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Abstract

Background: The use of mobile devices to continuously monitor objectively extracted parameters of depressive symptomatology
is seen as an important step in the understanding and prevention of upcoming depressive episodes. Speech features such as pitch
variability, speech pauses, and speech rate are promising indicators, but empirical evidence is limited, given the variability of
study designs.

Objective: Previous research studies have found different speech patterns when comparing single speech recordings between
patients and healthy controls, but only a few studies have used repeated assessments to compare depressive and nondepressive
episodes within the same patient. To our knowledge, no study has used a series of measurements within patients with depression
(eg, intensive longitudinal data) to model the dynamic ebb and flow of subjectively reported depression and concomitant speech
samples. However, such data are indispensable for detecting and ultimately preventing upcoming episodes.

Methods: In this study, we captured voice samples and momentary affect ratings over the course of 3 weeks in a sample of
patients (N=30) with an acute depressive episode receiving stationary care. Patients underwent sleep deprivation therapy, a
chronotherapeutic intervention that can rapidly improve depression symptomatology. We hypothesized that within-person
variability in depressive and affective momentary states would be reflected in the following 3 speech features: pitch variability,
speech pauses, and speech rate. We parametrized them using the extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS)
from open-source Speech and Music Interpretation by Large-Space Extraction (openSMILE; audEERING GmbH) and extracted
them from a transcript. We analyzed the speech features along with self-reported momentary affect ratings, using multilevel linear
regression analysis. We analyzed an average of 32 (SD 19.83) assessments per patient.

Results: Analyses revealed that pitch variability, speech pauses, and speech rate were associated with depression severity,
positive affect, valence, and energetic arousal; furthermore, speech pauses and speech rate were associated with negative affect,
and speech pauses were additionally associated with calmness. Specifically, pitch variability was negatively associated with
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improved momentary states (ie, lower pitch variability was linked to lower depression severity as well as higher positive affect,
valence, and energetic arousal). Speech pauses were negatively associated with improved momentary states, whereas speech rate
was positively associated with improved momentary states.

Conclusions: Pitch variability, speech pauses, and speech rate are promising features for the development of clinical prediction
technologies to improve patient care as well as timely diagnosis and monitoring of treatment response. Our research is a step
forward on the path to developing an automated depression monitoring system, facilitating individually tailored treatments and
increased patient empowerment.

(JMIR Ment Health 2024;11:e49222) doi: 10.2196/49222
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Introduction

Background
Depression is one of the most prevalent health disorders
worldwide [1,2]. The World Health Organization predicted that
depression would be 1 of the 3 leading causes of disease burden
by 2030 [3], even before its prevalence increased owing to the
COVID-19 pandemic [4]. This disorder has symptoms that
include depressed mood, loss of energy and interest, sleep
problems, and diminished ability to concentrate [5]; thus,
depression imposes a substantial burden on the patients as well
as their surroundings, society, and the economy [6]. Most
importantly, depression is a chronic disorder, characterized by
multiple episodes over years or decades. However, strategies
for secondary prevention or early detection of new episodes are
missing.

The diagnosis and severity assessment of depression relies
mostly on self- or caregiver reports, which are prone to
retrospective and social desirability bias [7,8]. In addition, such
assessments are time and resource intensive because clinical
specialists are needed over the course of treatment and recovery
[9]. Moreover, many new episodes remain undiagnosed or
untreated, that is, secondary prevention is the main issue [10,11].
To reduce burden, the timely detection and diagnosis of (new)
depressive episodes are critical.

In recent years, research has focused on the identification of
mental health disorder indicators that can be derived
automatically, driven by technological developments [12,13].
In particular, the innovation of the ambulatory assessment
research technique has contributed strongly to this endeavor
[14]. Different terms have been used for this kind of
methodology: ambulatory assessment [15], ecological
momentary assessment [16], experience sampling [17], and
digital phenotyping [18]. Although the terms differ, all
approaches use computer-assisted methodology to assess
momentary self-reported symptoms (eg, via electronic diaries
[ediaries]), behaviors, or physiological processes, or actively
or passively collect smartphone and physical data or context
information (eg, via wearables) while the participant performs
normal daily activities in their natural environment [19]. The
main advantages of ambulatory assessment are (1) the ability
to collect real-life data in real time, thereby reducing
retrospective recall bias and increasing ecological validity; and

(2) the ability to collect data continuously (passively), which
allows us to capture dynamic changes. Accordingly, ambulatory
assessment is a promising tool for the timely detection of
upcoming clinical episodes to prevent further clinical
deterioration [20-22]. In particular, parameters captured
objectively by wearables are useful because they can be assessed
passively with a high frequency over prolonged time periods
[23].

Promising markers that can be assessed objectively are speech
and language, which are also metaphorically called “the mirror
of the soul” [24]. Even before objective measurements with
ambulatory assessment technology were feasible, clinical
observations described the voice of patients with depression as
low, slow, and hesitant, with these patients speaking in a
monotonous and expressionless manner [24,25]. Voice and
speech production may be affected by typical characteristics of
the clinical nature of depression; for example, psychomotor
retardation, energy loss, and cognitive difficulties also affect
the vocal folds, leading to a lower intensity, rate, and loudness
of speech, which manifest in a monotone and toneless voice
[26-28]. Recent reviews have highlighted the potential of using
speech markers to assess a variety of psychiatric disorders [29],
especially depression [30]. The use of speech as a marker has
several advantages because it can be recorded (1) casually; (2)
in a noninvasive manner at people’s homes or in public places
(with consent provided); and (3) at low cost because
microphones are integrated in many devices such as
smartphones, smartwatches, and hearing aids. With the
availability of open-source speech analysis software (eg,
open-source Speech and Music Interpretation by Large-Space
Extraction [openSMILE; audEERING GmbH] and Praat) and
advances in automatic speech processing technologies based
on machine learning techniques, research and development on
the use of acoustic and linguistic features to identify mood
disorders in particular [29] have been made possible.

Prior Work
Many studies have successfully discriminated between healthy
controls and patients with depression based on speech features
[30]. However, understanding within-person (vs
between-person) depression-related voice changes is essential
in detecting new episodes, that is, the secondary prevention. To
the best of our knowledge, only a few studies in samples with
clinical (not subclinical) depression have examined the
variability of speech features within persons [31-36]. In a
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6-week treatment-monitoring study, weekly speech samples
were obtained from 35 patients with depression using an
interactive voice response system [31]. Patients with an
improvement in depressive symptoms showed a significant
increase in pitch and pitch variability, an increase in speech
rate, and shorter speech pauses while speaking at their final
assessment compared with their baseline assessment.
Importantly, patients whose depressive symptoms did not
improve did not show these changes.

The data set of Mundt et al [31] was reanalyzed multiple times
[32,34,35]. Quatieri and Malyska [34] integrated additional
speech features and identified that lower pitch variability,
shimmer, and jitter as well as an increased harmonics-to-noise
ratio were correlated with lower depression severity. This is in
contrast to the study by Mundt et al [31], who found that
increased pitch variability was associated with lower depression
severity, which Quatieri and Malyska [34] attributed to
differences in the set of voice samples analyzed (read speech
in the study by Mundt et al [31] and conversational speech in
the study by Quatieri and Malyska [34] from the same patients).

Trevino et al [32] discussed speech rate extraction methods
based on the data set of Mundt et al [31] and replicated results
regarding speech rate in automatically derived phonologically
based features. Speech rate was negatively correlated with
depression scores and the psychomotor retardation item in
particular. Moreover, the authors replicated the finding that
speech pauses were positively correlated with depression
severity.

Furthermore, Horwitz et al [35] reanalyzed a subset of data from
the study by Mundt et al [31] with a focus on disentangling how
speech features relate to the total assessment score and
individual symptom items. The authors found a positive
correlation between pitch variability and depression scores and
a slower speech rate with increasing depression severity.
Notably, they analyzed a different speech task and a different
depression assessment in comparison with Mundt et al [31].

Mundt et al [33] replicated their results from Mundt et al [31]
in a larger study. Here, 105 patients were observed in a 4-week
randomized placebo-controlled study. Again, analyses entailed
a comparison of the final and baseline assessments. For patients
benefiting from the treatment, total pause time was lower, pitch
was higher (pitch variability was not assessed), and speech rate
was higher. For patients who did not benefit from the treatment,
only speech rate increased; however, it increased significantly
less than in patients benefiting from the treatment.

Yang et al [36] analyzed clinical interviews recorded in 7-week
intervals. In contrast to Mundt et al [31], they did not find a
change in pitch variability with a change in depression severity
in the patients but rather in the interviewers. The authors also
found shorter switching pauses between patient and interviewer
(ie, both interlocutors) with lower depression severity.

Although not completely consistent, these findings support the
assumption that voice features change within individuals when
depression severity changes. However, although data were
collected at multiple time points during the study (eg, weekly),
except in the study by Yang et al [36], the analysis was limited

to a comparison between the baseline and final assessments.
However, given that the goal is to detect and ultimately prevent
new depressive episodes and deterioration, it is essential to
understand within-person trajectories of voice features and how
they are associated with momentary states with increased
granularity. In this study, we used a naturalistic data set where
a rapidly acting antidepressant treatment (ie, sleep deprivation
therapy [SDT] [37]) was applied to patients experiencing a
depressive episode. The antidepressant effect vanishes in most
of the cases after recovery sleep. Baseline, the treatment effect
of SDT, and relapse can be measured in a matter of 4 days,
making it a preferable setting to study within-person
fluctuations.

Aims and Hypotheses
To investigate the within-person relationship between
fluctuations in depression severity and fluctuations in speech
features, we used a longitudinal data set with an average of 32
(SD 19.83) assessments per patient. All patients had experienced
an acute depressive episode and undergone SDT [37], a
chronotherapeutic intervention that can rapidly improve
depression symptomatology. The main advantage of this
therapeutic is that we maximize the variance of affective states
within the data set and ensure sufficient within-person
fluctuations over time. As the amount of speech features is
immense, resulting in alpha error inflation, we focused on 3
speech features with high face validity that have shown first
hints in past research [31-36]. Specifically, we hypothesized
that (1) changes in pitch variability, (2) shorter speech pauses,
and (3) higher speech rate are associated with lower depression
severity. In addition, we assessed the associations of these
features with additional momentary affective states (ie, positive
affect, negative affect, valence, energetic arousal, and calmness).
We hypothesized that the associations of speech features with
negative affect are similar to those for depression severity and
that the associations of speech features with the other momentary
affective states listed follow the opposite pattern.

Methods

Sample
We used a data set that was collected as part of a pilot study
(Sleep Deprivation and Gene Expression [SLEDGE II]; German
Clinical Trials Register: DRKS00022025) gathering digital
phenotypes and multiomics data in a clinical sample undergoing
SDT at the Central Institute of Mental Health in Mannheim,
Germany. A total of 30 inpatients experiencing acute depressive
episodes were enrolled in the study. The patients were diagnosed
according to the International Classification of Diseases, Tenth
Revision (ICD-10), codes by the senior clinician at admittance
to the hospital. All patients received treatment as usual, which
also included SDT (for a list of medications, refer to Textbox
S1 in Multimedia Appendix 1). Exclusion criteria were comorbid
substance use disorders or personality disorders. From this
sample of 30 patients, the complete data sets of 8 (27%) patients
were excluded from the final analyses (n=4, 50% did not record
any videos; n=1, 13% did not say anything during the videos
[23 videos]; n=2, 25% had no sound recorded in the videos
owing to technical issues [30 recordings]; and n=1, 13%
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recorded only 2 videos); thus, the final sample consisted of 22
(73%) patients (n=12, 55% male) aged between 18 and 63 (mean
33.5, SD 12.4; median 29, IQR 23.25-42.75) years.

Ethical Considerations
The study was approved by the Ethics Committee II of the
Medical Faculty Mannheim, University of Heidelberg
(2013-563N-MA). All patients received detailed information
about the aims and procedures of the study and provided
informed consent. Patients could withdraw from the study at
any time and did not receive any compensation for participation.
Data was deidentified to ensure privacy.

Study Procedure
Patients were given a study smartphone (Nokia 4.2 or Samsung
Galaxy J7) at the beginning of the study (day 0), instructed on
how to use it, and (if necessary) performed test runs supervised
by the study personnel. A telephone number for technical
support and an information sheet regarding the ambulatory
assessment procedure were handed out. Data were collected
using movisensXS software (movisens GmbH) [38]. Patients
underwent SDT as part of their depression treatment, which
involves staying awake for approximately 36 hours. Treatment
effect and relapse can be measured in a matter of 4 days [37],
thus ensuring a maximum of within-person variance in the data
set. After at least 1 day of baseline assessment (day 0), SDT
was conducted on day 1. Patients stayed awake from 6 AM on
day 1 to 6 PM on day 2. Recovery sleep was allowed from 6
PM on day 2 until 1 AM on day 3. Data were collected before,
during, and after SDT for up to 26 days. In the first week of the
study, smartphones sent prompts 3 times per day (morning,
afternoon, and evening); in addition, self-initiated assessments
were possible to report specific events or to catch up with missed
assessments. To reduce the burden on patients, the sampling
schema was altered to 2 prompts per day (morning and evening).
With each prompt, patients were requested to fill out items
concerning their affective state and to record a selfie video
reporting how they felt currently. Patients returned the
smartphone at the end of the study. The study personnel
uploaded the data from the smartphones to the movisensXS
platform [38] and then downloaded the data for analysis.

Ambulatory Assessment: eDiary Ratings and Selfie
Videos
The data set contains 3 sets of momentary assessments in the
form of eDiary ratings at each prompt (Textboxes S2-S4 in
Multimedia Appendix 1): (1) the short version of the Allgemeine
Depressionsskala (ADS-K) [39] adapted to momentary
assessment with 14 items on depressive mood rated on a scale
ranging from 0=rarely to 3=mostly (we left out the item
regarding sleep from the original questionnaire because its
inclusion was not reasonable in the momentary assessment
design); (2) a total of 15 positive (cheerful, content, energetic,
enthusiastic, relaxed, and happy) and negative (lonely, sad,
insecure, anxious, depressed, low-spirited, guilty, distrustful,
and irritable) affect items [40] rated on a 5-point Likert scale
ranging from 1=not at all to 5=very much; and (3) a 6-item short
version of the Multidimensional Mood Questionnaire (MDMQ)
[41] capturing time-varying momentary fluctuations in daily

life on the affect dimensions of valence (unwell to well and
discontent to content), energetic arousal (without energy to full
of energy and tired to awake), and calmness (tense to relaxed
and agitated to calm). The items were presented on visual analog
scales with 2 poles and a slider from 0 to 100. For each of the
constructs, we computed mean values per scale, resulting in 6
outcome variables (depressive symptoms, positive affect,
negative affect, valence, energetic arousal, and calmness). For
the ADS-K, we also report sum scores as described in the tool’s
manual; however, to increase comparability among outcomes,
we used the mean value for analyses. If necessary, we recoded
items such that higher values indicated a (1) higher intensity of
depressive symptoms, (2) higher positive affect, (3) higher
negative affect, (4) higher positive valence, (5) higher energetic
arousal, and (6) higher calmness.

In addition to the aforementioned eDiary ratings, patients were
requested to record selfie videos with the following instructions:
“Please keep the camera stable during the recording and record
your whole face. Please describe in 10-20 seconds how you
currently feel.”

Clinical Assessments
The Montgomery–Åsberg Depression Rating Scale (MADRS)
[42] was completed in the morning at 4 time points (baseline,
morning before sleep deprivation, 1 week after sleep deprivation,
and 2 weeks after sleep deprivation) and once at midday (the
day after sleep deprivation night). The MADRS is a 10-item
expert assessment of depressive symptom severity over the past
week, with items rated on a 7-point scale ranging from 0 to 6;
higher scores indicate higher severity.

Data Preprocessing
The data set contained 899 selfie videos in mp4 format. The
full set of videos of 4 (13%) of the 30 patients had to be
excluded owing to the reasons mentioned previously (55/899,
6.1%) and additional 2 videos had to be excluded because of
technical damage (2/899, 0.02%). As our research questions
focused on audio data (not visual data), we extracted the audio
tracks of the remaining 842 (93.66%) from the original 899
selfie videos using the ffmpeg package in Python and archived
them as wav files (sampling rate: 48 kHz; mono=1 channel).
We excluded test runs (14/842, 1.7%), accidental short
recordings with no content (29/842, 3.4%), recordings during
which the microphone was masked by the patient (27/842,
3.2%), and assessments in which 1 of the 2 corresponding
assessments (speech or affective state) was missing (18/842,
2.1%). In addition, if 2 consecutive assessments were <15
minutes apart from each other, only the first assessment was
kept unless its audio quality was insufficient or only the second
assessment included assessments of affective states; in such
cases, the second assessment was kept (21/842, 2.5%). We also
excluded recordings with background noise that restricted speech
intelligibility (9/842, 1.1%) or that included the speech of third
parties (8/842, 1%). We filtered the remaining recordings
(716/842, 85%) using DeepFilterNet2 [43] to remove
background noise.
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Acoustic Features
For our main analyses, we focused on the acoustic features pitch
variability, speech pauses, and speech rate (Table 1). We
restricted the number of features to limit α error inflation and
selected specifically these 3 features because they revealed
sufficient empirical support to warrant an explicit hypothesis.
We extracted acoustic features of the final recordings (n=716)
using the functionals (v02) of the extended Geneva Minimalistic
Acoustic Parameter Set (eGeMAPS) [44] of the open-source
toolkit openSMILE implemented in Python [45,46]. eGeMAPS
is a minimalistic set of acoustic features recommended for
clinical speech analysis; it helps to guarantee comparability

between studies, given the proliferation of speech features.
Features related to frequency, energy, spectrum, and tempo are
included in the set. Pitch variability is represented by the SD
of the logarithmic fundamental frequency (F0) on a semitone
frequency scale starting at 27.5 Hz and measured in hertz. F0
is the lowest frequency of the speech signal and is perceived as
pitch. Speech pauses are approximated as the mean length of
unvoiced regions (F0=0) measured in seconds. With respect to
speech rate, a transcription of the recordings is necessary, which
we obtained using an automatic speech recognition system
according to published procedures [47]. We corrected the
transcripts manually. To determine speech rate, we calculated
the ratio of words divided by the duration of the voice sample.

Table 1. Overview of extracted speech features.

ExplanationTechnical featureSpeech feature

SD of the F0 perceived as the extent to which a person’s pitch changes (in Hz)F0semitoneFrom27.5Hz_sma3nz_stddevNormPitch variability

Mean of the length of unvoiced regions approximating silent parts of the speech
sample (in seconds)

MeanUnvoicedSegmentLengthSpeech pauses

Ratio of words counted on the basis of the automatically transcribed and manu-
ally corrected text divided by the duration of the speech sample

Words per secondSpeech rate

Beside our main analyses based on pitch variability, speech
pauses, and speech rate, we decided to integrate further
eGeMAPS features in an exploratory analysis. These features
have been recommended in the context of affective states in
particular because they contain additional cepstral and dynamic
features [44]. We included the following features in the
exploratory analyses: for voiced and unvoiced regions together,
the mean and SD of the mel-frequency cepstral coefficients
(MFCCs) 1 to 4 and spectral flux difference of the spectra of 2
consecutive frames; for voiced regions, the formant 2 to 3
bandwidths along with spectral flux and MFCCs 1 to 4; and for
unvoiced regions, the mean and SD of the spectral flux [44].

Statistical Analysis
In addition to the mean, SD, and range, we present min and max
as the mean of all patients’ minimum and maximum scores,
respectively, of each parameter throughout the whole study.
Moreover, following the recommendations by Snijders and
Bosker [48], we computed Pearson correlation analyses with
person-mean–centered variables to evaluate the relationship
between affective scores and speech features. To generate
person-mean–centered variables, we subtracted the individual’s
mean from their score, which represents the variation around
the individual’s mean.

To evaluate psychometric properties, we calculated McDonald
ω as the reliability coefficient using the multilevelTools package
in R. For the MDMQ subscales, we used the misty package in
R to calculate the Spearman-Brown corrected correlation
coefficients because the subscales consist of only 2 items [49].
For the MADRS score at the time of inclusion, we calculated
Cronbach α using the psych package in R.

To analyze the within-person association of speech features and
subjectively evaluated affective states, we used multilevel
modeling [48] using the nlme package in R. Multilevel modeling
offers two specific advantages for the given data: (1) separation

of within-person effects from between-person effects and (2)
allowing and considering different numbers of assessments per
patient. Before the analyses, we centered time-variant level-1
predictors (pitch variability, speech pauses, and speech rate)
at the person level and included the predictors time and time²
in minutes (each centered at 2 PM) as covariates. To facilitate
the comparison of the magnitude of effects among different
predictors, we report standardized beta coefficients (standardized
β) according to the recommendations by Hox and van de Schoot
[50] following the equation: standardized β = β × (SDpredictor /
SDoutcome). We further calculated Hox R² values according to
the recommendation by Hox and Maas [51] following the

equation: R²
Hox = (σ²

null − σ²
model) / σ

²
null. We set the α level at

5% and applied Bonferroni corrections for exploratory analyses
(αadj=.002). We performed all analyses in R (version 4.2.1,
2022-06-23).

Our analyses can be split into 4 parts: the calculation of
intraclass correlation coefficients (ICCs); separate models with
all speech features as predictors and all affective scores as
outcomes; combined models with all speech features as
simultaneous predictors; and exploratory analyses, including
additional speech features. Specifically, we first descriptively
investigated whether our study procedure resulted in sufficient
within-person variance. For this purpose, we calculated ICCs,
including all momentary affective ratings and speech recordings,
regardless of whether they were assessed before, during, or after
SDT. In general, the ICC indicates the amount of
between-person variance in unconditional (null) models. The
2-level models analyzed contained repeated measures (level 1)
that were nested within patients (level 2). The second step
contained our main analysis: we calculated separate models for
each speech feature (pitch variability [model set 1], speech
pauses [model set 2], and speech rate [model set 3]) and each
affective state (depression severity [ADS-K], positive affect,
negative affect, valence, energetic arousal, and calmness),

JMIR Ment Health 2024 | vol. 11 | e49222 | p. 5https://mental.jmir.org/2024/1/e49222
(page number not for citation purposes)

Wadle et alJMIR MENTAL HEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


resulting in 18 models. In the third step, to evaluate the relative
significance of pitch variability, speech pauses, and speech rate,
we constructed combined models for each of the affective
scores, including all 3 features simultaneously (6 models). In
the fourth step, exploratory analyses were conducted with the
inclusion of 24 additional speech features from eGeMAPS
(Textbox S5 in Multimedia Appendix 1). These features were
used as predictors for each of the affective scores separately.

Results

Descriptive Statistics
We included 716 speech-state pairs (mean 32, SD 19.83 per
patient) in the final analysis. The mean MADRS score at the
time of inclusion assessment was 30.1 (SD 5.8). This
corresponds to 18 (82%) patients with moderate depression and
4 patients (18%) with severe depression out of 22 patients at
study inclusion.

Regarding depressive symptoms (ADS-K; scale 0-3), patients
had a mean score of 1.2 (SD 0.6; min 0.7, max 2.0) and a mean
sum score of 16.9 (SD 8.1; min 9.6, max 26.1). At inclusion,
the mean ADS-K score was 1.4 (SD 0.6; range 0.4-2.8), and
the mean sum score was 20.0 (SD 8.4; range 6-39). For positive
and negative affect (scale 1-5), the mean scores were 2.1 (SD
0.8; min 1.3, max 3.1) and 2.3 (SD 1.0; min 1.4, max 3.9),
respectively; on the MDMQ (scale 1-100) valence subscale, the
mean score was 44.9 (SD 21.5; min 9.4, max 67.5); on the
energetic arousal subscale, the mean score was 41.7 (SD 21.0;
min 16.4, max 62.7); and on the calmness subscale, the mean
score was 43.8 (SD 22.8; min 6.9, max 70.7). The ICCs were
0.47 for the ADS-K, 0.45 for positive affect, 0.59 for negative
affect, 0.27 for energetic arousal, 0.25 for valence and 0.40 for
calmness, that is, the following amount of variance in the
momentary assessments can be attributed to within-person
fluctuations: 53% for the ADS-K, 55% for positive affect, 41%
for negative affect, 73% for energetic arousal, 75% for valence,
and 60% for calmness.

Regarding speech features, the mean pitch variability was 0.32
Hz (SD 0.09; min 0.14, max 0.44), the mean speech pause length
was 0.26 seconds (SD 0.12; min 0.17, max 0.47), and the mean
speech rate was 1.77 words per second (SD 0.57; min 1.16,
max 2.75). The ICCs were 0.66 for pitch variability, 0.36 for
speech pauses, and 0.57 for speech rate. This corresponds to
the following amount of variance in the speech feature
assessments that can be attributed to within-person fluctuations:
34% for pitch variability, 64% for speech pauses, and 43% for
speech rate.

Correlational analyses (Figure S1 in Multimedia Appendix 1)
included between 698 and 716 observations depending upon
the specific pairing. We found correlations among and between
affective scores and speech features, except for pitch variability
and speech rate, neither of which correlated with negative affect
and calmness; in addition, there was no correlation between
pitch variability and speech rate. Specifically, ADS-K scores
correlated negatively with positive affect, all MDMQ subscales,
and speech rate and correlated positively with negative affect,
pitch variability, and speech pauses. Negative affect showed
the same pattern, except for the pairings with pitch variability
and speech rate, for which no correlations were found.
Regarding positive affect, we found the opposite correlation
pattern, that is, positive correlations with all MDMQ subscales
and speech rate and negative correlations with pitch variability
and speech pauses. The MDMQ subscales showed the same
relationships as positive affect, except for the pairing between
calmness and pitch variability and speech rate, for which no
correlations were found. Within speech features, we found a
negative correlation between pitch variability and speech pauses,
no correlation between pitch variability and speech rate, and a
negative correlation between speech pauses and speech rate.
Overall, correlations among affective scores were strong (r>0.5).
Correlations among speech features as well as between affective
scores and speech features were weak (r<0.2), except for a
strong negative correlation between speech pauses and speech
rate.

The psychometric properties for momentary affective ratings
were good to excellent. Specifically, McDonald ω values [52]
were 0.87 (within-person) and 0.90 (between-person) for
depressive symptoms (ADS-K), 0.87 (within-person) and 0.95
(between-person) for positive affect, and 0.87 (within-person)
and 0.96 (between-person) for negative affect. The
Spearman-Brown coefficients were 0.83 (within-person) and
0.94 (between-person) for valence, 0.74 (within-person) and
0.89 (between-person) for energetic arousal, and 0.74
(within-person) and 0.89 (between-person) for calmness.
Cronbach α for the MADRS score at the time of inclusion was
acceptable (.67).

Association Between Speech Features and Momentary
Affective Scores

Overview
In Tables 2 and 3, we present the fixed effects of pitch
variability, speech pauses, and speech rate separately for each
affective state. Details, including the effects of time and time²,
are presented in Table S1 in Multimedia Appendix 1.
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Table 2. Multilevel linear regression analysis to predict depression and positive and negative affect: fixed effects of pitch variability, speech pauses,
and speech rate.

OutcomePredictors

Negative affectPositive affectADS-Ka

P valueR²Hox,
%

SEStandard-
ized β

βP valueR²Hox,
%

SEStandard-
ized β

βP valueR²Hox,
%

SEStandard-
ized β

β

Model set 1

<.001N/A0.16N/A2.45<.001N/A0.13N/A2.10<.001N/A0.10N/Ab1.27Intercept

.0510.43.08.85<.00110.42−.18−1.50.00710.32.14.88Pitch vari-
ability

Model set 2

<.001N/A0.16N/A2.46<.001N/A0.13N/A2.09<.001N/A0.10N/A1.27Intercept

.00220.25.09.76<.001170.24−.17−1.16.00510.18.10.52Speech
pauses

Model set 3

<.001N/A0.16N/A2.45<.001N/A0.13N/A2.10<.001N/A0.10N/A1.27Intercept

.0410.07−.08−.13<.00120.06.18.26.02<10.05−.10−.11Speech rate

aADS-K: Allgemeine Depressionsskala.
bN/A: not applicable.

Table 3. Multilevel linear regression analysis to predict valence, energetic arousal, and calmness: fixed effects of pitch variability, speech pauses, and
speech rate.

OutcomePredictors

CalmnessEnergetic arousalValence

P val-
ue

R²Hox,
%

SEStan-
dard-
ized β

βP val-
ue

R²Hox,
%

SEStan-
dard-
ized β

βP val-
ue

R²Hox,
%

SEStan-
dard-
ized β

β

Model set 1

<.001N/A3.39N/A40.97<.001N/A2.71N/A42.82<.001N/A2.70N/Aa43.72Intercept

.37<112.82−.05−11.52<.001112.48−.15−33.21.008113.61−.16−36.50Pitch vari-
ability

Model set 2

<.001N/A3.39N/A40.58<.001N/A2.71N/A42.71<.001N/A2.69N/A43.26Intercept

<.00157.27−.12−24.27.04917.14−.08−14.06<.00137.71−.19−34.06Speech
pauses

Model set 3

<.001N/A3.39N/A40.86<.001N/A2.71N/A42.77<.001N/A2.70N/A43.56Intercept

.0751.91.093.43.0311.87.114.13.00122.03.176.49Speech rate

aN/A: not applicable.

ADS-K Scores
In the column entitled ADS-K (Table 2), we report the results
of all models with ADS-K scores as the outcome. Pitch
variability (standardized β=.14; P=.007), speech pauses
(standardized β=.10; P=.005), and speech rate (standardized
β=−.10; P=.02) were significantly associated with the ADS-K
score, indicating that higher pitch variability, longer speech
pauses, and lower speech rate are associated with more severe
depressive symptomatology.

Positive and Negative Affect
In the columns entitled Positive affect and Negative affect (Table
2), we show results for positive affect and negative affect,
respectively, as outcomes. Pitch variability (standardized
β=−.18; P<.001), speech pauses (standardized β=−.17; P<.001),
and speech rate (standardized β=.18; P<.001) were significantly
associated with positive affect, indicating that lower pitch
variability, shorter speech pauses, and higher speech rate are
associated with higher positive affect. The associations between
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negative affect and speech features were in the opposite direction
of the associations between positive affect and the speech
features just presented: speech pauses (standardized β=.09;
P=.002) and speech rate (standardized β=−.08; P=.04) were
significantly associated with negative affect, indicating that
longer speech pauses and lower speech rate are associated with
higher negative affect. We further found a trend with respect to
the association between pitch variability and negative affect,
but this result was not statistically significant (standardized
β=.08; P=.05). In addition, we found trends with respect to the
associations between negative affect and time and negative
affect and time², specifically in the models that included pitch
variability (time: standardized β=.04; P=.08), speech pauses
(time: standardized β=.04; P=.08; time²: standardized β<.01;
P=.06), and speech rate (time: standardized β=.04; P=.09), but
these results were not statistically significant.

MDMQ Results
In the columns entitled Valence, Energetic arousal, and
Calmness (Table 3), we present the results for the MDMQ. Pitch
variability (standardized β=−.16; P=.008), speech pauses
(standardized β=−.19; P<.001), and speech rate (standardized
β=.17; P=.001) were significantly associated with valence,
indicating that lower pitch variability, shorter speech pauses,
and higher speech rate are associated with higher (ie, positive)
valence. In the model that included valence and speech pauses,
we found a significant association between time² and valence
(standardized β<.001; P=.03). In addition, we found trends with
respect to the associations between valence and time²,
specifically in the models that included pitch variability (time:
standardized β<.01; P=.098) and speech rate (time: standardized
β<.01; P=.07), but these results were not statistically significant.
Moreover, pitch variability (standardized β=−.15; P<.001),
speech pauses (standardized β=−.08; P=.049), and speech rate
(standardized β=.11; P=.03) were significantly associated with
energetic arousal, indicating that lower pitch variability, shorter
speech pauses, and higher speech rate are associated with higher
energetic arousal. In all model combinations of energetic arousal
and each speech feature, we found significant associations
between time and energetic arousal (standardized β=−.11;

P<.001) and time² and energetic arousal (standardized β<.01;
P<.001). Furthermore, speech pauses (standardized β=−.12;
P<.001) were significantly associated with calmness, indicating
that shorter speech pauses are associated with greater calmness.
In all model combinations of calmness and each speech feature,
we found significant associations between time² and calmness
(standardized β<.01; P= .013 for pitch variability, P=.003 for
speech pauses; P=.009 for speech rate). In addition, we found
a trend with respect to the association between speech rate and
calmness (standardized β=.09; P=.07), but this result was not
statistically significant.

Combined Models
In Tables 4 and 5, we display the results for the combined
models that included all 3 speech features. In the model of
ADS-K scores, associations with pitch variability (standardized
β=.17; P<.001) and speech pauses (standardized β=.12; P=.01)
remained statistically significant. Regarding positive affect,
associations with pitch variability (standardized β=−.23; P<.001)
and speech pauses (standardized β=−.19; P<.001) remained
statistically significant. We further found a trend regarding the
association between positive affect and time (standardized
β=−.05; P=.09), but this result was not statistically significant.
Regarding negative affect, associations with pitch variability
(standardized β=.12; P=.008), speech pauses (standardized
β=.12; P=.005), time (standardized β=.05; P=.03), and time²
(standardized β<.01; P=.03) remained statistically significant.
In the model of valence, associations with pitch variability
(standardized β=−.22; P<.001), speech pauses (standardized
β=.22; P<.001), and time² (standardized β<.01; P=.01) remained
statistically significant. Regarding energetic arousal, associations
with pitch variability (standardized β=−.17; P=.003), time
(standardized β=.12; P<.001), and time² (standardized β<.01;
P<.001) remained statistically significant. Regarding calmness,
associations with speech pauses (standardized β=−.17; P=.002)
and time² (standardized β<.01; P=.002) remained statistically
significant. We further found a trend for the association between
calmness and pitch variability (standardized β=.09; P=.097),
but this result was not statistically significant.
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Table 4. Multilevel linear regression analysis to predict momentary depression, positive affect, and negative affect: fixed effects of the combined
models that included pitch variability, speech pauses, speech rate, time, and time².

OutcomePredictorsa

Negative affectPositive affectADS-Kb

P valueSEStandardized
β

βP valueSEStandardized
β

βP valueSEStandardized
β

β

<.0010.16N/A2.47<.0010.13N/A2.08<.0010.10N/Ac1.28Intercept

.03<0.01.05<.01.09<0.01−.05<−.01.42<0.01.02<.01Time

.03<0.01<.01<.01.31<0.01<.001<.01.44<0.01<.001<.01Time²

.0080.45.121.19<.0010.43−.23−1.96<.0010.33.171.11Pitch variability

.0050.35.12.99<.0010.33−.19−1.29.010.26.12.64Speech pauses

.680.09.02.04.660.09.03.04.990.07<.001<−.01Speech rate

aR²Hox for ADS-K=2%, for positive affect=6%, and for negative affect=2%.
bADS-K: Allgemeine Depressionsskala.
cN/A: not applicable.

Table 5. Multilevel linear regression analysis to predict momentary valence, energetic arousal, and calmness: fixed effects of the combined models
that included pitch variability, speech pauses, speech rate, time, and time².

OutcomePredictorsa

CalmnessEnergetic arousalValence

P valueSEStandardized
β

βP valueSEStandardized
β

βP valueSEStandardized
β

β

<.0013.38N/A40.45<.0012.71N/A42.48<.0012.68N/Ab42.95Intercept

.89<0.01.01<−.01<.001<0.01.12<−.01.48<0.01.03<.01Time

.002<0.01<.01<.01<.001<0.01<.01<.01.01<0.01<.01<.01Time²

.09713.07.09−21.75.00312.78−.17−37.74<.00113.76−.22−49.01Pitch variability

.00210.20−.17−32.53.199.97.07−12.97<.00110.73.22−41.01Speech pauses

.382.62.06−2.28.442.56.051.96.822.76.02−.64Speech rate

aR²Hox for valence=4%, for energetic arousal=5%, and for calmness=2%.
bN/A: not applicable.

Exploratory Analysis
Analyzing additional speech features, we found significant
associations of the equivalent sound level, the mean of spectral
flux, and the mean of spectral flux of voiced regions only,
individually, with all affective scores (Table S2 in Multimedia
Appendix 1). With respect to equivalent sound level, this
indicates that louder voice samples were linked to improved
affective states (ADS-K: standardized β=−.30; positive affect:
standardized β=.34; negative affect: standardized β=−.21;
valence: standardized β=.29; energetic arousal: standardized
β=.26; and calmness: standardized β=.19); with respect to the
mean of spectral flux, this indicates that a faster change in the
spectrum was linked to better affective states (ADS-K:
standardized β=−.22, positive affect: standardized β=.28,
negative affect: standardized β=−.15, valence: standardized
β=.21, energetic arousal: standardized β=.17, and calmness:
standardized β=.27); and with respect to the mean of spectral
flux of voiced regions only, this indicates that a faster change

in the spectrum in voiced regions was linked to better affective
states (ADS-K: standardized β=−.23, positive affect:
standardized β=.28, negative affect: standardized β=−.15,
valence: standardized β=.20, energetic arousal: standardized
β=.20, and calmness: standardized β=.16). Regarding the
additional speech features, the following significant associations
were found: the mean of spectral flux of unvoiced regions only
was associated with positive affect, indicating that a faster
change in the spectrum in unvoiced regions was linked to
improved positive affect (standardized β=.13); and the mean of
the MFCC 2 of voiced regions only was significantly associated
with energetic arousal, indicating that a higher mean was linked
to lower energetic arousal (standardized β=−.15). Furthermore,
we revealed a significant association between the SD of the
MFCC 4 of voiced regions only ADS-K scores (standardized
β=.13) as well as positive affect (standardized β=−.10) and
negative affect (standardized β=.09). Specifically, smaller SDs
were linked to higher positive affect, reduced negative affect,
and lower ADS-K scores.
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Discussion

Principal Findings
This is the first study to investigate whether speech features are
associated with depression severity and momentary affective
states in a longitudinal data set of patients with a depressive
episode undergoing SDT. Our findings showed that lower pitch
variability, higher speech rate, and shorter speech pauses were
associated with better momentary states (ie, lower depression
severity; higher positive affect and lower negative affect; and
higher positive valence, energetic arousal, and calmness),
supporting prior clinical observations with innovative methods
applied to an intensive longitudinal data set.

Lower depression severity was accompanied by shorter speech
pauses. This is in line with past research findings reporting that
shorter speech pauses were associated with lower depression
severity [31-33,36]. Our findings extend prior results because
we also found an association between speech pauses and
affective states more broadly, not limited to depressed mood.
Regarding speech rate, we revealed associations with depression
severity and all other affective state scales except for calmness.
In particular, we found that higher speech rate was associated
with lower depression symptomatology and lower negative
affect, higher positive affect, higher positive valence, and higher
energetic arousal. This is in line with prior research [31-33,35],
in which a higher speech rate was found for patients who
benefited from treatment.

Regarding pitch variability, we found support for our hypothesis
that pitch variability changes with depression severity; more
precisely, lower pitch variability was associated with lower
depression symptomatology. This is in line with the studies by
Quatieri and Malyska [34] and Horwitz et al [35], where a
positive correlation between pitch variability and depression
severity was found. However, the results reported in the studies
by Mundt et al [31] and Yang et al [36] contrasted with ours
and those found in the studies by Quatieri and Malyska [34]
and Horwitz et al [35], that is, that higher pitch variability was
associated with lower depression severity. A possible
explanation for contradictory results in major depression are
the heterogeneity of (1) the depression phenotype per se because
diagnosis criteria include >400 possible symptom combinations
[53,54]; and (2) the questionnaires, assessment approaches,
statistical analyses, and speech feature extraction tools used in
these studies. The within-person research design approach
underlying our data set addressed the heterogeneity of the
depression phenotype at least partially. Furthermore, we
analyzed free speech collected naturally in a selfie task, whereas
in the study by Mundt et al [31], read speech was used in the
analyses. In line with what is suggested in the study by Quatieri
and Malyska [34], this could also be a reason for the
contradictory results. However, because assessing within-person
fluctuations in daily life increases ecological validity, we regard
our results as an important contribution.

Observing the full picture of associations, we note that the
results for all 3 speech features are similar and do not provide
evidence of specific associations (eg, association of 1 specific
speech feature with 1 specific momentary affective state),

showing no distinct patterns of momentary states for each speech
feature. This is reasonable because the constructs overlap in
content (eg, patients experiencing depression experience higher
negative affect and lower positive affect).

In terms of the combined models evaluating the relative
importance of the features, we found that in the 4 models
(ADS-K, valence, positive affect, and negative affect) both pitch
variability and speech pauses remained significant, whereas
speech rate did not. Pitch variability remained the only
significant parameter in the model of energetic arousal, and
speech pauses remained the only significant parameter in the
model of calmness. This suggests that pitch variability and
speech pauses are speech features rather independent of each
other, whereas the high correlation between speech pauses and
speech rate might account for the fact that only 1 of these
features (in this case, speech pauses) remained a significant
predictor.

Limitations
First, this study examined a limited set of 3 speech features.
Instead of applying brute force methods involving thousands
of technical speech features, we selected speech features based
on previous work and with high face validity, restricting the
scope of our analysis. Although we did expand our scope of
features in the exploratory analysis, it is very likely that other
configurations and features (eg, the ComParE feature set
containing 6373 features [55]) might also be predictive of
affective states. Future work is needed to compare theory-driven
approaches with brute force data-driven machine learning
methods to find the best possible combination of speech features
also considering aspects of computational power. However,
selecting the features on a theoretical basis and restricting their
pure number limits alpha error inflation and should increase
replicability.

Second, although the sample size of our study was limited, this
was a true within-person design with many data points per
patient. In addition, we regard this study as a pilot study
providing important indications regarding feasibility in a clinical
context. As some patients dropped out of the study, and some
recordings had to be excluded, in future studies, data collection
needs to be integrated better into clinical routines. Moreover,
the instructions for patients may need to be revised to reduce
the likelihood of missing data and recording errors. However,
the data set at hand is still unique in the relatively high number
of assessments per patient and the applied SDT, which yielded
meaningful variation in the depression severity within a short
time period. From a theoretical perspective, it is crucial to
emphasize that to uncover existing relations among variables,
meaningful variance in both parameters is needed.

Third and last, selfie videos were recorded in a clinical
environment, which may limit generalizability to other contexts.
In future studies, ambulant patients could be integrated and
other environments explored to evaluate the replicability of the
results. However, our approach, which involved sampling free
speech, offers higher ecological validity to reading standardized
text paragraphs because it provides a closer representation of
people’s everyday lives. The development of passive sensing
will be helpful in this context (ie, the random assessment of
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audio bits in an ecological environment). To date, automated
passive voice recordings in nonprotected environments have
been restricted in 2-party consent states, such as Germany.
However, in single-party consent states, a few speech-related
applications can be used in the wild (eg, the Electronically
Activated Recorder [56]). Although the development of
technical devices is ongoing, future studies will have to consider
ethical issues related to voice recording in natural settings (eg,
ensuring that no third parties who did not give informed consent
are recorded).

Conclusions
Our study provides evidence that fluctuations in the speech
features pitch variability, speech pauses, and speech rate are
associated with fluctuations in depression severity and other
momentary affect states. Notably, the data were collected from

clinically diagnosed patients (no subclinical sample or staged
emotions) experiencing an acute depressive episode. A
particularly important advantage is that our longitudinal
ambulatory assessment data set ensured a maximum of
within-person dynamics of depressive parameters within a short
time period by applying a sleep deprivation intervention design.
This is of great importance because future technology will try
to predict upcoming depressive episodes on an individual level
and will need information on within-person trajectories. For the
development of such tailored precision medicine tools, pitch
variability, speech pauses, and speech rate present promising
features. Our research is a step forward on the path to developing
an automated depression monitoring system, facilitating
individually tailored treatments and increased patient
empowerment.
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Abbreviations
ADS-K: Allgemeine Depressionsskala
eGeMAPS: extended Geneva Minimalistic Acoustic Parameter Set
F0: fundamental frequency
ICC: intraclass correlation coefficient
ICD-10: International Classification of Diseases, Tenth Revision
MADRS: Montgomery–Åsberg Depression Rating Scale
MDMQ: Multidimensional Mood Questionnaire
MFCC: mel-frequency cepstral coefficient
openSMILE: open-source Speech and Music Interpretation by Large-Space Extraction
SDT: sleep deprivation therapy
SLEDGE II: Sleep Deprivation and Gene Expression
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