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Abstract

Background: Artificial intelligence (AI) is giving rise to a revolution in medicine and health care. Mental health conditions are
highly prevalent in many countries, and the COVID-19 pandemic has increased the risk of further erosion of the mental well-being
in the population. Therefore, it is relevant to assess the current status of the application of AI toward mental health research to
inform about trends, gaps, opportunities, and challenges.

Objective: This study aims to perform a systematic overview of AI applications in mental health in terms of methodologies,
data, outcomes, performance, and quality.

Methods: A systematic search in PubMed, Scopus, IEEE Xplore, and Cochrane databases was conducted to collect records of
use cases of AI for mental health disorder studies from January 2016 to November 2021. Records were screened for eligibility
if they were a practical implementation of AI in clinical trials involving mental health conditions. Records of AI study cases were
evaluated and categorized by the International Classification of Diseases 11th Revision (ICD-11). Data related to trial settings,
collection methodology, features, outcomes, and model development and evaluation were extracted following the CHARMS
(Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies) guideline. Further, evaluation
of risk of bias is provided.

Results: A total of 429 nonduplicated records were retrieved from the databases and 129 were included for a full assessment—18
of which were manually added. The distribution of AI applications in mental health was found unbalanced between ICD-11
mental health categories. Predominant categories were Depressive disorders (n=70) and Schizophrenia or other primary psychotic
disorders (n=26). Most interventions were based on randomized controlled trials (n=62), followed by prospective cohorts (n=24)
among observational studies. AI was typically applied to evaluate quality of treatments (n=44) or stratify patients into subgroups
and clusters (n=31). Models usually applied a combination of questionnaires and scales to assess symptom severity using electronic
health records (n=49) as well as medical images (n=33). Quality assessment revealed important flaws in the process of AI
application and data preprocessing pipelines. One-third of the studies (n=56) did not report any preprocessing or data preparation.
One-fifth of the models were developed by comparing several methods (n=35) without assessing their suitability in advance and
a small proportion reported external validation (n=21). Only 1 paper reported a second assessment of a previous AI model. Risk
of bias and transparent reporting yielded low scores due to a poor reporting of the strategy for adjusting hyperparameters,
coefficients, and the explainability of the models. International collaboration was anecdotal (n=17) and data and developed models
mostly remained private (n=126).
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Conclusions: These significant shortcomings, alongside the lack of information to ensure reproducibility and transparency, are
indicative of the challenges that AI in mental health needs to face before contributing to a solid base for knowledge generation
and for being a support tool in mental health management.

(JMIR Ment Health 2023;10:e42045) doi: 10.2196/42045
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Introduction

Mental health represents a vital element of individual and
collective well-being, but stressful or adverse living, working,
or economic conditions and social inequalities, violence, and
conflict can put it at risk. The COVID-19 pandemic has
demonstrated how vulnerable mental health can be. Mental
health conditions represent one of the leading causes of suffering
and disability in the European Region. In 2021, over 150 million
people in the WHO (World Health Organization) European
Region lived with a mental health condition, and only 1 in 3
people with depression receive the care they need. To address
these gaps in mental health services and support, many of which
have been exacerbated by the pandemic, WHO/Europe launched
a new Pan-European Mental Health Coalition [1]. Mental health
is a top priority for the WHO and is a flagship initiative of the
European Programme of Work 2020-2025 [2].

Artificial intelligence (AI) has been increasingly used to provide
methods and tools for improved diagnosis and treatment of
diseases since 2010. AI is defined as the reproducibility of
human-like reasoning and pattern extraction to solve problems
[3]. AI involves a variety of methods that expand traditional
statistical techniques. AI can find patterns that support decision
making and hypotheses validation. AI offers a new scope of
powerful tools to automate tasks, support clinicians, and deepen
understanding of the causes of complex disorders. AI’s presence
and potential in health care are rapidly increasing in recent years.
AI models need to be fed with the adequate data to be integrated
in the clinical workflow and ensuring data quality is crucial [4].
Digitized data in health care are available in a range of formats,
including structured data such as electronic health records or
medical images, and nonstructured schemas, such as clinical
handwritten notes [5].

Because of the possibilities AI offers, policymakers may gain
insight into more efficient strategies to promote health and into
the current state of mental disorders. However, AI often involves
a complex use of statistics, mathematical approaches, and
high-dimensional data that could lead to bias, inaccurate

interpretation of results, and overoptimism of AI performance
if it is not adequately handled [6]. Further, several lacking areas
cause concern: transparent reporting in AI models that
undermine replicability, potential ethical concerns, validation
of generalizability, and positive collaboration in the research
community [7,8].

The goals of this review are to map the applications of AI
techniques in mental health research, reveal the prominent
mental health aspects in this framework, and to assess the
methodological quality of the recent scientific literature and
evolution of this field in the last 5 years. Systematic reviews
and meta-analyses (PRISMA [Preferred Reporting Items for
Systematic Reviews and Meta-Analyses] 2020 statement) [9]
will be used to design the search strategy and to funnel selection
in this systematic overview.

Methods

Search Strategy
A systematic literature search was conducted on clinical trials
on mental health disorders involving AI techniques using 4
electronic databases: PubMed, Scopus, IEEE Xplore, and
Cochrane (Table 1). Search string queries are detailed in
Appendix S1 in Multimedia Appendix 1.

Inclusion and Exclusion Criteria
We specified 3 inclusion criteria for screening. Records were
included if they reported a clinical trial (either interventional
or observational), were related to mental health disorders, and
featured an application of AI. For the final eligibility assessment,
exclusion criteria were defined to constrain the review: the
reported AI case is not applied for a mental health outcome (ie,
applying tools to improve image quality), the record was not
published in English, or the report was not published in the last
5 years to review the specific application of these techniques
in clinical mental health research. These criteria were designed
to evaluate the researching lines in mental health disorders in
the last few years, which include the democratization of
frameworks and tools for AI application.
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Table 1. Databases consulted and filters related to our search criteria applied in the search engines.

Filters in search engineDatabase

PubMed • Article type: Clinical trial
• Language: English
• Publication date: 5 years

Scopus • Document type: Article
• Language: English

IEEE Xplore • Range years: 2016-2021

Cochrane • Type: Trials
• Publication date: 2016-2021
• Language: English

Selection Process
Figure 1 shows the flow diagram of the selection process.
Records from the scientific literature were identified in the 4
databases defined in Table 1. The resulting data sets were
combined in a Microsoft Excel spreadsheet (.xlsx), rearranged
by DOI (digital object identifier), and checked for possible
erroneous entries. Duplicated records were assessed by
comparing DOI names and titles of the publication. A simple
code in R 4.2.0 win32 (R Foundation for Statistical Computing)

was used to find and tag records whose DOI name and title were
already found in the database. The results were manually
reviewed to correct minor errors due to misspellings of DOI or
the title in the record database. The eligibility criteria for
inclusion were then manually evaluated by the title and abstract
of each record, and selected records were sought for retrieval.
Retrieved records were fully screened and were dismissed if
they did not meet the inclusion criteria or met the exclusion
criteria. Finally, data and details were extracted for included AI
studies.

Figure 1. Selection process: PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 flow diagram. AI: artificial
intelligence.

JMIR Ment Health 2023 | vol. 10 | e42045 | p. 3https://mental.jmir.org/2023/1/e42045
(page number not for citation purposes)

Tornero-Costa et alJMIR MENTAL HEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Data Extraction
For the included AI applications, 11 categories and 35 data
indicators are reported. These indicators were adapted from the
CHARMS (Critical Appraisal and Data Extraction for
Systematic Reviews of Prediction Modelling Studies) guideline
[10]. In addition, publication-related data such as author(s),
title, journal, year of publication, and DOI were extracted for
the analysis.

Categories were designed to evaluate the goal of the clinical
trial and AI, the accessibility and quality of the development
process of the data, how the AI model was designed and
developed, results, and the reported discussion. Not only are
the categories for data extraction designed for detailing the AI
models, but also they evaluate the differences and linkages
between trial design, data collection, and AI implementation.
For further details, see Appendix S2 in Multimedia Appendix
1.

Quality Assessment
Risk of bias was evaluated by combining the Cochrane tool for
randomized controlled trials [11] and PROBAST (Prediction
Model Risk of Bias Assessment Tool) guidelines [12]. The
Cochrane Handbook for Systematic Reviews of Interventions
[13] accounted for the trial design and whether masking and
blindness were applied or should have been. The PROBAST
guidelines accounted for the suitability of the methodology for
collecting the data, candidate predictors, and outcome definition
for the AI model as well as how the AI model was applied and
analyzed. Both guidelines were considered together to evaluate
possible biased relations between trial design and AI
applicability. Details of the methodology are provided in
Appendix S3 in Multimedia Appendix 1.

Results

Articles Identified From the Database Searching
The search identified 540 records, all published in English.
Excluding 111 duplicates, 429 articles were screened according
to the eligibility criteria based on the title and abstract. The
screening process concluded with 241 records excluded for not
meeting the inclusion criteria. Of those, 188 records were sought
for retrieval, with 12 found impossible to retrieve. Thus, 176
records were assessed for eligibility and 65 were excluded due
to not being a clinical trial (n=37), not related to AI (n=23),
partially related to mental health (n=3), or not related to mental
health (n=2). Furthermore, limitations of search queries were
minimized as much as possible by manually adding a selection
of AI studies that were not found in the search (n=25). Records
from this selection were also screened and sought for retrieval
and eventually 18 studies were included. Ultimately, 129 records
were included in the analysis. A record could involve 2 or more
different cases of AI use for a different outcome, from now on

referred to as an AI study. A total of 153 AI studies or AI
applications were analyzed. Table 2 summarizes the most
important information extracted for this systematic review.
Details on the final analysis for each study can be found in
Multimedia Appendix 2 (see also [14-142]).

Most used private data (n=142), and a small fraction used public
data (n=10) or a mix (n=1). Most studies aimed to develop a
new model (n=152); only 1 study aimed to validate a current
model. No AI study was intended to update a previously
developed AI model. Concerning mental health categories based
on the International Classification of Diseases 11th Revision
(ICD-11), nearly one-half of the studies (77/153, 50.3%) related
to mood disorders, which combines the Depressive disorders
(n=70) and Bipolar or related disorders (n=4) categories; 3 other
studies used data from patients within both categories, labeled
as “mood episodes.” The second most common category was
Schizophrenia or other primary psychotic disorders (n=26), and
the third was Disorders specifically associated with stress
(n=12). Some studies included participants with different mental
disorders (n=10).

Other categories were Anxiety or fear-related disorders (n=7);
Secondary mental or behavioral syndromes associated with
disorders or diseases classified elsewhere (n=5); Disorders due
to substance use (n=5); Neurocognitive and dementia disorders
(n=4); Neurodevelopmental disorders (n=1);
Obsessive-compulsive or related disorders (n=1); Feeding or
eating disorders (n=1); Bodily distress disorder (n=1);
Personality disorders (n=1); and Mental or behavioral disorders
associated with pregnancy, childbirth, or the puerperium,
without psychotic symptoms (n=1).

Only 28.1% (43/153) of studies used original data collected
within the study, while 71.9% (110/153) of studies retrieved
data from databases or were a secondary analysis of clinical
trials not designed for that purpose. The most common type of
trial design was randomized clinical trial (n=62), followed by
prospective cohort study designs (n=30) and nonrandomized
clinical trial designs (n=15). Further, we found longitudinal
naturalistic studies (n=15), cross-sectional designs (n=14),
case-control designs (n=9), and case reports (n=2). Two reports
of AI cases used a mix of trial designs and 4 did not report this
or the references were unclear. Figure 2 shows the distribution
of study design based on the prospective or retrospective
collection of data.

Not all studies reported enough details to evaluate recruitment
of participants (n=17). Almost one-half of the studies collected
data from different locations (n=75), whereas the rest only
reported 1 location (n=61). Of the multisite studies, only
one-third used international collection (17/153, 11.1%). Only
13 of the 43 (30%) prospective collection studies followed a
multisite collection method (n=13), and only 1 study was
international.
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Table 2. Key summary of artificial intelligence studies (N=153) analyzed (n=129 articles).

Data typeArtificial intelligence model familyMental health disorder (ICD-11a) section number: category

6A0: Neurodevelopmental disorders • Mixedb [14]• Regression [14]

6A2: Schizophrenia or other primary psychotic disorders • Genomic data [29]• Competing modelsc [15-17]
• Medical image [15-19,21-23,27,28,33]• Ensembled models [18,19]
• Mixed [20,26,30,32]• Regression [20-23]
• Questionnaires and scales [24,25,31]• Statistical clustering [24]

• SVMd [25-28]
• Trees [29-31]
• Regression and statistical clus-

tering [32]
• Regression and hierarchical

clustering [33]

6A6: Bipolar or related disorders • Medical image [35,37]• Bayesian [34]
• Manifold [35] • Mixed [36]

• Questionnaires and scales [34]• Regression [36]
• SVM [37]

6A7: Depressive disorders • Audio recording [64]• Bayesian [38-40]
• Competing models [41-53] • Biomarkers [51,54,95]

• Biosignal [41]• Deep learning [54]
• Ie [80,81,87,93]• Ensembled models [55-57]

• Hierarchical clustering [58,59] • Genomic data [44,70,74]
• Markov model [60] • Medical image [38,40,48,67-69,75,82,85]
• Mixture model [61] • Mixed [42,43,45,46,49,50,52,53,55-57,59,

61,63,65,66,71-73,77,79,83,86,88-92,94]• Mixture model, regression, and
trees [62] • Questionnaires and scales [47,58,60,62,76]

• Regression [63-74] • Text [39]
• Relevance vector machine [75] • Video image [78,84]
• Statistical learning [76,77]
• SVM [78-86]
• Trees [87-93]
• Trees and hierarchical cluster-

ing [94]
• Trees and statistical learning

[95]

6A6, 6A7: Mood episodes • Medical image [97,98]• Competing models [96]
• SVM [97] • Questionnaires and scales [96]
• Regression [98]

6B0: Anxiety or fear-related disorders • Biomarkers [101]• Competing models [99-101]
• Regression [102] • Biosignal [100]

• Mixed [99,103,104]• SVM [103]
• Text [102]• Trees [104]

6B2: Obsessive-compulsive or related disorders • I [105]• Competing models [105]

6B4: Disorders specifically associated with stress • Audio recording [116]• Competing models [106]
• Ensembled models [107,108] • Biosignal [115]

• Medical image [112-114]• Hierarchical clustering [109]
• Mixed [106-108,110,111]• Mixture model and regression

[110] • Questionnaires and scales [109]
• SVM [111-115]
• Trees [116]

6B8: Feeding or eating disorders • Mixed [117]• Competing models [117]

6C2: Bodily distress disorder • Mixed [118]• Regression [118]

6C4: Disorders due to substance use • Medical image [120]• Competing models [119]
• Regression [120] • Mixed [119,121,122]
• Trees [121,122]
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Data typeArtificial intelligence model familyMental health disorder (ICD-11a) section number: category

• Mixed [123]• Trees [123]6D1: Personality disorders

• Mixed [124-127]• Competing models [124]
• Ensembled models [125,126]
• Trees [127]

6D7, 6D8: Neurocognitive disorders and dementia

• Mixed [128]• Competing models [128]6E2: Mental or behavioral disorders associated with pregnan-
cy, childbirth, or the puerperium, without psychotic symp-
toms

• Mixed [130-133]
• Questionnaires and scales [129]

• Bayesian [129]
• Competing models [130]
• Regression [131]
• Trees [132,133]

6E6: Secondary mental or behavioral syndromes associated
with disorders or diseases classified elsewhere

• Biosignal [140]
• Mixed [135-137,139]
• Questionnaires and scales [134,138,141]

• Bayesian [134]
• Ensembled models [135-137]
• Regression [138,139]
• Regression and support vector

machines [140]
• Trees [141]

Combination of some ICD-11 categories in mental health

• Mixed [142]• Competing models [142]Unspecifiedf

aICD-11: International Classification of Diseases 11th Revision.
bMixed: combination of type of data and predictors.
cCompeting models: the study was designed for evaluate several types of artificial intelligence model families without assessing a priori adequacy.
dSVM: support vector machine.
eI: electronic health records.
fUnspecified: The outcome of the study is “mental health problems,” therefore, it could not be classified in any specific category.

Figure 2. Count of trial designs where data were retrieved. Orange specifies only studies with their own designed trial. RCT: randomized clinical trial.

AI Applications
Studies were categorized according to the intended use of the
AI models in the research. The most common category was
studies for evaluating treatments, Treatment quality (n=44),

followed by Subgroups/patterns identification (n=31), Predictor
identification (n=28), Prognosis (n=23), Diagnose (n=20), and
Forecasting symptoms (n=7).
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Most Treatment quality applications used retrospective data
from previous randomized clinical trials (n=28) and in these
studies the clinical arms were treated as different cohorts to
compare AI outcomes and performance (n=28). The same results
can be found in Predictor identification, where close to one-half
of the studies collected data from previous randomized clinical
trials to compare different clinical arms (n=13). In the
Subgroups/patterns identification category, studies collected
data from a balanced mix of study designs, while in Prognosis
the most common method was prospective cohort studies. In
the Diagnose and Forecasting symptoms studies, none of the
categories stood out in particular. More detailed results are
presented in Appendix S4 in Multimedia Appendix 1.

Figure 3 presents a dashboard that summarizes the AI model
results regarding candidate predictors, preprocessing pipeline,
AI techniques, and validation. For candidate predictors, many
studies used a combination of data (n=73). The most individually
common category was Medical image (n=33), which relates to
medical imaging analysis (ie, region of interest or voxel-based
morphometry), and the second was Questionnaires and scales
(n=20), defined as any self-reported or interview-reported scale
for symptom severity, conditions, or actual mood. The third
was Biosignal collection (n=11), such as electroencephalography
or electrocardiography and related analyses. Other data
categories were Biomarkers (n=5), Genomic data (n=3),
Electronic health records or I (n=2), Text (n=2), Video image
analysis (n=2), and Audio recording (n=2). I refers to historical,
demographic, and clinical information collected in hospitals
and specialty care sites. Text refers to any data that are used for
natural language processing analysis, such as written text or
speech. Audio recording was introduced as the analysis of audio
and voice features unrelated to language processing. The Mixed
category (n=73 studies) combined data from I and different
questionnaires and symptom scales (49/73, 67%); the remaining
studies included other categories such as Biomarkers (n=7),
Medical image (n=4), Genomic data (n=3), Biosignal (n=3),
and Text (n=2). Medical image was also combined with
Genomic data (n=1) and Biomarkers (n=1). Besides, Biomarkers
were combined with Questionnaires and scales (n=2) and with
Biosignals (n=1).

When evaluating data quality, methods to assess data suitability,
and preprocessing pipelines, only 12/153 studies (7.8%)

considered the statistical power of the sample size; 37.3%
(57/153) of studies used a sample size of 150 or less to train the
AI models. Only 13.7% (21/153) reported external validation
(n=5) or reported both internal and external validation (n=16).
The rest of the AI studies used only internal validation (n=108)
or did not report the validation method (n=24). Only 38.6%
(59/153) of studies reported a method to assess significance of
their performance results, while the majority did not detail any
(n=94).

AI studies used supervised learning, semisupervised learning,
and unsupervised learning methods. No reinforcement learning
algorithms were found. Regarding AI algorithms, the most
popular family of techniques was regression (n=34), followed
by trees (n=26) and support vector machine (n=23), which
constitutes most AI studies. Other algorithms were Bayesian
(n=6), statistical clustering (n=5), hierarchical clustering (n=5),
mixture model (n=3), deep learning (n=1), manifold (n=1),
Markov model (n=1), and relevance vector machine (n=1). In
some cases, an Ensembled model was designed with the
inclusion of different types of AI algorithms (n=12). Another
category, Competing models (n=35), refers to the AI studies
that did not predefine a specific AI technique or algorithm based
on features of the data and instead applied different techniques
with the intention to retain the model algorithm with the best
performance to their outcome definition. These 35 studies used
144 AI techniques in total.

Regarding preprocessing methods, only 63.4% (97/153) of
studies reported whether they applied any preprocessing
technique to data or that preprocessing was not needed, while
the rest did not report any (n=56). Regarding data gaps, only
52.3% (80/153) of studies reported or mentioned if there were
some missing data in samples or not, while 47.7% (73/153) did
not. Of the studies reporting missing data, 2.6% (4/153) did not
report any method to handle missing data bias, whereas 24.2%
(37/153) opted for excluding the samples and 25.5% (39/153)
chose to impute the missing values from the data distribution
by different imputation methods. Of these, only 2 studies
detailed the type of missingness. The proportion of reporting
missing data was similar for both retrospective and prospective
data collection.
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Figure 3. Dashboard and descriptive analytics on AI developing and preprocessing pipeline. AI: artificial intelligence; EHR: electronic health record;
RVM: relevance vector machine; SVM: support vector machine.

Risk of Bias and Transparency
The risk of introducing bias is defined in Appendix S3 in
Multimedia Appendix 1. Only 23 studies were found unlikely
to introduce bias due to the trial design and evaluation of
participants, whereas in the majority of studies the risk was high
or unclear. In most cases, the risk of bias due to participants
and the trial features was introduced by bias in the distribution
of participants—that is, inclusion and exclusion criteria, loss
of follow-up, and participants withdrawal—or the sample was
not enough to be considered a good example of the target
population. The definition and collection of the candidate
predictors were mostly a low risk of introducing bias (n=16),
with a few studies possibly introducing bias (n=21) or having
an unclear risk of bias (n=16). Results for the outcome definition
in the AI model are similar, with most studies evaluated as
having a low risk of bias (n=101). Some studies were
categorized as unclear (n=15) or high risk (n=37) due to unclear
definitions of outcomes or combining data set of different
populations whose outcomes were evaluated with different
methods. The most important risk of bias was found when
applying AI algorithms and their evaluation. Only a few studies
were evaluated as unlikely to introduce some bias (n=5) and

the vast majority of AI analysis introduced a high risk of bias
(n=139), while 9 could not be assessed properly (n=9). The
main issues for bias in the AI analysis were not appropriately
preprocessing and arranging the data for the specifications of
the applied AI model, a bad handling of missingness, or an
insufficient validation of the performance to account for
overfitting and optimism (Figure 4). Appendix S5 in Multimedia
Appendix 1 shows a stratified analysis of the risk of bias based
on disorders, study designs, and outcome.

Overall, only 1 AI study could be assessed as a low risk of being
biased. The most contributing categories to the overall risk were
Participants and AI analysis. Most studies were likely unbiased
about the definition and collection of predictors and the outcome
but they failed to apply these data later in the model—bad data
engineering or bad validation of the models—or the trial design
had some flaws from the beginning. It is worth mentioning that
only 9 of the 153 models reported any hyperparameter tuning
or coefficients of the models and most of them reported basic
trees models coefficients and decision rules. Only 58 studies
mentioned or reported predictor importance and less than
one-half reported the ranking and evaluated the methodology
to test it (Figure 5).
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Figure 4. Analysis of the risk of bias following PROBAST (Prediction Model Risk of Bias Assessment Tool) categories as defined in Multimedia
Appendix 1. AI: artificial intelligence.

Figure 5. Reporting of candidate predictor importance as well as hyperparameters for model tuning and coefficients of models. AI: artificial intelligence.

Discussion

Principal Findings
This overview summarizes the development and status of AI
applications in mental health care. The review focused on the
period from 2016 to 2021 to understand the latest advancements
of these applications in mental health research, including aspects
related to the methodological quality, the risk of bias, and the
transparency. Results may be limited by the keywords applied
in the search queries. This analysis is only representative for
the records retrieved in this search. However, the samples
analyzed may be sufficient to judge the quality and current
status of this field. Significant methodological flaws were found
involving the statistical processes of AI applications and data
preprocessing. Many studies overlook evaluating or reporting

on data quality and how it fits the model. Some studies applied
several AI techniques, here aggregated as “compelling models”
studies, to select the most efficient technique without assessing
their suitability for the problem they face, which may lead to
overoptimism. Further, missing data management and the
recruitment of participants are rarely reported, making it difficult
to account for the risk of model overfitting. Preprocessing
pipelines are not sufficiently reported, which hampers the
reproducibility of the study or the adaptation of the AI
techniques to the specific type of study. The use of reporting
guidelines, such as the CONSORT-AI (AI version of the
Consolidated Standards of Reporting Trials) for clinical trial
reports involving AI [143], the SPIRIT-AI (AI version of the
Standard Protocol Items: Recommendations for Interventional
Trials) for clinical trial protocols involving AI [144], or the
MI-CLAIM (Minimum Information About Clinical Artificial
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Intelligence Modeling) checklist on minimum information for
clinical AI modeling [145], would be very useful to ensure that
the basic information about the study design and implementation
is reported in these types of studies.

Some predictive models are being updated for AI reporting,
such as TRIPOD-AI (AI version of the Transparent Reporting
of a Multivariable Prediction Model of Individual Prognosis or
Diagnosis) and PROBAST-AI (ie, the AI version of the
PROBAST) [146]. However, these guidelines are rarely
followed in the reviewed records. They lack transparent
reporting on AI model features such as coefficients,
hyperparameters, or predictor selection. Encouraging transparent
reporting should be prioritized, as it would benefit second
external validations and provide better accountability for
reported models.

The incorporation of AI in mental health research is unbalanced
between ICD-11 mental health disorders. Most research focusses
on depressive disorders, where it combines severity
questionnaires and scales with electronic health record and
psychotic disorders using medical image data. External
validation is very uncommon. Conducting suitable trial designs
for the intended AI outcomes is understandably difficult in terms
of money, time, and resources. Thus, it is common to apply data
collected retrospectively. However, the original trial designs
do not fit the specifications for AI development and most studies
do not assess the appropriateness of these data. Notably, many
authors may not understand the need to ensure an optimal
preprocessing pipeline. In these cases, authors are aware of the
poor performance of the models, but the proposed approach for
improvement is suggested directly from a trial perspective rather
than from assessing possible statistical bias or mistakes in model
development, which could save cost and time over designing
new studies.

Challenges
AI studies were analyzed to identify challenges and
opportunities involving the use of AI in mental health. Typically,
AI studies reported insufficient samples to ensure model
generalizability [68,84,103]. Several authors reported bias
because of the difficulty in adapting typical trial designs to an
AI context. For example, some authors detail the constraining
boundaries for selecting participants in randomized clinical
trials as a limiting factor, which reduces the sample size and
could overlook confounders [68,90]. Most randomized clinical
trials noted possible variance between the collected data and
the real-world data. However, observational studies can also
introduce bias in AI models if the imbalance between cohorts
is not adequately addressed [84,128]. In these studies, the variety
in features such as prescribed medication could introduce
confounders and bias that are difficult to manage [94].
Furthermore, in long-term studies, lack of follow-up or other
conditions leading to a decrease of patients is an important
limitation, mostly for prognosis studies or predictive evolution
of condition severity [30,58]. These issues are worse for
retrospective collection of data, where trial designs tend to
diverge from the problematics of AI. Besides, some authors are
aware of bias due to gaps, but most did not properly evaluate
this risk.

A noticeable lack of internationalization was detected. Many
studies focused only on local data, which contributes to small
sample sizes and poor generalizability [115,127]. Encouraging
partnerships and collaborations across countries and centers
should be a priority, as it could facilitate external validation
[71]. Some authors mention difficulties reconciling clinical
practices with AI study requirements, usually due to ethics
problems related to clinical practice in patients that can overlook
confounders, that is, making it difficult to apply placebo controls
in some interventions [82,115].

Another challenge is the explainability of complex AI models,
which could make researchers reluctant to adopt techniques that
map high-order interactions or “black-box” algorithms [81,122].
Researchers prefer simpler algorithms. The few studies that
reported model coefficients and some explanation used decision
trees. Another challenge is that contradictory findings could
occur among studies [85].

Finally, some authors are aware of the opportunities that
everyday devices and platforms such as phones and social
networks offer but find it difficult to take advantage of these
tools due to lack of standardization, which reduces the target
population for defining a study [92].

Opportunities
Some studies introduced devices and platforms to improve the
monitoring of patients. The application of everyday digital tools
could reduce necessary resources and therefore facilitate data
collection [99,127]. Promoting the use of frequently used
devices combined with the application of AI models seems like
a future trend that could improve the treatment of many
conditions where the chance of treatment response decreases
over time [126]. Further, it opens possibilities of internet-based
treatments that could be conducted in real time with digital
technology, easing the load on hospitals [99].

Data sharing and public databases should be encouraged to
develop and implement more trustworthy AI models. AI models
from clinical stage to clinical practice could be difficult but
powerful tools to gain insights into predictor collection,
human-based decisions, and AI biases while these techniques
are being implemented in clinical world. Many studies report
the high potential of AI in mental health for clinical support,
computer-aided systems, and possibly preliminary screening
[94,127].

Currently, many guidelines and initiatives exist to which
researchers could adhere to in order to increase transparency
and better use AI models. Currently, the EQUATOR (Enhancing
the Quality and Transparency of Health Research) network
initiative reports useful guidelines that could foster collaboration
and implementation [147].

Conclusion
AI algorithms are increasingly being incorporated into mental
health research; however, it is still uneven between ICD-11
categories. Collaboration is merely anecdotal, and data and
developed models mostly remain private. Significant
methodological flaws exist involving the statistical process of
AI applications and data preprocessing pipelines. Only 1 study
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was found reporting second validation, and 13.7% (21/153)
reported external validation. The evaluation of the risk of bias
and transparent reporting was discouraging. Model
hyperparameters or trained coefficients are rarely reported, nor
are insights about the explainability of the AI models. The lack
of transparency and methodological flaws are concerning, as

they delay the safe, practical implementation of AI. Furthermore,
data engineering for AI models seems to be overlooked or
misunderstood, and data are often not adequately managed.
These significant shortcomings may indicate overly accelerated
promotion of new AI models without pausing to assess their
real-world viability.
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