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Abstract

Background: ChatGPT, a linguistic artificial intelligence (AI) model engineered by OpenAI, offers prospective contributions
to mental health professionals. Although having significant theoretical implications, ChatGPT’s practical capabilities, particularly
regarding suicide prevention, have not yet been substantiated.

Objective: The study’s aim was to evaluate ChatGPT’s ability to assess suicide risk, taking into consideration 2 discernable
factors—perceived burdensomeness and thwarted belongingness—over a 2-month period. In addition, we evaluated whether
ChatGPT-4 more accurately evaluated suicide risk than did ChatGPT-3.5.

Methods: ChatGPT was tasked with assessing a vignette that depicted a hypothetical patient exhibiting differing degrees of
perceived burdensomeness and thwarted belongingness. The assessments generated by ChatGPT were subsequently contrasted
with standard evaluations rendered by mental health professionals. Using both ChatGPT-3.5 and ChatGPT-4 (May 24, 2023),
we executed 3 evaluative procedures in June and July 2023. Our intent was to scrutinize ChatGPT-4’s proficiency in assessing
various facets of suicide risk in relation to the evaluative abilities of both mental health professionals and an earlier version of
ChatGPT-3.5 (March 14 version).

Results: During the period of June and July 2023, we found that the likelihood of suicide attempts as evaluated by ChatGPT-4
was similar to the norms of mental health professionals (n=379) under all conditions (average Z score of 0.01). Nonetheless, a
pronounced discrepancy was observed regarding the assessments performed by ChatGPT-3.5 (May version), which markedly
underestimated the potential for suicide attempts, in comparison to the assessments carried out by the mental health professionals
(average Z score of –0.83). The empirical evidence suggests that ChatGPT-4’s evaluation of the incidence of suicidal ideation
and psychache was higher than that of the mental health professionals (average Z score of 0.47 and 1.00, respectively). Conversely,
the level of resilience as assessed by both ChatGPT-4 and ChatGPT-3.5 (both versions) was observed to be lower in comparison
to the assessments offered by mental health professionals (average Z score of –0.89 and –0.90, respectively).

Conclusions: The findings suggest that ChatGPT-4 estimates the likelihood of suicide attempts in a manner akin to evaluations
provided by professionals. In terms of recognizing suicidal ideation, ChatGPT-4 appears to be more precise. However, regarding
psychache, there was an observed overestimation by ChatGPT-4, indicating a need for further research. These results have
implications regarding ChatGPT-4’s potential to support gatekeepers, patients, and even mental health professionals’
decision-making. Despite the clinical potential, intensive follow-up studies are necessary to establish the use of ChatGPT-4’s
capabilities in clinical practice. The finding that ChatGPT-3.5 frequently underestimates suicide risk, especially in severe cases,
is particularly troubling. It indicates that ChatGPT may downplay one’s actual suicide risk level.
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Introduction

Background
Large language models (LLMs), a subset of natural language
processing (NLP) models, are trained with ample textual data
to generate advanced language predictions [1]. Recently, a
ChatGPT-based agent from OpenAI in California gained
significant internet attention due to its ability to produce
human-like text from varied prompts [2,3]. In fact, since its
launch in November 2022, ChatGPT swiftly gained millions of
users [1]. Its ability to handle complex tasks and generate
human-like language marks a breakthrough in artificial
intelligence (AI) and natural language processing [3,4].
However, despite extensive study in academia, its applications
in applied psychology [5-7], particularly its efficacy in
addressing critical mental health issues such as suicide
prevention, remain unclear.

Suicide represents a significant global health issue and a leading
cause of mortality [8,9]. Despite numerous comprehensive
studies over the past few decades, the issue of suicide risk
assessment remains unresolved in the mental health field
[10,11]. The currently used questionnaires and clinical
evaluations have yet to overcome notable psychometric
challenges [12]. Another difficulty is the lack of communities’
sufficient access to suicide risk assessment [13]. In an extensive
review of linguistic markers linked to suicidal tendencies, 75
studies involving 279,032 individuals were analyzed. Suicidal
ideation was associated with increased use of intensifiers and
superlatives, while suicidal actions correlated with more
pronouns, varying verb usage, and other specific linguistic
patterns [14]. Fernandes et al [15] used a machine learning
algorithm on electronic health records to detect “suicidal
thoughts” or “suicide attempt” mentions. Although successful,
the algorithm’s ability to predict future suicidal actions is yet
uncertain. Aladağ et al [16] used machine learning on 10,000
forum posts classified by a clinician for suicidal content. Using
metrics from the Linguistic Inquiry and Word Count software,
they achieved high prediction accuracy, but did not specify the
key metrics. Similarly, Tadesse et al [17] analyzed Reddit posts
using NLP, comparing those with and without suicidal content
without clinical validation.

A previous study evaluated the potential of ChatGPT-3.5 (March
14, 2023, version), a linguistic AI model, versus mental health
professionals in assessing suicide risk [6]. The results showed
that ChatGPT-3.5 (March 14 version) generally underestimated
the risk of suicide, which raised concerns about its reliability
for such assessments. Thus, our previous study indicated that
until further evidence could support its accuracy, mental health
professionals should consider ChatGPT’s assessments to be
nonprofessional [6]. However, considering recent developments,
including the launch of ChatGPT-4 and the release of a new
version of ChatGPT-3.5 (May 24, 2023, versions of both), we

aimed in the previous study to examine whether these new
versions exhibited improvements over their predecessors.

In recent times, the potential of AI to augment mental health
services has been the subject of intense scrutiny. The envisaged
applications range from aiding diagnostics [18], to streamlining
administrative tasks that would afford clinicians more patient
time [19], to enhancing social motivation and attentional
performance via AI-powered games that foster mental health
[20]. A recent review [21] shed light on the prospective utility
of AI-driven chatbots in the mental health sphere.

In terms of linguistic diversity, ChatGPT-4 exhibits enhanced
multilingual abilities [22,23] compared to ChatGPT-3.5.
Specifically, it represents a substantial advance in model
progression, with amplified capabilities such as multilingual
expertise, extended context length, and image processing, thus
presenting intriguing possibilities across diverse fields [24]. Yet
the cost of ChatGPT-4 and its inherent limitations underline the
necessity of scrutinizing a specific application before choosing
it [22]. It should be noted that ChatGPT-4 has been
acknowledged for its superior performance relative to its
antecedents [25]. In a study evaluating ChatGPT-4’s
performance on the Ophthalmic Knowledge Assessment
Program examination versus its predecessor, ChatGPT-3.5, the
results demonstrated that ChatGPT-4 notably outperformed
ChatGPT-3.5 (81% vs 57%), indicating progress in medical
knowledge evaluation [26]. Another study contrasting the
performance of ChatGPT-3.5 and ChatGPT-4 on the Japanese
Medical Licensing Examination revealed that ChatGPT-4
surpassed ChatGPT-3.5 in terms of accuracy, particularly with
regard to general, clinical, and clinical sentence queries [27].

This Study
The capacity of clinicians to identify signs of potential suicide
is paramount for the administration of proper crisis management
and suicide intervention tactics, particularly during times of
severe crisis [28]. Given the seriousness of the issue, a
substantial commitment toward evaluating suicide risk is vital
[29-31].

AI, in theory, could assist gatekeepers in their decision-making
processes and enhance the efficacy of formal psychometric tools
and clinical evaluations in predicting suicidal behavior. Current
methods often fall short in their predictive capabilities
[29,32,33].

In this study, we evaluated the ability of ChatGPT-3.5 and
ChatGPT-4 (May 24 versions) to identify the risk of suicide
based on the interpersonal theory of suicide (ITS), an established
and empirically backed theoretical model proposed by Joiner
et al [34,35] for assessing suicide risk and identifying associated
factors. We performed these evaluations on the same day. We
specifically evaluated how the 2 key dimensions of
ITS—perceived burdensomeness and thwarted
belongingness—influence therapists’ perceptions and
assessments of suicidal ideation and behavior. Perceived
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burdensomeness refers to a psychological state wherein
individuals feel their existence imposes a burden on their family,
friends, or society. This perception leads individuals to believe
their death might be more beneficial than their continued
existence [34]. Thwarted belongingness, as defined by Van
Orden et al [35], alludes to feelings of alienation from others
and emphasizes the distressing sensation of exclusion from
one’s family, friends, or other valued groups. This construct
plays a critical role in suicide, as belongingness represents a
fundamental psychological need, and failure to meet this need
can lead to profound distress [36]. In a previous study, the
tendency of ChatGPT-3.5 (March 14 version) to consistently
underestimate the risk of suicide attempts, compared to estimates
by professionals in the mental health field, was unveiled [6].
This trend was maintained irrespective of the influence of
resilience, perceived burdensomeness, or thwarted belongingness
on the evaluation of suicidal ideation and the potential risk of
a suicide attempt. Alarmingly, we observed that the extent of
underestimation of suicide risk by ChatGPT-3.5 (March 14
version) was at its highest when the severity of the case was at
its maximum. This striking discovery poses a significant point
of concern.

The Objectives of This Study
We aimed to (1) assess the ability of ChatGPT-3.5 and
ChatGPT-4 (May 24 versions) to evaluate suicidal behavior and
risk factors across 2 identifiable variables—perceived
burdensomeness and thwarted belongingness—compared to the
ability of mental health professionals and to the earlier version
of ChatGPT-3.5 (March 14 version) and (2) evaluate whether
ChatGPT-4 (May 24 version) evaluates suicide risk more
accurately than ChatGPT-3.5 (May 24 version).

Methods

AI Procedure
Using ChatGPT-4 and the free version of ChatGPT-3.5 (both
May 24), we conducted 3 evaluations during the period of June
and July 2023 to examine the ability of these two versions of
ChatGPT to evaluate various aspects of suicide risk compared
to the performance of mental health professionals and to the
previous version of ChatGPT-3.5 (March 14).

Input Source
In this investigation, we adopted the text vignette methodology
as elucidated by Bresin et al [37] to examine the observer’s
perspective on suicidal acts. A specific vignette from Levi-Belz
and Gamliel [38] was entered into the ChatGPT interface. The
chosen vignette contained general background details and 2
additional paragraphs; one paragraph portrayed either low or
high perceived burdensomeness and the other either low or high
thwarted belongingness, for a total of 4 possible combinations
and 4 vignettes (Multimedia Appendix 1). Each of the vignettes
was presented 3 times to both the ChatGPT-4 and ChatGPT-3.5
models, each time in a new tab.

Measures
After each of the 4 vignette conditions, that is, (1) low
burdensomeness and low belongingness, (2) low

burdensomeness and high belongingness, (3) high
burdensomeness and low belongingness, and (4) high
burdensomeness and high belongingness, we submitted 6
questions to ChatGTP-4 and 3.5 (May 24 versions), taken from
Levi-Belz and Gamliel [38]. Each question was categorized into
one of four subscales: (1) psychache, that is, psychological pain
(Q1: “What do you think is Jane’s level of distress?” and Q2:
“What do you think is Jane’s level of mental pain?”), (2) suicidal
ideation (Q3: “What is the likelihood Jane will have suicidal
thoughts?”), (3) risk of suicide attempt (Q4: “What is the
likelihood Jane will attempt suicide?” and Q5: “What is the
likelihood Jane will make a serious suicide attempt?”), and (4)
resilience (Q6: “How do you assess Jane’s level of resilience?”).
All 6 questions used a 7-point Likert scale, estimating intensity
(Q1, Q2, Q6) and likelihood (Q3-Q5), ranging from 1 (very
slight) to 7 (very high). Multimedia Appendix 2 shows examples
of ChatGPT answers to the questions.

Scoring
The performance of ChatGPT-4 and ChatGPT-3.5 (May 24
versions) was scored and compared to the results of professional
mental health professionals, which were previously published
in accordance with Levi-Belz and Gamliel [38]. Subsequently,
we compared the ChatGPT scores to the norms of 379 mental
health professionals (n=80, 21% male; mean age 36, SD 8.8
years). Of these, 53 were graduate students in psychology, 266
held a master’s degree, and 60 held a PhD. Regarding their
professional roles, 43 participants were supervisors, 108 were
certified experts, 128 were interns, and 100 either had not begun
their internship or were in professions that did not require an
internship. The majority of the sample (n=318, 84%) were
currently practicing, whereas the remaining participants had
previously worked in the mental health field but were currently
not working [38].

Statistical Analysis
The data are presented as the mean (SD) scores of the first,
second, and third evaluations of ChatGPT. Percentage and Z
scores were used to evaluate the differences between the
different ChatGPT versions’ performance and the norms of the
mental health professionals reported by Levi-Belz and Gamliel
[38].

Results

Overview
Table 1 depicts the ChatGPT-4 and 3.5 (May 24 versions) mean
(SD) scores for all four conditions, that is, (1) low
burdensomeness and low belongingness, (2) low
burdensomeness and high belongingness, (3) high
burdensomeness and low belongingness, and (4) high
burdensomeness and high belongingness, for the four dependent
variables: (1) psychache, (2) suicidal ideation, (3) risk of suicide
attempt, and (4) resilience, compared to the norms of the health
professionals reported by Levi-Belz and Gamliel [38] and the
results of ChatGPT-3.5 (March 14 version) reported by Elyoseph
and Levkovich [6].
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Table 1. Descriptive statistics of the mental health professionals (reported by Levi-Belz and Gamlie [38]), ChatGTP-4 (May 24), ChatGTP-3.5 (May
24), and ChatGTP-3.5 (March 14) for the 4 dependent variables (risk for suicide attempt, suicidal ideation, psychache, and resilience) in the 4 conditions.

High perceived bur-
densomeness and high
thwarted belonging-
ness, mean score (SD)

High perceived burden-
someness and low
thwarted belongingness,
mean score (SD)

Low perceived burden-
someness and high
thwarted belongingness,
mean score (SD)

Low perceived burden-
someness and low
thwarted belongingness,
mean score (SD)

Dependent variables

Risk for suicide attempt

4.1 (1.2)3.1 (1.2)2.9 (1.3)2.3 (1.0)Mental health professionals

4.0 (0.6)3.5 (0.6)3.0 (1.5)2.0 (0.6)ChatGPT 4 (May)

2.8 (0.7)2.0 (0.6)2.2 (0.7)1.5 (0.8)ChatGPT 3.5 (May)

2.7 (0.5)1.5 (0.0)1.5 (0.0)1.5 (0.0)ChatGPT 3.5 (March)

Suicidal ideation

5.4 (1.1)5.0 (1.3)4.3 (1.4)3.6 (1.3)Mental health professionals

6.0 (0.0)6.0 (0.0)4.6 (0.5)4.0 (0.0)ChatGPT 4 (May)

5.7 (0.5)4.3 (0.5)4.7 (0.5)3.3 (0.5)ChatGPT 3.5 (May)

5.3 (0.5)4.0 (0.0)4.0 (0.0)4.0 (0.0)ChatGPT 3.5 (March)

Psychache

6.2 (0.7)5.9 (0.7)5.9 (0.6)5.5 (0.8)Mental health professionals

7.0 (0.0)6.8 (0.4)6.3 (0.5)6.0 (0.0)ChatGPT 4 (May)

6.3 (0.5)6.2 (0.4)6.0 (0.0)6.0 (0.0)ChatGPT 3.5 (May)

6.3 (0.2)6.0 (0.0)6.0 (0.0)6.0 (0.0)ChatGPT 3.5 (March)

Resilience

3.4 (1.2)4.2 (1.0)4.5 (1.0)5.1 (0.8)Mental health professionals

2.3 (0.5)2.7 (0.5)4.0 (0.0)4.7 (0.5)ChatGPT 4 (May)

2.3 (0.5)2.6 (0.5)4.0 (0.0)4.7 (0.5)ChatGPT 3.5 (May)

3.0 (0.0)3.0 (0.0)3.3 (0.0)3.7 (0.5)ChatGPT 3.5 (March)

Risk of Suicide Attempt
Figure 1 shows the level of risk of suicide attempts as assessed
by ChatGPT-4 and 3.5 (May 24 versions) as compared to the
norms of the health professionals reported by Levi-Belz and
Gamliel [38] and the results of ChatGPT-3.5 (March 14 version)
reported by Elyoseph and Levkovich [6]. The level of risk of
suicide attempts evaluated by ChatGPT-4 was similar to that
of the mental health professionals in all conditions

(t86=0.13-0.57, P=.56-.9; average Z score=+0.01, average Z
score in absolute value=0.17). In contrast, ChatGPT-3.5 (May
24 version) provided a significantly lower assessment of the
level of risk of suicide attempts than did the mental health
professionals (percentile range 15-27; average Z score=–0.83;
average Z score in absolute value=0.83). This underestimation
is similar to what was found by the ChatGPT-3.5 March 14
version (percentile range 5-23; average Z score=–1.21; average
Z score in absolute value=1.21), but to a lesser extent.
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Figure 1. The level of risk of suicide attempts (mean, SD) assessed by ChatGPT-4 and 3.5 (May 24 versions) as compared to the norms of the health
professionals and ChatGPT-3.5 (March 14 version).

Suicidal Ideation
Figure 2 shows the level of risk of suicidal ideation as assessed
by ChatGPT-4 and 3.5 (May 24 versions) as compared to the
norms of the health professionals reported by Levi-Belz and
Gamliel [38] and the results of ChatGPT-3.5 (March 14 version)
reported by Elyoseph and Levkovich [6]. ChatGPT-4 evaluated
the likelihood of suicidal ideation higher than the mental health
professionals in all conditions (percentile range 59-78; average

Z score=0.47, average SD in absolute value=0.47). In contrast,
ChatGPT-3.5 (May 24 version) assessed the likelihood of
suicidal ideation quite similarly to the way in which the mental
health professionals did (percentile range 31-61; average Z
score=–0.04; average Z score in absolute value=0.31). This
estimation was also quite similar to the results of the
ChatGPT-3.5 March 14 version (percentile range 22-62; average
Z score=–0.17; average Z score in absolute value=0.33).

Figure 2. The likelihood of suicidal ideation (mean, SD) assessed by ChatGPT-4 and 3.5 (May 24 versions) as compared to the norms of the health
professionals and ChatGPT-3.5 (March 14 version).

Psychache
Figure 3 shows the level of psychache as assessed by ChatGPT-4
and 3.5 (May 24 versions) as compared to the norms of the
health professionals reported by Levi-Belz and Gamliel [38]
and the results of ChatGPT-3.5 (March 14 version) reported by
Elyoseph and Levkovich [6]. The level of psychache evaluated
by ChatGPT-4 was higher than the level evaluated by the mental
health professionals in all conditions (percentile range 76-90;

average Z score=1.00, average SD in absolute value=1.00). In
contrast, ChatGPT-3.5 (May 24 version) assessed the level of
psychache quite similarly to how it was assessed by the mental
health professionals (percentile range 55-76; average Z
score=0.38; average Z score in absolute value=0.38). This
estimation was also quite similar to the results of the
ChatGPT-3.5 March 14 version (percentile range 22-62; average
Z score=–0.17; average Z score in absolute value=0.31).
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Figure 3. The level of psychache (mean, SD) assessed by ChatGPT-4 and 3.5 (May 24 versions) as compared to the norms of the health professionals
and ChatGPT-3.5 (March 14 version).

Resilience
Figure 4 shows the level of resilience as assessed by ChatGPT-4
and 3.5 (May 24 versions) as compared to the norms of the
health professionals reported by Levi-Belz and Gamliel [38]
and the results of ChatGPT-3.5 (March 14 version) reported by
Elyoseph and Levkovich [6]. The level of resilience evaluated
by ChatGPT-4 was lower than the level evaluated by the mental
health professionals in all conditions (percentile range 6-31;

average Z score=–0.89, average SD in absolute value=0.89).
Similarly, ChatGPT-3.5 (May 24 version) provided a lower
assessment of resilience than did the mental health professionals
(percentile range 5-31; average Z score=–0.90; average Z score
in absolute value=0.90). This estimation was quite similar to
the results of the ChatGPT-3.5 March 14 version (percentile
range 4-30; average Z score=–1.13; average Z score in absolute
value=1.13).

Figure 4. The level of resilience (mean, SD) assessed by ChatGPT-4 and 3.5 (May 24 versions) as compared to the norms of the health professionals
and ChatGPT-3.5 (March 14 version).

Discussion

Principal Findings
In this study, we aimed to examine the efficacy of ChatGPT in
conducting suicide risk assessments, with a particular focus on
2 discernible factors—sense of perceived burdensomeness and
feelings of thwarted belongingness—across a period of 2
months. In addition, we wished to compare and analyze the
precision of suicide risk assessment between two AI models,
ChatGPT-4 and ChatGPT-3.5 (both the March 14 and May 24
versions), to ascertain which demonstrated superior
performance. Parallels were found between the propensity for

suicide attempts as assessed by ChatGPT-4 and as assessed by
a sample of mental health professionals, under all conditions.
However, there was a notable disparity between the evaluations
made by ChatGPT-3.5 (both the March 14 and May 24
versions), which discernibly underestimated the risk of suicide
attempts, and the assessments conducted by the mental health
professionals.

This particular discovery carries substantial weight given the
widespread and unrestricted use of AI chatbot technology by
the general public. In a cross-sectional investigation, it was
ascertained that 78.4% of the respondents exhibited a willingness
to use ChatGPT for the purpose of self-diagnosis [39]. In a
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variety of circumstances—including mental health evaluations,
therapeutic consultations, medication management, and patient
education—it has been substantiated that ChatGPT effectively
delivers pertinent information and support to patients [40]. A
recent review scrutinized the benefits conferred by ChatGPT
and analogous LLMs in enhancing medical education, refining
clinical decision-making processes, and propelling superior
patient outcomes [41]. The findings of this study constitute
preliminary evidence that ChatGPT-4 can provide an assessment
similar to that provided by professionals on critical matters such
as predicting the likelihood of suicidal behavior. The
implications are vast; namely, ChatGPT-4 could serve as a
decision-making support tool for clinicians and possibly offer
professionals a second opinion. All of these possibilities
necessitate continued research and development.

That said, we found that compared to the estimations made by
mental health professionals across all conditions, ChatGPT-4
overestimated suicidal ideation. Surprisingly, the evaluation of
suicidal ideation by ChatGPT-3.5 (May 24 version) was similar
to the assessments made by the mental health professionals in
all conditions as compared to the assessments of ChatGPT-4.
Notably, these assessments by the May 24 version of
ChatGPT-3.5 were consistent with the findings obtained from
the March 14 version of the same ChatGPT-3.5 model.

The ability to competently use assessments identifying suicidal
ideation in client interactions is of utmost importance for mental
health professionals. It is estimated that approximately 1 in 4
such professionals will encounter client suicide [42]. The
accurate discernment of suicidal ideation thus marks a
fundamental stride toward its prevention and efficient
management. Although no tool can guarantee absolute certainty,
having access to reliable instruments for clinical assessment
can prove indispensable for practitioners. Standardized
assessments ought to be used in tandem with a clinical interview,
mnemonic devices, and the evaluation of risk factors in order
to conduct a comprehensive appraisal of patient risk [43].
Although it is evident that ChatGPT-4 showed a tendency to
overestimate suicidal ideation compared to the mental health
professionals, it did so by only a small margin. Currently, we
do not know whether this gap resulted from the AI’s
overestimation or from mental health professionals’
underestimation.

The findings of this study highlight that there was a higher
degree of psychache, as assessed by ChatGPT-4, than that
rendered by a group of mental health professionals in all
observed conditions. By contrast, the assessment of psychache
by the May 24 version of ChatGPT-3.5 aligned closely with the
mental health professionals’ assessment. The ChatGPT-3.5
(May 24 version) findings are congruent with the outcomes
from its March version. A potential explanation for these
findings might be that ChatGPT-4 tends to overestimate certain
metrics. Furthermore, these findings suggest that different
ChatGPT versions should still be used in a balanced manner,
not exclusively, but in combination with the professional
expertise of health care practitioners. This suggestion seems to
align with the positions of professionals regarding the use of
ChatGPT. In a survey assessing health care workers’ interactions
with ChatGPT, a significant majority of respondents (75.1%)

expressed comfort with the idea of integrating ChatGPT into
their health care practice, including in the aiding of medical
decision-making (39.5%) [44].

Contrary to the other findings, this study indicates that the level
of resilience as evaluated by ChatGPT-4 was lower than the
level as assessed by the mental health professionals in all
conditions. Similarly, ChatGPT-3.5 (March and May) provided
a lower assessment of the level of resilience than did the mental
health professionals. Despite the common use of the resilience
concept, it should be noted that it has different definitions and
a variety of measurement methods [45]. Resilience is a
multifaceted concept shaped by various elements that span the
individual, environmental, organizational, and cultural spheres
[46]. This inherent complexity and multidimensionality renders
resilience a challenging construct to operationalize and measure
[46]. Experienced professionals, when confronted with case
descriptions, are likely to consider an amalgamation of these
factors, exhibiting a nuanced understanding that may be
challenging to encapsulate fully in technological iterations.
Thus, although the different versions of the technology offer
significant value, their assessments must be contextualized
within this wider understanding of resilience, highlighting the
importance of a balanced approach that includes professional
insight.

This research highlights the complexity of evaluating an
individual’s risk for suicide. The foregoing evidence
demonstrates the potential advantages of using ChatGPT-4 to
bolster clinical decision-making in the realm of suicide risk
assessments among professionals [18,19,21]. Furthermore,
ChatGPT-4 could play a crucial role in enhancing training and
clinical procedures among mental health and medical
professionals [26,27,47]. The easy access to ChatGPT and the
possibility of reducing feelings of stigma may in the future drive
the use of mental health assessment services by the general
public.

However, the incorporation of ChatGPT into suicide risk
detection mechanisms also presents a series of complexities.
The reliability of ChatGPT predictions is intrinsically linked to
the quality and demographic inclusivity of the training data
[31]. Data biases or inadequate demographic representation
could lead to erroneous predictions or exacerbate existing health
disparities. Moreover, ChatGPT algorithms often function as
opaque entities, obscuring the reasoning behind their predictive
mechanisms. This lack of clarity can impede the development
of trust and acceptance among users [48]. The deployment of
ChatGPT for the identification of depression raises several
ethical issues [48]. Ensuring data privacy and security is
paramount, particularly given the sensitive nature of mental
health information [49]. Research on the ethical facets of mental
health within the broader populace suggests that participants
express reservations about the widespread acceptance of AI and
the implications of its capabilities for human welfare.
Furthermore, there is apprehension regarding the potential for
medical inaccuracies [50]. Moreover, there is expressed concern
from patients regarding the potential discriminatory implications
stemming from the use of AI [51]. The potential misuse that
could exacerbate health disparities is an imperative issue. There
is also the necessity of respecting patient autonomy, as AI can
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spread misleading medical information or endorse unverified
treatments, which may compromise a general practitioner’s
understanding of medical conditions [52]. While AI offers the
unique capability to craft authentic patient scenarios—thus
enhancing medical training—it is vital to remain cognizant of
the risks associated with the misuse or misrepresentation of
these tools [52]. Users must be thoroughly informed about the
use and protection of their data. Importantly, ChatGPT should
not replace human clinical judgment in the diagnostic process,
but rather supplement it, thereby aiding professionals in making
more-informed clinical decisions.

Limitations
This study, although informative, is not without limitations. To
begin with, the assessment of the risk of suicide is based on a
limited number of vignettes that centered on a woman in
relatively stable condition of an age bracket not typically
associated with high suicide risk and with no history of previous
suicide attempts. Such a narrow representation does not
adequately encapsulate the broad spectrum of suicide risk. As
a result, we suggest that future research should expand to include
a more diverse demographic. Vignettes should be created
featuring varied demographics, such as male participants,
individuals with psychiatric conditions, adolescents, and the
elderly, to ensure a more holistic understanding of suicide risk.
Secondly, our comparison of ChatGPT data was limited to a
sample drawn from mental health professionals in Israel. To
achieve a more comprehensive evaluation and to understand
cross-cultural nuances in suicide risk assessment, we advocate
for the exploration of therapists’ assessments from various
global contexts. Additionally, we used norms from a study about
professionals as published by Levi-Belz and Gamliel [38]. We

were unable to compare other statistical characteristics between
the groups. We recommend further examination between an
existing sample and ChatGPT. A further limitation of our study
was that it relied heavily on the ITS as a theoretical basis.
Although this theory provided a useful framework, it could
potentially have constrained the breadth of our understanding.
Moreover, our research delved into the complex domain of
suicide risk assessment via AI; however, to gain more extensive
insights, additional studies are required. Such studies should
examine additional risk factors, integrate more expansive
language models, assess data at different time intervals, and
compare results with a broader array of clinical samples. Finally,
given the rapid advances in the AI field, there is an inherent
challenge in generalizing the results for stable, long-term
abilities. Therefore, long-term studies are a necessity to keep
pace with the evolving landscape and ensure a lasting
understanding of suicide risk assessment.

Conclusion
In summary, this study yields critical knowledge on the potential
of AI chatbots, particularly ChatGPT-4, to carry out suicide risk
evaluations, while also highlighting the intricacies and subtleties
entailed. Even though ChatGPT-4 overassessed suicidal
thoughts, it showed an assessment accuracy on par with mental
health experts in regard to suicidal behaviors. This research
underlines the significance of AI tools such as ChatGPT serving
as a supplement rather than as a substitute for professionals.
The research also illustrates the rapid development of AI in the
field of applied psychology and the need for research at multiple
points in time and in regard to multiple versions in order to
achieve reliable results.
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