn the past 12 months, has anyone yelled or cursed you?
dIn the past 2 weeks, have you used any medication to help you sleep?
eP(DS): Probability of having depressive symptomatology.

The results presented in Table 1 for the PROACTIVE data set
indicate that individuals who report postural balance problems,
episodes of shortness of breath, and feeling >70 years old have
a higher probability of having DS. Specifically, if a person
reports all 3 of these symptoms, the probability of having DS
is 0.75, which is over 8 times higher than if the person reports
feeling <50 years old and having no issues with postural balance
or being out of breath.

In both PNS 2013 and PNS 2019, 3 features remained consistent
over the 6-year period in both data sets (ability to do usual
activities, chest pain, and sleep problems). The only difference
is that in PNS 2013, feature chronic back problems as shown
in Table 2 is replaced by those related to verbal abuse as
illustrated in Table 3. The results reveal that answering “Yes”
to all 4 questions results in a probability of having DS of 0.66
for PNS 2013 and 0.79 for PNS 2019. On the other hand, if a
person answers “No” to all 4 questions, the probability of having
DS is only 0.03 and 0.04, respectively.

Training of Prediction Models
The results obtained from the training process of our models
are presented in Tables 4-6 for the 3 data sets. These tables
provide the sensitivity and specificity determined by the
thresholds of 0.444, 0.412, and 0.472 for PROACTIVE, PNS
2013, and PNS 2019, respectively. Furthermore, they present
the AUC-ROC metrics for two scenarios: (1) using All-path
features of the BN and (2) using the MB of the outcome.

Each of the 3 tables includes sensitivity, specificity, and
AUC-ROC values for 5 folds, which were obtained using a
5-fold cross-validation approach with the best set of
hyperparameters, as described in the Training of Prediction
Models section. These metrics specifically correspond to the
validation sets used during the cross-validation process.

Upon analyzing the results across all 3 data sets, we observed
consistent outcomes. The mean values of sensitivity, specificity,
and AUC-ROC for each fold closely align with the individual
values, and the SD is low.

In PROACTIVE (Table 4), the optimal parameters were
determined to be α=.200, loss function=modified_huber, and
penalty term=L2 for the All-path-features scenario. The MB
scenario required a different set of parameters, specifically
α=.0005, loss function=log, and penalty term=elastic net.

For PNS 2013 (Table 5), the optimal hyperparameters for model
tuning were found to be an α value of .003, hinge loss function,
and L2 penalty term for the all-features scenario. The MB
scenario yielded an α value of .006, log loss function, and L1
penalty term.

The best parameters for the PNS 2019 (Table 6) model were
α=.003, loss function=log, and penalty term=elastic net. The
parameters for the MB scenario were α=.083, loss function=log,
and penalty term=L2.
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Table 4. PROACTIVE—sensitivity, specificity, and area under the receiver operating characteristic curve (AUC-ROC) values in 5-fold cross-validation.

Values, mean (SD)F5eF4dF3cF2bF1aMetrics

All-path-features

0.768 (0.024)0.7480.7640.7640.7510.813Sensitivity

0.632 (0.018)0.6470.6420.6340.5980.640Specificity

0.763 (0.026)0.7650.7660.7670.7230.795AUC-ROC

Markov blanket

0.662 (0.029)0.6210.6990.6370.6730.678Sensitivity

0.723 (0.029)0.7610.6910.7480.6890.725Specificity

0.751 (0.022)0.7590.7580.7580.7130.771AUC-ROC

aF1: fold 1 of cross-validation.
bF2: fold 2 of cross-validation.
cF3: fold 3 of cross-validation.
dF4: fold 4 of cross-validation.
eF5: fold 5 of cross-validation.

Table 5. Pesquisa Nacional de Saúde 2013—sensitivity, specificity, and area under the receiver operating characteristic curve (AUC-ROC) values in
5-fold cross-validation.

Values, mean (SD)F5eF4dF3cF2bF1aMetrics

All-path-features

0.736 (0.004)0.7360.7330.7430.7380.731Sensitivity

0.735 (0.005)0.7360.7280.7380.7320.744Specificity

0.805 (0.004)0.8050.7980.8090.8050.807AUC-ROC

Markov blanket

0.756 (0.003)0.7200.7170.7220.7260.712Sensitivity

0.708 (0.007)0.7090.6970.7140.7030.716Specificity

0.756 (0.004)0.7560.7500.7590.7580.758AUC-ROC

aF1: fold 1 of cross-validation.
bF2: fold 2 of cross-validation.
cF3: fold 3 of cross-validation.
dF4: fold 4 of cross-validation.
eF5: fold 5 of cross-validation.
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Table 6. Pesquisa Nacional de Saúde 2019—sensitivity, specificity, and area under the receiver operating characteristic curve (AUC-ROC) values in
5-fold cross-validation.

Values, mean (SD)F5eF4dF3cF2bF1aMetrics

All-path-features

0.709 (0.005)0.7170.7100.7030.7120.704Sensitivity

0.762 (0.002)0.7610.7570.7590.7600.763Specificity

0.804 (0.004)0.8100.8040.800.8040.80AUC-ROC

Markov blanket

0.709 (0.047)0.6550.7500.6470.7510.744Sensitivity

0.733 (0.032)0.7710.7100.7730.7040.707Specificity

0.768 (0.003)0.7720.7690.7660.7670.765AUC-ROC

aF1: fold 1 of cross-validation.
bF2: fold 2 of cross-validation.
cF3: fold 3 of cross-validation.
dF4: fold 4 of cross-validation.
eF5: fold 5 of cross-validation.

Evaluation of the Models
The evaluation results of the models on the test data are
presented in Table 7. In addition, we provide the metrics
obtained from analyzing the entire training data and the mean
of the 5-fold cross-validation. It is important to note that the

whole data evaluation approach differs from the 5-fold
cross-validation method. Instead of comparing the average
metrics across the 5 folds in the validation set as if they were
separate models, we assess the overall performance on the
complete training data set.

Table 7. Sensitivity, specificity, and area under the receiver operating characteristic curve on test data using All-path-features.

Pesquisa Nacional de Saúde 2019Pesquisa Nacional de Saúde 2013PROACTIVE

Sensitivity

0.7080.7350.766Training

0.7090.7360.768Cross-validation

0.7180.7410.717Test

Specificity

0.7620.7370.633Training

0.7620.7350.632Cross-validation

0.7660.7370.644Test

Area under the receiver operating characteristic curve

0.8040.8060.765Training

0.8040.8050.763Cross-validation

0.8090.8010.736Test

The sensitivity specificity and AUC-ROC metrics obtained from
the whole data evaluation, illustrated in Table 7, exhibit
consistency with those obtained through the 5-fold
cross-validation approach. Moreover, these metrics are not
considerably different from the sensitivity, specificity, and
AUC-ROC observed in the test data.

Figures 3-5 display the AUC-ROC graph and confusion matrices
for PROACTIVE, PNS 2013, and PNS 2019, respectively. The
confusion matrix is based on the threshold of each model applied
to the test data.
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Figure 3. Confusion matrix and area under the receiver operating characteristic curve for PROACTIVE. DS: depressive symptomatology; FN: false
negative; FP: false positive; TN: true negative; TP: true positive.

In Figure 3, the confusion matrix reveals that out of a total of
581 cases above the threshold (TPs+FPs), 271 cases actually
have DS. In addition, there are 107 cases below the threshold
that have DS (false negatives). Moreover, the model for the
PROACTIVE data set accurately classifies 831 cases (66.6%:
TPs+true negatives) out of a total of 1248 cases.

Comparing Figures 4 and 5 with Figure 3, we observe better
results. Both figures exhibit higher AUC-ROC values, with
0.801 for PNS 2013 and 0.809 for PNS 2019. In terms of
correctly classifying cases, the models achieved a success rate
of 73.7% for PNS 2013 and 76.1% for PNS 2019.

Figure 4. Confusion matrix and area under the receiver operating characteristic curve for Pesquisa Nacional de Saúde 2013. DS: depressive
symptomatology; FN: false negative; FP: false positive; TN: true negative; TP: true positive.
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Figure 5. Confusion matrix and area under the receiver operating characteristic curve for Pesquisa Nacional de Saúde 2019. DS: depressive
symptomatology; FN: false negative; FP: false positive; TN: true negative; TP: true positive.

Application of the Models
Our approach offers a high degree of flexibility in terms of
adjusting the threshold to suit a desired sensitivity value. To
achieve this, we can leverage the test data to simulate the
trade-off between sensitivity and screening interviews reduction
using equation 1 outlined in the Methods section.

The prevalence of DS in the PROACTIVE, PNS 2013, and PNS
2019 data sets is 30.3%, 7.9%, and 10% as illustrated in Figure
3, Figure 4, and Figure 5, respectively. The prevalence of DS
in the PROACTIVE data set is more than 3 times that in the
PNS data sets. Hence, it is reasonable to expect that both PNS
models will exhibit superior performance with respect to
screening interviews reduction in comparison to PROACTIVE.
This is because when using a random screening approach, a
higher prevalence of DS within a particular cohort leads to more
efficient identification of affected individuals, as opposed to a
cohort with a lower prevalence.

Figures 6-8 illustrate the receiver operating characteristic curves,
where the bars on the x-axis represent the reduction in screening
interviews as a percentage. These graphs demonstrate the
trade-off between the sensitivity and the reduction in screening
interviews achieved by using our models.

As an example, according to Table 7, the calculated threshold
in the PROACTIVE data set corresponds to a sensitivity of
0.717. In Figure 6, this sensitivity reduces screening interviews
by 35%. Furthermore, even when aiming for higher sensitivities,
such as 78% or 92%, using the model developed for this data
set can still result in reducing interviews by 29% or 17%,
respectively.

The key finding is that for any sensitivity above 0.640, using
this model consistently outperforms a normal random approach
(the screening interviews reduction is higher than 1-sensitivity).
This holds even with the high prevalence of DS in this cohort,
as demonstrated by Figure 6.

In the case of both PNS models, it is apparent from Figures 7
and 8 that they outperform the PROACTIVE model in Figure
6. Although both models exhibit considerable improvements,
the PNS 2013 model demonstrates a slightly better performance
than the PNS 2019 model. Specifically, the results indicate that
at a sensitivity of 88%, the PNS 2013 model achieves a 40%
reduction in screening interviews, while the PNS 2019 model
achieves a 39% reduction. The reduction at the same sensitivity
level of 88% achieved by the PROACTIVE model is 22%.
Furthermore, for both PNS data sets, using our models is always
superior to using a random approach.
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Figure 6. PROACTIVE—trade-off between sensitivity versus reducing screening interviews. ROC: receiver operating characteristic.

Figure 7. Pesquisa Nacional de Saúde 2013—trade-off between sensitivity versus reducing screening interviews. ROC: receiver operating characteristic.
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Figure 8. Pesquisa Nacional de Saúde 2019—trade-off between sensitivity versus reducing screening interviews. ROC: receiver operating characteristic.

Discussion

Overview
To enhance the development of our models, we conducted a
comparison between 2 scenarios regarding feature selection. In
the first scenario, we used All-path-features nodes from our
BN, while in the second scenario, we focused on using only the
MB of the outcome. By analyzing and contrasting these 2
scenarios, we aim to gain a comprehensive understanding of
the impact that including or excluding these specific nodes has
on our model.

The results of our analysis consistently showed that using
All-path-features from the BN yielded superior outcomes
compared with using only the MB of the outcome. Furthermore,
we used the test data in the All-path-features scenario to evaluate
the performance of the models for each data set. This approach
ensures that the model’s performance is assessed in a fair
manner using previously unseen data, reflecting its real-world
performance.

Using the optimal threshold that maximizes both sensitivity and
specificity, determined by the Youden index, can be beneficial.
This approach ensures more reliable and accurate diagnoses by
minimizing the errors of missing a positive case (false negatives)
or incorrectly diagnosing a negative case as positive (FPs).

The PNS 2013 and PNS 2019 data sets stand as valuable pillars
of Brazil’s national health data landscape. The models have
consistently highlighted 3 features—the ability to do usual
activities, chest pain, and sleep problems. This result across a

6-year span underscores these attributes’ robustness as good
indicators for detecting DS, thereby offering valuable insights
for health care services. However, it is important to reapply the
methodology as new data sets emerge to check for patterns and
new insights.

Our assessment revealed that both the models trained on the
PNS 2013 and PNS 2019 data sets outperformed the
PROACTIVE data set model. This can be attributed to the larger
sample sizes and lower prevalence rates of DS in the PNS data
sets. It is worth noting that the PROACTIVE study exclusively
concentrated on individuals aged ≥60 years. Larger data sets
provide a more diverse representation of the population, leading
to improved generalization of the model’s predictions. In
addition, the lower prevalence of DS in these data sets implies
that a random screening approach would require screening a
larger number of individuals to identify those with DS. In this
context, the model’s ability to target individuals with a higher
probability of having DS can markedly reduce screening
interviews.

Despite our emphasis on developing a methodology using
general health and socioeconomic data without relying on
features related to depression, our approach outperformed
studies using similar nondepression-related features. For
instance, a study conducted with university undergraduates in
Bangladesh used machine learning models to predict depression.
The predictors included basic information such as academic
year and cumulative grade point average, without using the
PHQ-9 or any depression-related information. The models
achieved an AUC-ROC ranging from 0.694 to 0.802, sensitivity
ranging from 0.32 to 0.53, and specificity ranging from 0.86 to

JMIR Ment Health 2024 | vol. 11 | e52045 | p. 13https://mental.jmir.org/2024/1/e52045
(page number not for citation purposes)

Maekawa et alJMIR MENTAL HEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


0.87 [63]. Another study, conducted in Japan, used machine
learning to predict depressive symptoms using
sociodemographic and biological metabolite information, also
without relying on the PHQ-9 or questionnaires assessing
depressive symptoms. Their models achieved an AUC-ROC
ranging from 0.53 to 0.68 but did not report results for sensitivity
and specificity [64].

Principal Findings
Our models exhibit almost the same sensitivity, specificity, and
AUC-ROC values when applied to both the training and test
data across all 3 data sets. This finding suggests that our
approach is capable of generalizing effectively to unseen data,
demonstrating its robustness and reliability.

It is worth noting that even when using only the MB, the results
obtained were still satisfactory, making it a viable option for
reducing the number of questions required to predict DS.
Furthermore, the probabilistic measures extracted from the MB
of the outcome demonstrated strong discriminatory power. This
emphasizes that the features within the MB hold the utmost
importance in the model across all 3 data sets.

The output of the models offers a visual representation of the
relationship between sensitivities and the associated reduction
in screening interviews. This gives health care providers the
flexibility to adjust the desired sensitivity of the models
according to their specific requirements. Such adaptability
enhances the utility of the model as a proof-of-concept in clinical
settings, making it particularly beneficial in environments with
limited resources.

Limitations
While a PHQ-9 score of 10 or higher can serve as a useful
indicator for DS, it should be interpreted in conjunction with
other clinical information and within the context of an
individual’s unique circumstances. If available in the data sets,
it would be straightforward with our methodology to predict
different outcomes beyond PHQ-9 scores. However, the
methodology may require some adjustments in the algorithm.

While our proposed methodology demonstrated good
performance in all 3 data sets, it is important to note that there
is a possibility of the model not performing well on certain data
sets. This could happen if the features in the data set do not have
a strong correlation with the outcome or if the prevalence of
DS in a specific cohort is high.

The consistent prominence of the same 3 essential features in
both PNS 2013 and PNS 2019 is noteworthy, but this
information holds relevance primarily within Brazilian primary
care settings. Across diverse cultures, different features might
emerge as the most important indicators. Furthermore, it is
important to consider the potential for these features to
dynamically shift in significance over time, depending on the
readily available data.

We acknowledge that having access to the readily available data
may require obtaining permissions. Despite the data being
accessible, various legal and ethical considerations may
necessitate obtaining explicit permissions or approvals before
its use.

Although the use of BN for feature selection yielded consistent
results, it is worth noting that constructing the model using
bootstrap can be very hardware demanding. In addition, the
feasibility of this approach depends on the size of the data set
in terms of the number of features, the range of values of the
features, and the number of observations.

Conclusions
We presented a data-driven proof-of-concept methodology for
identifying individuals with DS using alternative features beyond
common mental health screening questionnaires. This approach
was tested on 3 distinct data sets, yielding consistent results that
indicate a strong generalization of the methodology for targeting
individuals who could benefit from further screening.

Using BNs, we were able to identify the most influential features
(ie, the MB of the outcome) and extract insights using
probabilistic measures through parameter learning. Our analysis
revealed that for the PROACTIVE data set, a study that screened
Brazilians aged ≥60 years, the most influential features were
related to postural balance, shortness of breath, and how old
people feel they are. For the PNS data sets, which screened a
national sample of Brazilians aged ≥18 years, the influential
features of the 2013 data set were related to the ability to do
usual activities, chest pain, chronic back problems, and sleep
problems. In the PNS 2019 data set, the same features were
found to be important as in PNS 2013, except for chronic back
problems, which were replaced by a feature related to verbal
abuse.

Finally, it has been demonstrated through empirical analysis
that using the proposed models results in a considerable
reduction of the screening interviews (up to 52%) while
maintaining a sensitivity of 80%.
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Abbreviations
AUC-ROC: area under the receiver operating characteristic curve
BN: Bayesian network
CPD: conditional probability distribution
DS: depressive symptomatology
FP: false positive
MB: Markov blanket
PHQ-9: 9-item Patient Health Questionnaire
PNS: Pesquisa Nacional de Saúde
SGD: stochastic gradient descent
TP: true positive
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