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Abstract

Background: The COVID-19 pandemic has broad negative impact on the physical and mental health of people with chronic
neurological disorders such as multiple sclerosis (MS).

Objective: We presented a machine learning approach leveraging passive sensor data from smartphones and fitness trackers of
people with MS to predict their health outcomes in a natural experiment during a state-mandated stay-at-home period due to a
global pandemic.

Methods: First, we extracted features that capture behavior changes due to the stay-at-home order. Then, we adapted and applied
an existing algorithm to these behavior-change features to predict the presence of depression, high global MS symptom burden,
severe fatigue, and poor sleep quality during the stay-at-home period.

Results: Using data collected between November 2019 and May 2020, the algorithm detected depression with an accuracy of
82.5% (65% improvement over baseline; F1-score: 0.84), high global MS symptom burden with an accuracy of 90% (39%
improvement over baseline; F1-score: 0.93), severe fatigue with an accuracy of 75.5% (22% improvement over baseline; F1-score:
0.80), and poor sleep quality with an accuracy of 84% (28% improvement over baseline; F1-score: 0.84).

Conclusions: Our approach could help clinicians better triage patients with MS and potentially other chronic neurological
disorders for interventions and aid patient self-monitoring in their own environment, particularly during extraordinarily stressful
circumstances such as pandemics, which would cause drastic behavior changes.

(JMIR Ment Health 2022;9(8):e38495) doi: 10.2196/38495
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Introduction

The COVID-19 pandemic and the ensuing response (eg,
lockdown and social distancing) have broad negative impacts
on physical and mental health worldwide [1-7]. The effect is
more pronounced for people with chronic neurological diseases
such as multiple sclerosis (MS) [8-10]. People with MS have a
significantly higher burden of mental health comorbidities than
the general population. Moreover, people with MS have a 50%
lifetime prevalence of depression, 2-3 times higher than the
general population [11-13]. Given its association with higher
disability and mortality, depression is a major comorbidity that
lowers the quality of life [11,14-20]. Further, people with MS
have greater COVID-19 risk due to certain immune
disease-modifying therapies as well as their physical disability,
and many have experienced drastic change in their neurological
care due to the pandemic [21]. Concerns for COVID-19, coupled
with decreased social support and health care access during the
pandemic, have contributed to even higher stress and depression
in people with MS [10,22-24].

During the pandemic, digital technologies have become
invaluable for supporting social interaction, health care access,
and health monitoring. Digital health tools can also measure an
individual’s mental health profile based on passive (noninvasive)
tracking. Given the complexity and heterogeneity of real-world
behaviors, models that leverage different aspects of an
individual’s daily behaviors are necessary to accurately predict
mental health status. Relevant to depression in people with MS,
clinicians could use this digital passive sensing approach to
potentially identify patients who require urgent health
interventions.

Past research has leveraged passively generated data from
personal digital devices (eg, smartphones and fitness trackers)
to capture human behavior and predict health outcomes. This
moment-by-moment, in situ quantification of the individual-level
human phenotype using data from personal digital devices is
known as digital phenotyping [25]. Previous works using
passively sensed smartphone and wearable data to predict
physical disability and fatigue in people with MS have been
exploratory in assessing the feasibility of data collection and
the preliminary association between sensed behaviors and
outcomes [26-28]. However, the clinical applicability of digital
phenotyping to inform clinical outcomes in people with MS in
the real world has not yet been established.

Here, we present a machine learning approach leveraging data
from the smartphones and fitness trackers of people with MS
to predict their health outcomes during a mandatory
stay-at-home period of the pandemic. Building on an existing
analytical pipeline [29], we quantified behavior changes during
the stay-at-home period when compared to the preceding period
and used the changes to predict the presence of patient-reported
outcomes of depression, neurological disability, fatigue, and
poor sleep quality during the stay-at-home period. This study
is different from prior studies in that it examines the clinical
utility of digital phenotyping with passive sensors for predicting
health outcomes during the early wave of the COVID-19
pandemic in a unique natural experiment. The study has

relevance for predicting the health outcomes of patients with
chronic and complex conditions beyond MS during major
stressful scenarios (eg, pandemics and natural disasters) that
could considerably alter behaviors.

Methods

Overview
This study was part of a larger study that aimed to examine the
clinical utility of passive sensors on smartphones and fitness
trackers in predicting clinically relevant outcomes in people
with MS. Data collection from participants in this larger study
occurred between November 2019 and January 2021. Because
data collection for 56 participants spanned the locally mandated
stay-at-home period in response to the COVID-19 pandemic,
we used this unique natural experiment to test the hypothesis
whether machine learning models leveraging passive sensor
data can predict the health outcomes of people with a chronic
neurological disorder (ie, people with MS) during major stressful
scenarios.

To briefly summarize our approach, we used data from 3 sensors
in the participants’ smartphones (calls, location, and screen
activity) and 3 sensors in the participants’ fitness trackers (heart
rate, sleep, and steps) to predict patient-reported outcomes of
depression, global MS symptom burden, fatigue, and sleep
quality during the COVID-19 stay-at-home period. We
computed behavioral features from these 6 sensors before and
during the stay-at-home period and took the difference as a
measure of behavior change resulting from the stay-at-home
mandate. We then used changes in behavioral features to predict
the outcomes.

All methods were performed in accordance with the institutional
review board guideline and institutional regulation.

Participants
The study included adults 18 years or older with a
neurologist-confirmed MS diagnosis who owned a smartphone
(Android or iOS) and enrolled in the Prospective Investigation
of Multiple Sclerosis in the Three Rivers Region study, a
clinic-based natural history study at the University of Pittsburgh
Medical Center [21,30-34].

Ethical Considerations
The institutional review boards of University of Pittsburgh
(STUDY19080007) and Carnegie Mellon University
(STUDY2019_00000037) approved the study. All participants
provided written informed consent.

Study Design
The participants downloaded a mobile app to capture sensor
data from their own smartphones and additionally received a
Fitbit Inspire HR (Fitbit Inc) to track steps, heart rate, and sleep.
Data were continuously collected from smartphone and Fitbit
sensors of 56 participants during the study period (16 November
2019 to 15 May 2020, including the local stay-at-home period).

All 56 (100%) participants completed data collection for a
predefined period of 12 weeks while 39 (70%) agreed to extend
data collection for an additional 12 weeks (for a total of 24
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weeks). Moreover, 6 (11%) participants who did not have
sufficient data during the period before the stay-at-home
mandate were excluded from the machine learning analysis.

Survey Response and Patient-Reported Outcomes
All participants completed a baseline questionnaire, which
queried their demographics and baseline health outcomes, on
the Saturday following enrollment. During the study, the
participants completed additional questionnaires, as described
below, at intervals according to each questionnaire. All
questionnaires for the overall study were administered via the
web using the secure, web-based Research Electronic Data
Capture system, including the stay-at-home period [35,36].

Depression
We used the Patient Health Questionnaire-9 (PHQ-9) to measure
the severity of depression symptoms once every 2 weeks [37].
PHQ-9 contained 9 questions, with each answer being scored
on a scale of 0 to 3. Higher scores indicated more severe
depressive symptoms.

Global MS Symptom Burden
We used the Multiple Sclerosis Rating Scale—Revised
(MSRS-R) to measure global MS symptom burden and
neurological disability once every 4 weeks [38]. MSRS-R
assessed 8 neurological domains (walking, upper limb function,
vision, speech, swallowing, cognition, sensory, bladder, and
bowel function); each domain scored as 0 to 4, with 0 indicating
the absence of symptom and 4 indicating higher symptom
burden and more severe disability.

Fatigue
We used the 5-item version of the Modified Fatigue Impact
Scale (MFIS-5) to measure the impact of fatigue on cognitive,
physical, and psychosocial function once every 4 weeks [39].
Each item in MFIS-5 was scored on a 5-point Likert scale from
0 (never) to 4 (almost always). Higher scores indicated more
severe fatigue.

Sleep Quality
We used the Pittsburgh Sleep Quality Index (PSQI) to measure
sleep disturbances once every 4 weeks [40]. PSQI comprised
19 individual items, with 7 component scores (each on a 0-3
scale) and 1 composite score (0 to 21, where higher scores
indicate a poorer sleep quality).

For each outcome, we averaged the measures collected during
the stay-at-home-period and then dichotomized the resulting
outcomes using thresholds. The binary outcomes would likely
have better clinical utility as they are more easily understood
by patients (for self-monitoring), volunteers with limited mental
health training, or even clinicians. For “Depression,” PHQ-9
scores were dichotomized as “≥5: presence of depression” and
“<5: absence of depression.” For “Global MS symptom burden,”
MSRS-R scores were dichotomized as “≥6.4: higher burden”
and “<6.4: lower burden.” For “Fatigue,” MSIF-5 scores were

dichotomized as “≥8: high fatigue” and “<8: low fatigue.” For
“Sleep quality,” PSQI scores were dichotomized as “≥9: poorer
sleep quality” and “<9: better sleep quality.” The thresholds for
depression and sleep quality were based on previous works
[37,41]. Given the lack of consensus from the literature, we
calculated the median scores of the global MS symptom burden
and fatigue in a larger data set of 104 people with MS, of which
the 56 (53.8%) people with MS in this paper represented a
subgroup (with data collection encompassing the stay-at-home
period) and used the median scores as the thresholds.

Sensor Data Collection
Each participant installed a mobile app based on the AWARE
framework [42], which provided backend and network
infrastructure that unobtrusively collected from smartphones
the location, screen usage (ie, when the screen status changed
to on or off and locked or unlocked), and call logs (for incoming,
outgoing, and missed calls). Further, participants wore a Fitbit
Inspire HR, which captured the number of steps, sleep status
(asleep, awake, restless, or unknown), and heart rate. Calls and
screen use were event-based sensor streams, whereas location,
steps, sleep, and heart rate were time series sensor streams. We
sampled location coordinates at 1 sample per 10 minutes, and
steps, sleep, and heart rate at 1 sample per minute.

Data from AWARE were deidentified and automatically
transferred over WiFi to a study server at regular intervals. Data
from the Fitbit were retrieved using the Fitbit application
programming interface at the end of the data collection.
Participants were asked to keep their devices charged and to
always carry their phone and wear Fitbit.

To protect confidentiality, we removed identifiable information
(eg, names and contact information) from survey and sensor
data prior to analysis. We followed the standard practice for
sensor data security.

Mediation Analysis
Mediation analysis was performed using the nondichotomized
outcomes (ie, the average of the patient-reported outcomes
collected during the stay-at-home-period). Process Macro in
SPSS (IBM Corp) was used for mediation analysis [43].

Data Processing and Machine Learning
The data processing and analysis pipeline (Figure 1) were built
on our prior work [29] and involved several steps:

1. Feature extraction from sensors over time slices to identify
behavior changes.

2. Handling missing features.
3. Machine learning to predict patient-reported health

outcomes during the stay-at-home period:
• Using 1-sensor models (ie, models containing features

from 1 sensor).
• Combining 1-sensor models to obtain the best model

for each outcome.
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Figure 1. Data processing and analysis pipeline. (A) Machine learning pipeline for predicting depression (Patient Health Questionnaire-9 [PHQ-9]),
global MS symptom burden (Multiple Sclerosis Rating Scale—Revised [MSRS-R]), fatigue (Modified Fatigue Impact Scale-5 [MFIS-5]), and sleep
quality (Pittsburgh Sleep Quality Index [PSQI]) using passive sensors from smartphones and fitness trackers. (B) For each sensor during the
pre–stay-at-home period and the stay-at-home period, each feature was extracted from 15 time slices. The pre–stay-at-home features were subtracted
from the stay-at-home features to obtain the behavior change features. First, raw data from the device sensor were preprocessed and then filtered by a
time-of-the-day epoch and a days-of-the-week option. Features were then extracted from the selected raw data.

Feature Extraction
We computed features from the 6 sensors of calls, heart rate,
location, screen, sleep, and steps, given their potential to inform
depressive symptoms [29,44-48], as well as fatigue [49], MS
symptom burden such as decreased mobility [27], and sleep
quality [50,51].

Location features captured mobility patterns. Steps and heart
rate captured the extent of physical activities. Calls features
captured communication patterns. Screen features might inform
the ability for concentration [52,53] and the extent of sedentary
behavior [54], despite potential caveats for people with MS and
other chronic neurological disorders. Sleep features captured
sleeping duration and patterns, which could indicate sleep
disturbance (eg, insomnia or hypersomnia) associated with
depression [55]. Please see Multimedia Appendix 1 (section
A.1 [29,44,46,56-59]) for details of features extracted from each
sensor.

Features from the 6 sensors were extracted over a range of
temporal slices (Figure 1B) preceding and during the
stay-at-home period. For each period, we obtained the daily
averages of these features by computing the average of the daily
feature values. We computed features of behavior changes by
subtracting the daily averages of features during the baseline
(pre–stay-at-home) period from the stay-at-home period for the
machine learning models.

Temporal Slicing
The temporal slicing approach extracted sensor features from
different time segments (Figure 1B). Past work showed that this
approach can better define the relationship between a feature
and depression. For example, Chow et al [60] found no

relationship between depression and the time spent at home
during 4-hour time windows, but they found that people with
more severe depression tended to spend more time at home
between 10 AM and 6 PM. Similarly, Saeb et al [61] found that
the same behavioral feature calculated over weekdays and
weekends could have a very different association with
depression. Here, we obtained all available data (spanning
multiple days of the study) from a specific epoch or time
segment of the day (all day, night [ie, 12 AM-6 AM], morning
[ie, 6 AM-12 PM], afternoon [ie, 12 PM-6 PM], and evening
[ie, 6 PM-12 AM]) and for specific days of the week (all days
of the week, weekdays only [ie, Monday-Friday], and weekends
only [ie, Saturday-Sunday]) to achieve 15 data streams or
temporal slices. To extract features from each of the 15 temporal
slices, we first computed daily features, averaged daily features
from the pre–stay-at-home period, and averaged daily features
from the stay-at-home period. We then subtracted the
pre–stay-at-home feature matrix from the stay-at-home feature
matrix to obtain the behavior change features. We concatenated
the resulting 15 temporal slices of behavior change features to
derive the final feature matrix.

Feature Matrix
After feature extraction, each of the 6 sensors had a feature
matrix, with each sample containing a participant’s feature
vector comprising behavior change features from 15 different
temporal slices.

Handling Missing Data
Missing sensor data can occasionally occur due to several
reasons. Our approach for handling missing data is described
in Multimedia Appendix 1 (section A.2).
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Machine Learning Using Nested Feature Selection
We built machine learning models to predict dichotomized
outcomes using the data set, building on a published approach
[29], and validated our models using leave-5-participants-out
cross-validation to minimize overfitting. The model generation
process followed these steps:

1. Stable feature selection using randomized logistic
regression, leveraging temporal slices.

2. Training and validating 1-sensor models for each of the 6
feature sets of calls, heart rate, location, screen, sleep, and
steps.

3. Obtaining predictions from combinations of sensors by
combining detection probabilities from 1-sensor models to
identify the best performing model.

4. Classifying different outcomes
by running the pipeline for each outcome.

Stable Feature Selection
To enable stable feature selection from a vast number of
behavioral features, Chikersal et al [29] proposed an approach
called “nested randomized logistic regression,” which we
deployed in this study. This method decomposed the feature
space for each sensor by grouping features from the same time
slices and performed randomized logistic regression on each of
these groups. The selected features from all groups (ie, all time
slices) are then concatenated to give a new and much smaller
set of features. Next, we performed randomized logistic
regression on this new set of features to extract the final selected
features for the sensor. We performed the nested feature
selection for each of the six 1-sensor models, thereby nesting
the process. This method was performed in a
leave-5-participants-out manner such that the model used to
detect an outcome for a participant did not include that person
during the feature selection process. More details about this
method can be found in Multimedia Appendix 1 (section A.3).

Training and Validating 1-Sensor Models
For each sensor, we built a model of the selected features from
that sensor to detect an outcome. We used
leave-5-participants-out cross-validation to choose the
parameters for that model. We trained models using the
following 2 machine learning algorithms: logistic regression
and gradient boosting classifier [29]. We chose the model with

the best F1-score for a given outcome, which provides the
detection probabilities for the outcome. The process is
independent of other outcomes.

Obtaining Predictions From Combinations of Sensors
The detection probabilities from all six 1-sensor models were
concatenated into a single feature vector and given as input to
an ensemble classifier (ie, AdaBoost with gradient boosting
classifier as a base estimator), which then outputted the final
label for the outcome. For all outcomes, only the detection
probabilities of the positive label “1” were concatenated. The
positive label was the “presence of depression” for “depression,”
“high burden” for “global MS symptom burden,” “severe
fatigue” for “fatigue,” and “poor sleep quality” for “sleep
quality.” The “n_estimators” (the maximum number of
estimators at which boosting is terminated) parameter was tuned
during leave-5-participants-out cross-validation to achieve the
best-performing combined model.

To analyze the usefulness of each sensor, we implemented a
feature ablation analysis by generating detection results for all
possible combinations of 1-sensor models. For six 1-sensor
models, there were 57 combinations of feature sets, as the total
combinations = combinations with 2 sensors + ... + combinations
with 6 sensors =

Classifying Different Outcomes
This pipeline of training and validating six 1-sensor models and
57 combined models was run independently for each of the 4
outcomes. For each outcome, we reported the performance based
on the best combination of sensors. We also reported the
performance of baseline models (ie, a simple majority classifier
whereby every point is assigned to whichever is in the majority
in the training set) as well as models containing all 6 sensors.

Results

Participant Characteristics
The characteristics of the 56 participants were representative
of the typical MS study (median age 43.5 years; n=48, 86%
women). Table 1 shows the detailed participant characteristics.
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Table 1. Study participant characteristics.

ValueVariable

Sex, n (%)

48 (86)Female

8 (14)Male

Race, n (%)

51 (91)White

5 (9)African or African American

Ethnicity, n (%)

55 (98)Non-Hispanic or Latino

1 (2)Hispanic or Latino

43.5 (37-52)Age (years), median (IQR)

13.0 (6.7-17.4)Time elapsed (years) from age of first neurological symptom

onset to study participation, median (IQR)

1 (0-3)PDDSa score at start of study, median (IQR)

Disease-modifying treatment, n (%)

38 (68)Higher efficacy

12 (21)Standard efficacy

Depression diagnosis, n (%)

39 (70)Not diagnosed with clinical depression before study enrollment

17 (30)Diagnosed with clinical depression before study enrollment

Pharmacotherapy for depression, n (%)

39 (70)Not taking medication for depression before study enrollment

17 (30)Taking medication for depression before study enrollment

Nonpharmacotherapy for depression, n (%)

52 (93)Not receiving nonmedication therapy for depression before study enrollment

4 (7)Receiving nonmedication therapy for depression before study enrollment

Study outcomes: average measures during the stay-at-home period, median (IQR)

3.7 (0.0-7.4)PHQ-9b (depression)

7.5 (3.4-10.3)MSRS-Rc (global MSd symptom burden)

8.0 (4.6-11.0)MFIS-5e (fatigue)

11.0 (7.8-14.3)PSQIf (sleep quality)

aPDDS: Patient Determined Disease Steps.
bPHQ-9: Patient Health Questionnaire-9.
cMSRS-R: Multiple Sclerosis Rating Scale—Revised.
dMS: multiple sclerosis.
eMFIS-5: Modified Fatigue Impact Scale-5.
fPSQI: Pittsburgh Sleep Quality Index.

Interrelated Outcomes
The main study outcome is patient-reported depression as well
as associated neurological symptom burden, fatigue, and sleep
quality. We measured the Pearson correlations among the
average values of the 4 outcomes during the stay-at-home period
for the participants. Depression severity (PHQ-9) correlated

with the global MS symptom burden (MSRS-R), fatigue severity
(MFIS-5), and sleep quality (PSQI; Figure 2).

To dissect the complex relationship among these outcomes to
inform better patient monitoring and guide potentially more
precise interventions, we performed mediation analysis (Figure
3). When MFIS-5 and PSQI were both included as mediators
in the model (path c’), the association between MSRS-R and
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PHQ-9 was no longer significant (effect size=0.13 and the
bias-corrected bootstrap confidence intervals=–0.14 and 0.40).
However, the association between MSRS-R and PHQ-9 through
MFIS-5 (path a1b1) remained significant (effect size=0.34 and
the bias-corrected bootstrap confidence intervals=0.13-0.52).

The association between MSRS-R and PHQ-9 through PSQI
(path a2b2) also remained significant (effect size=0.13 and the
bias-corrected bootstrap confidence intervals=0.02-0.27). Hence,
the relationship between the global MS symptom burden and
depression might be mediated by both fatigue and sleep quality.

Figure 2. Correlations among the 4 clinically relevant patient-reported outcomes in this study. For all correlations, P<.001 (N=56). MFIS-5: Modified
Fatigue Impact Scale-5; MSRS-R: Multiple Sclerosis Rating Scale—Revised; PHQ-9: Patient Health Questionnaire-9; PSQI: Pittsburgh Sleep Quality
Index.

Figure 3. Parallel mediation analysis. Path model showing the effect of Multiple Sclerosis Rating Scale—Revised (MSRS-R; measuring global MS
symptom burden) on the Patient Health Questionnaire-9 (PHQ-9) score (measuring depression) as mediated simultaneously by Modified Fatigue Impact
Scale-5 (MFIS-5; measuring fatigue) and Pittsburgh Sleep Quality Index (PSQI; measuring sleep quality). Path c represents the effect of MSRS-R on
PHQ-9 without mediators in the model. Path c’ represents the effect of MSRS-R on PHQ-9 when MFIS-5 and PSQI mediators are included in the model.
Paths a1b1 and a2b2 represent the effect of MSRS-R on PHQ-9 through MFIS-5 or PSQI respectively. The figure shows nonstandardized β regression
coefficients (*P<.05, **P<.001, ***P<.0001) as reported by PROCESS Macro in SPSS [43]. MS: multiple sclerosis.

Predicting Outcomes During the Stay-at-home Period
Figure 4 shows the performance of the machine learning pipeline
for predicting each of the 4 outcomes using the best sensor
combinations (ie, the set of sensors that had the best performance
for each outcome). Accuracy is the percentage of patients for
whom the outcome label was correctly predicted. F1-score is a
metric of model performance that measures the harmonic mean
of precision and recall. Precision is the positive predictive value,
or the number of true positive labels divided by the number of

all positive labels (true positive + false positive). Recall is
sensitivity, or the number of true positive labels divided by the
number of all patients who should have the positive labels (true
positive + false negative). In this study, “positive” label refers
to the outcome of interest (eg, presence of depression is the
positive label for depression). Figures S1 to S4 in Multimedia
Appendix 1 report the performance of individual sensors and
when all 6 sensors were included. Tables S1 to S4 in Multimedia
Appendix 1 list the features selected by the best models for each
outcome, and their corresponding coefficients.
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Figure 4. Performance of the machine learning pipeline using all sensors and the best sensor combination for predicting each of the 4 clinically relevant
outcomes in people with multiple sclerosis during a state-mandated stay-at-home period. "Accuracy (All Sensors)" and "F1 Score (All Sensors)" are
the accuracy (× 0.01) and F1-score obtained by combining all 6 sensors. "Accuracy (Best Sensors)" and "F1 Score (Best Sensors)" are the accuracy (×
0.01) and F1-score obtained by the best combination of sensors. See Multimedia Appendix 1 for additional performance metrics of all models. MFIS-5:
Modified Fatigue Impact Scale-5; MSR-R: Multiple Sclerosis Rating Scale—Revised; PHQ-9: Patient Health Questionnaire-9; PSQI: Pittsburgh Sleep
Quality Index.

Depression
The baseline model (simple majority classifier) had an accuracy
of 50.0% in predicting the presence of depression during the
stay-at-home period. The model containing all sensors had an
accuracy of 70% (40% improvement over the baseline). The
model with the best combination of sensors (calls, heart rate,
and location) had an accuracy of 82.5% (65% improvement
over the baseline).

Global MS Symptom Burden
The baseline model had an accuracy of 64.7% in predicting high
global MS symptom burden (versus “low burden”) during the
stay-at-home period. The model containing all sensors had an
accuracy of 76.7% (18.5% improvement over the baseline). The
model with the best combination of sensors (calls, heart rate,
location, and screen) had an accuracy of 90% (39%
improvement over the baseline).

Fatigue
The baseline model had an accuracy of 61.8% in predicting
severe fatigue (versus “mild fatigue”) during the stay-at-home
period. The model containing all sensors had an accuracy of
71.7% (16% improvement over the baseline). The model with
the best combination of sensors (calls, heart rate, and location)
had an accuracy of 75.5% (22% improvement over the baseline)

Sleep Quality
The baseline model had an accuracy of 65.7% in predicting
poor sleep quality (ie, “poor sleep quality” versus “better sleep
quality”) during the stay-at-home period. The model containing
all sensors had an accuracy of 70.2% (7% improvement over
the baseline). The model with the best combination of sensors
(location and screen) had an accuracy of 84% (28%
improvement over the baseline).

Discussion

Principal Findings
In this unique natural experiment conducted during the early
wave of the COVID-19 pandemic, we reported the clinical utility
of digital phenotyping for predicting clinically relevant outcomes

for people with MS. Using only passively sensed data, our
machine-learning models predicted the presence of depression,
high global MS symptom burden, severe fatigue, and poor sleep
quality during the stay-at-home period with potentially clinically
actionable performance.

The best models outperformed not only baseline models (simple
majority classifier) but also models containing all sensors. The
best sensor combinations for predicting depression and fatigue
were the same (ie, calls, heart rate, and location), while these
sensors were also included in the best sensor combination for
predicting global MS symptom burden (ie, calls, heart rate,
location, and screen). Comparably, the best sensor combination
for sleep quality (ie, location and screen) had the smallest
overlap with the sensor combinations for the other three
outcomes. This observation was consistent with the finding that
depression, fatigue, and global MS symptom burden were better
correlated among themselves than with sleep quality (Figure
2). We also looked at the feature coefficients of the features
selected by the best models (Multimedia Appendix 1, section
B.2). Examples of the best features of changed behavior selected
by the best model for predicting depression (ie, features with
the highest absolute coefficients) include increase in number of
incoming calls during evenings on weekdays, decrease in
average heart rate when the person is at rest or has low activity
(outside exercise heart rate zones) during evenings on weekends,
and increase in regularity in movement patterns in 24-hour
periods with respect to nights on weekends.

Our findings built on a small body of prior work that explored
the feasibility of passive sensing in people with MS and
preliminary correlations between passively sensed behaviors
and MS outcomes. For example, Newland et al [26] explored
real-time depth sensors at home to identify gait disturbance and
falls in 21 patients with MS. Other studies reported correlations
between passively sensed physical activity and disability
worsening in people with MS [27,62,63]. Chitnis et al [28]
examined the gait, mobility, and sleep of 25 people with MS
over 8 weeks using sensors mounted on their wrist, ankle, and
sternum, and reported correlations among gait-related features
(eg, turn angle and maximum angular velocity), sleep and
activity, and disability outcomes.
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Previous work on predicting health outcomes for people with
MS using passively sensed behaviors is scarce. Tong et al [49]
used passively sensed sleep and activity data collected from
198 people with MS over 6 months to predict fatigue severity
and overall health scores, achieving good performance in line
with acceptable instrument errors. To our knowledge, our study
is the first to use passively sensed behavior changes to predict
multiple interrelated clinically relevant health outcomes in MS,
including depression, disability, fatigue, and sleep quality. While
several studies used passively sensed data from the general
population to report behavior changes during the COVID-19
pandemic [64-67], our study provides the first real-world
evidence of potential clinical utility of passively sensed behavior
changes to predict health outcomes during the unique
stay-at-home period in a population with a chronic neurological
disorder and complex health needs. From a methodological
standpoint, the application of behavioral features computed over
temporal slices to predict depression and other health outcomes
in people with MS is novel. Our approach of using change in
features between the period preceding the stay-at-home and
stay-at-home periods to predict outcomes during the
stay-at-home period is also novel. Finally, we included new
heart rate features that can be computed using data from the
Fitbit application programming interface.

Our approach has potential clinical utility, particularly during
major stressful events (beyond COVID-19) that worsen health
outcomes and limit health care access. For instance, predictive
models built using our approach could help patients self-monitor
their health when access to in-person clinical care becomes
suddenly limited and could encourage patients (or their
caregivers) to actively seek medical attention sooner when the
models predict adverse outcomes. Further, our models could
help clinicians better monitor at-risk patients and make triage
decisions for patients who require prioritization for interventions
(eg, medication and counseling), particularly in the setting of
suddenly limited health care access and scarce resources.

Limitations
Our study has 2 limitations. First, the COVID-19 pandemic
started during our data collection for an ongoing larger study
of people with MS. While it provided a unique opportunity to
conduct a natural experiment to assess the utility of digital
phenotyping to predict health outcomes in people with MS

during the highly unusual stay-at-home period, we had a modest
sample size of participants who happened to have sufficient
sensor data collected both just before the sudden issue of the
stay-at-home order and during the stay-at-home period. We also
had limited ability to seek external replication of the drastic
behavior changes during the early stage of the pandemic since
the stay-at-home order was lifted and has not been reinstated.
To reduce the chance of overfitting and improve the validity of
the findings, we used leave-5-participants-out cross-validation,
such that in each fold, the participants used for training and
testing were different. Our approach performed well for not
only 1 outcome but all 4 clinically relevant outcomes pertaining
to mental health and neurological disability in people with MS.
We have reasonable confidence because of the consistently
good model performance across all 5 folds and the consistently
robust predictions for all 4 outcomes. We are not aware of other
published studies with data from before and during the
stay-at-home orders, particularly involving patient population
with chronic neurological disorders such as MS who are at
heightened risk for adverse health outcomes resulting from
social isolation, reduced support, and limited health care access.
Given the uniqueness of the data set, we believe the findings
are clinically relevant despite the relatively modest sample size.
Second, the study used patient-reported health outcomes. Given
the restriction of in-person clinical visits during the stay-at-home
period, rater-performed examination was not feasible.
Importantly, these patient-reported outcomes are all validated
for people with MS, highly correlated with rater-determined
measures, interrelated among themselves, and clinically relevant.

In summary, we reported the potential clinical utility of digital
phenotyping in predicting subsequent health outcomes in people
with MS during a COVID-19 stay-at-home period. Specifically,
we predicted the presence of depression, high global MS
symptom burden, severe fatigue, and poor sleep quality in people
with MS during the stay-at-home period using passively sensed
behavior changes measured by smartphone and wearable fitness
tracker. The predictive models achieved potentially clinically
actionable performance for all 4 outcomes. This study paved
the way for future replication studies during major stressful
events and has implications for future patient self-monitoring
and clinician screening for urgent interventions in MS and other
complex chronic diseases.

Acknowledgments
We would like to thank our undergraduate research assistants: Man Jun (John) Han, Dong Yun Lee, Kasey Park, Phoebe Soong,
and Christine Wu, for helping us monitor participant compliance throughout the data collection process. We would also like to
thank Yiyi Ren for helping develop the app used for data collection. We would also like to thank the research participants and
their treating clinicians. The study is funded by the Department of Defense (CDMRP MS190178).

Authors' Contributions
PC designed and conceptualized the study; analyzed and interpreted data; and drafted and revised the manuscript for intellectual
content. SV, KM, EW, and DQ played a major role in the data acquisition. AD and MG designed and conceptualized the study;
interpreted the data; and drafted and revised the manuscript for intellectual content. ZX designed and conceptualized the study
and had a major role in the data acquisition, data interpretation, drafting, and revision of the manuscript for intellectual content.

JMIR Ment Health 2022 | vol. 9 | iss. 8 | e38495 | p. 9https://mental.jmir.org/2022/8/e38495
(page number not for citation purposes)

Chikersal et alJMIR MENTAL HEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Conflicts of Interest
None declared.

Multimedia Appendix 1
Supplementary material.
[DOCX File , 18995 KB-Multimedia Appendix 1]

References

1. Czeisler M, Lane RI, Petrosky E, Wiley JF, Christensen A, Njai R, et al. Mental health, substance use, and suicidal ideation
during the COVID-19 pandemic - United States, June 24-30, 2020. MMWR Morb Mortal Wkly Rep 2020 Aug
14;69(32):1049-1057 [FREE Full text] [doi: 10.15585/mmwr.mm6932a1] [Medline: 32790653]

2. Panchal N, Kamal R, Cox C, Garfield R. The implications of covid-19 for mental health and substance use. Kaiser family
foundation. 2020. URL: http://medfam.facmed.unam.mx/wp-content/uploads/2021/05/
implicaciones-de-COVID-EN-LA-SALUD-MENTAL.pdf [accessed 2022-07-27]

3. Ettman CK, Abdalla SM, Cohen GH, Sampson L, Vivier PM, Galea S. Prevalence of depression symptoms in US adults
before and during the COVID-19 pandemic. JAMA Netw Open 2020 Sep 01;3(9):e2019686 [FREE Full text] [doi:
10.1001/jamanetworkopen.2020.19686] [Medline: 32876685]

4. Twenge JM, Joiner TE. U.S. Census Bureau-assessed prevalence of anxiety and depressive symptoms in 2019 and during
the 2020 COVID-19 pandemic. Depress Anxiety 2020 Oct;37(10):954-956 [FREE Full text] [doi: 10.1002/da.23077]
[Medline: 32667081]

5. Kujawa A, Green H, Compas BE, Dickey L, Pegg S. Exposure to COVID-19 pandemic stress: Associations with depression
and anxiety in emerging adults in the United States. Depress Anxiety 2020 Dec 10;37(12):1280-1288. [doi: 10.1002/da.23109]
[Medline: 33169481]

6. O'Connor RC, Wetherall K, Cleare S, McClelland H, Melson AJ, Niedzwiedz CL, et al. Mental health and well-being
during the COVID-19 pandemic: longitudinal analyses of adults in the UK COVID-19 mental health & wellbeing study.
Br J Psychiatry 2021 Jun;218(6):326-333 [FREE Full text] [doi: 10.1192/bjp.2020.212] [Medline: 33081860]

7. Lebel C, MacKinnon A, Bagshawe M, Tomfohr-Madsen L, Giesbrecht G. Elevated depression and anxiety symptoms
among pregnant individuals during the COVID-19 pandemic. J Affect Disord 2020 Dec 01;277:5-13 [FREE Full text] [doi:
10.1016/j.jad.2020.07.126] [Medline: 32777604]

8. Motolese F, Rossi M, Albergo G, Stelitano D, Villanova M, Di Lazzaro V, et al. The psychological impact of COVID-19
pandemic on people with multiple sclerosis. Front Neurol 2020 Oct 30;11:580507 [FREE Full text] [doi:
10.3389/fneur.2020.580507] [Medline: 33193033]

9. Zanghì A, D'Amico E, Luca M, Ciaorella M, Basile L, Patti F. Mental health status of relapsing-remitting multiple sclerosis
Italian patients returning to work soon after the easing of lockdown during COVID-19 pandemic: A monocentric experience.
Mult Scler Relat Disord 2020 Nov;46:102561 [FREE Full text] [doi: 10.1016/j.msard.2020.102561] [Medline: 33045494]

10. Broche-Pérez Y, Jiménez-Morales RM, Monasterio-Ramos LO, Vázquez-Gómez LA, Fernández-Fleites Z. Fear of
COVID-19, problems accessing medical appointments, and subjective experience of disease progression, predict anxiety
and depression reactions in patients with Multiple Sclerosis. Mult Scler Relat Disord 2021 Aug;53:103070 [FREE Full
text] [doi: 10.1016/j.msard.2021.103070] [Medline: 34119745]

11. Patten SB, Marrie RA, Carta MG. Depression in multiple sclerosis. Int Rev Psychiatry 2017 Oct 06;29(5):463-472. [doi:
10.1080/09540261.2017.1322555] [Medline: 28681616]

12. Chan CK, Tian F, Pimentel Maldonado D, Mowry EM, Fitzgerald KC. Depression in multiple sclerosis across the adult
lifespan. Mult Scler 2021 Oct 14;27(11):1771-1780 [FREE Full text] [doi: 10.1177/1352458520979304] [Medline: 33307963]

13. Solaro C, Gamberini G, Masuccio FG. Depression in multiple sclerosis: epidemiology, aetiology, diagnosis and treatment.
CNS Drugs 2018 Feb 7;32(2):117-133. [doi: 10.1007/s40263-018-0489-5] [Medline: 29417493]

14. Siegert RJ, Abernethy DA. Depression in multiple sclerosis: a review. J Neurol Neurosurg Psychiatry 2005 Apr
01;76(4):469-475 [FREE Full text] [doi: 10.1136/jnnp.2004.054635] [Medline: 15774430]

15. Feinstein A, Magalhaes S, Richard J, Audet B, Moore C. The link between multiple sclerosis and depression. Nat Rev
Neurol 2014 Sep 12;10(9):507-517. [doi: 10.1038/nrneurol.2014.139] [Medline: 25112509]

16. Zhang Y, Taylor BV, Simpson S, Blizzard L, Campbell JA, Palmer AJ, et al. Feelings of depression, pain and walking
difficulties have the largest impact on the quality of life of people with multiple sclerosis, irrespective of clinical phenotype.
Mult Scler 2021 Jul 14;27(8):1262-1275. [doi: 10.1177/1352458520958369] [Medline: 32924841]

17. Diamond BJ, Johnson SK, Kaufman M, Graves L. Relationships between information processing, depression, fatigue and
cognition in multiple sclerosis. Arch Clin Neuropsychol 2008 Mar;23(2):189-199. [doi: 10.1016/j.acn.2007.10.002] [Medline:
18053682]

18. Ford H, Trigwell P, Johnson M. The nature of fatigue in multiple sclerosis. Journal of Psychosomatic Research 1998
Jul;45(1):33-38. [doi: 10.1016/s0022-3999(98)00004-x]

JMIR Ment Health 2022 | vol. 9 | iss. 8 | e38495 | p. 10https://mental.jmir.org/2022/8/e38495
(page number not for citation purposes)

Chikersal et alJMIR MENTAL HEALTH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=mental_v9i8e38495_app1.docx&filename=9bd10303b78f68979e6a7f9310aca782.docx
https://jmir.org/api/download?alt_name=mental_v9i8e38495_app1.docx&filename=9bd10303b78f68979e6a7f9310aca782.docx
https://doi.org/10.15585/mmwr.mm6932a1
http://dx.doi.org/10.15585/mmwr.mm6932a1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32790653&dopt=Abstract
http://medfam.facmed.unam.mx/wp-content/uploads/2021/05/implicaciones-de-COVID-EN-LA-SALUD-MENTAL.pdf
http://medfam.facmed.unam.mx/wp-content/uploads/2021/05/implicaciones-de-COVID-EN-LA-SALUD-MENTAL.pdf
https://jamanetwork.com/journals/jamanetworkopen/fullarticle/10.1001/jamanetworkopen.2020.19686
http://dx.doi.org/10.1001/jamanetworkopen.2020.19686
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32876685&dopt=Abstract
http://europepmc.org/abstract/MED/32667081
http://dx.doi.org/10.1002/da.23077
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32667081&dopt=Abstract
http://dx.doi.org/10.1002/da.23109
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33169481&dopt=Abstract
http://europepmc.org/abstract/MED/33081860
http://dx.doi.org/10.1192/bjp.2020.212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33081860&dopt=Abstract
http://europepmc.org/abstract/MED/32777604
http://dx.doi.org/10.1016/j.jad.2020.07.126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32777604&dopt=Abstract
https://doi.org/10.3389/fneur.2020.580507
http://dx.doi.org/10.3389/fneur.2020.580507
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33193033&dopt=Abstract
http://europepmc.org/abstract/MED/33045494
http://dx.doi.org/10.1016/j.msard.2020.102561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33045494&dopt=Abstract
http://europepmc.org/abstract/MED/34119745
http://europepmc.org/abstract/MED/34119745
http://dx.doi.org/10.1016/j.msard.2021.103070
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34119745&dopt=Abstract
http://dx.doi.org/10.1080/09540261.2017.1322555
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28681616&dopt=Abstract
http://europepmc.org/abstract/MED/33307963
http://dx.doi.org/10.1177/1352458520979304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33307963&dopt=Abstract
http://dx.doi.org/10.1007/s40263-018-0489-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29417493&dopt=Abstract
https://jnnp.bmj.com/lookup/pmidlookup?view=long&pmid=15774430
http://dx.doi.org/10.1136/jnnp.2004.054635
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15774430&dopt=Abstract
http://dx.doi.org/10.1038/nrneurol.2014.139
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25112509&dopt=Abstract
http://dx.doi.org/10.1177/1352458520958369
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32924841&dopt=Abstract
http://dx.doi.org/10.1016/j.acn.2007.10.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18053682&dopt=Abstract
http://dx.doi.org/10.1016/s0022-3999(98)00004-x
http://www.w3.org/Style/XSL
http://www.renderx.com/


19. Bakshi R, Shaikh ZA, Miletich RS, Czarnecki D, Dmochowski J, Henschel K, et al. Fatigue in multiple sclerosis and its
relationship to depression and neurologic disability. Mult Scler 2000 Jun 02;6(3):181-185. [doi:
10.1177/135245850000600308] [Medline: 10871830]

20. Strober LB, Arnett PA. An examination of four models predicting fatigue in multiple sclerosis. Arch Clin Neuropsychol
2005 Jul;20(5):631-646. [doi: 10.1016/j.acn.2005.04.002] [Medline: 15894455]

21. Levin SN, Venkatesh S, Nelson KE, Li Y, Aguerre I, Zhu W, Multiple Sclerosis Resilience to COVID-19 (MSReCOV)
Collaborative. Manifestations and impact of the COVID-19 pandemic in neuroinflammatory diseases. Ann Clin Transl
Neurol 2021 Apr 22;8(4):918-928 [FREE Full text] [doi: 10.1002/acn3.51314] [Medline: 33616290]

22. Vogel AC, Schmidt H, Loud S, McBurney R, Mateen FJ. Impact of the COVID-19 pandemic on the health care of >1,000
People living with multiple sclerosis: A cross-sectional study. Mult Scler Relat Disord 2020 Nov;46:102512 [FREE Full
text] [doi: 10.1016/j.msard.2020.102512] [Medline: 32977074]

23. Manacorda T, Bandiera P, Terzuoli F, Ponzio M, Brichetto G, Zaratin P, et al. Impact of the COVID-19 pandemic on
persons with multiple sclerosis: Early findings from a survey on disruptions in care and self-reported outcomes. J Health
Serv Res Policy 2021 Jul 18;26(3):189-197 [FREE Full text] [doi: 10.1177/1355819620975069] [Medline: 33337256]

24. Levit E, Cohen I, Dahl M, Edwards K, Weinstock-Guttman B, Ishikawa T, Multiple Sclerosis Resilience to COVID-19
(MSReCOV) Collaborative. Worsening physical functioning in patients with neuroinflammatory disease during the
COVID-19 pandemic. Mult Scler Relat Disord 2022 Feb;58:103482 [FREE Full text] [doi: 10.1016/j.msard.2021.103482]
[Medline: 35016114]

25. Huckvale K, Venkatesh S, Christensen H. Toward clinical digital phenotyping: a timely opportunity to consider purpose,
quality, and safety. NPJ Digit Med 2019 Sep 6;2(1):88 [FREE Full text] [doi: 10.1038/s41746-019-0166-1] [Medline:
31508498]

26. Newland P, Wagner JM, Salter A, Thomas FP, Skubic M, Rantz M. Exploring the feasibility and acceptability of sensor
monitoring of gait and falls in the homes of persons with multiple sclerosis. Gait Posture 2016 Sep;49:277-282. [doi:
10.1016/j.gaitpost.2016.07.005] [Medline: 27474948]

27. Shammas L, Zentek T, von Haaren B, Schlesinger S, Hey S, Rashid A. Home-based system for physical activity monitoring
in patients with multiple sclerosis (Pilot study). Biomed Eng Online 2014 Feb 06;13:10 [FREE Full text] [doi:
10.1186/1475-925X-13-10] [Medline: 24502230]

28. Chitnis T, Glanz BI, Gonzalez C, Healy BC, Saraceno TJ, Sattarnezhad N, et al. Quantifying neurologic disease using
biosensor measurements in-clinic and in free-living settings in multiple sclerosis. NPJ Digit Med 2019 Dec 11;2(1):123
[FREE Full text] [doi: 10.1038/s41746-019-0197-7] [Medline: 31840094]

29. Chikersal P, Doryab A, Tumminia M, Villalba DK, Dutcher JM, Liu X, et al. Detecting depression and predicting its onset
using longitudinal symptoms captured by passive sensing. ACM Trans. Comput.-Hum. Interact 2021 Feb 28;28(1):1-41.
[doi: 10.1145/3422821]

30. Levin SN, Riley CS, Dhand A, White CC, Venkatesh S, Boehm B, et al. Association of social network structure and physical
function in patients with multiple sclerosis. Neurology 2020 Aug 07;95(11):e1565-e1574. [doi:
10.1212/wnl.0000000000010460]

31. Mani A, Santini T, Puppala R, Dahl M, Venkatesh S, Walker E, et al. Applying deep learning to accelerated clinical brain
magnetic resonance imaging for multiple sclerosis. Front Neurol 2021 Sep 27;12:685276 [FREE Full text] [doi:
10.3389/fneur.2021.685276] [Medline: 34646227]

32. Boorgu DS, Venkatesh S, Lakhani CM, Walker E, Aguerre IM, Riley C, et al. The impact of socioeconomic status on
subsequent neurological outcomes in multiple sclerosis. Mult Scler Relat Disord 2022 Jun;65:103994. [doi:
10.1016/j.msard.2022.103994]

33. Kever A, Walker ELS, Riley CS, Heyman RA, Xia Z, Leavitt VM. Association of personality traits with physical function,
cognition, and mood in multiple sclerosis.. Mult Scler Relat Disord 2022 Feb;59:103648. [doi: 10.1016/j.msard.2022.103648]

34. Epstein S, Xia Z, Lee AJ, Dahk M, Edwards K, Levit E, Multiple Sclerosis Resilience to COVID-19 (MSReCOV)
Collaborative. . Vaccination against SARS-CoV-2 in neuroinflammatory disease: early safety/tolerability data. . Mult Scler
Relat Disord 2022 Jan;57:103433. [doi: 10.1016/j.msard.2021.103433]

35. Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O'Neal L, REDCap Consortium. The REDCap consortium: Building
an international community of software platform partners. J Biomed Inform 2019 Jul;95:103208 [FREE Full text] [doi:
10.1016/j.jbi.2019.103208] [Medline: 31078660]

36. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)--a
metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed
Inform 2009 Apr;42(2):377-381 [FREE Full text] [doi: 10.1016/j.jbi.2008.08.010] [Medline: 18929686]

37. Kroenke K, Spitzer RL, Williams JBW. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med
2001 Sep;16(9):606-613 [FREE Full text] [doi: 10.1046/j.1525-1497.2001.016009606.x] [Medline: 11556941]

38. Wicks P, Vaughan TE, Massagli MP. The multiple sclerosis rating scale, revised (MSRS-R): development, refinement,
and psychometric validation using an online community. Health Qual Life Outcomes 2012 Jun 18;10:70 [FREE Full text]
[doi: 10.1186/1477-7525-10-70] [Medline: 22709981]

JMIR Ment Health 2022 | vol. 9 | iss. 8 | e38495 | p. 11https://mental.jmir.org/2022/8/e38495
(page number not for citation purposes)

Chikersal et alJMIR MENTAL HEALTH

XSL•FO
RenderX

http://dx.doi.org/10.1177/135245850000600308
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10871830&dopt=Abstract
http://dx.doi.org/10.1016/j.acn.2005.04.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15894455&dopt=Abstract
https://doi.org/10.1002/acn3.51314
http://dx.doi.org/10.1002/acn3.51314
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33616290&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S2211-0348(20)30587-3
https://linkinghub.elsevier.com/retrieve/pii/S2211-0348(20)30587-3
http://dx.doi.org/10.1016/j.msard.2020.102512
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32977074&dopt=Abstract
https://journals.sagepub.com/doi/10.1177/1355819620975069?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed
http://dx.doi.org/10.1177/1355819620975069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33337256&dopt=Abstract
http://europepmc.org/abstract/MED/35016114
http://dx.doi.org/10.1016/j.msard.2021.103482
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35016114&dopt=Abstract
https://doi.org/10.1038/s41746-019-0166-1
http://dx.doi.org/10.1038/s41746-019-0166-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31508498&dopt=Abstract
http://dx.doi.org/10.1016/j.gaitpost.2016.07.005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27474948&dopt=Abstract
https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/1475-925X-13-10
http://dx.doi.org/10.1186/1475-925X-13-10
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24502230&dopt=Abstract
https://doi.org/10.1038/s41746-019-0197-7
http://dx.doi.org/10.1038/s41746-019-0197-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31840094&dopt=Abstract
http://dx.doi.org/10.1145/3422821
http://dx.doi.org/10.1212/wnl.0000000000010460
https://doi.org/10.3389/fneur.2021.685276
http://dx.doi.org/10.3389/fneur.2021.685276
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34646227&dopt=Abstract
http://dx.doi.org/10.1016/j.msard.2022.103994
http://dx.doi.org/10.1016/j.msard.2022.103648
http://dx.doi.org/10.1016/j.msard.2021.103433
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(19)30126-1
http://dx.doi.org/10.1016/j.jbi.2019.103208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31078660&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(08)00122-6
http://dx.doi.org/10.1016/j.jbi.2008.08.010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18929686&dopt=Abstract
https://onlinelibrary.wiley.com/resolve/openurl?genre=article&sid=nlm:pubmed&issn=0884-8734&date=2001&volume=16&issue=9&spage=606
http://dx.doi.org/10.1046/j.1525-1497.2001.016009606.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11556941&dopt=Abstract
https://hqlo.biomedcentral.com/articles/10.1186/1477-7525-10-70
http://dx.doi.org/10.1186/1477-7525-10-70
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22709981&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


39. Meca-Lallana V, Brañas-Pampillón M, Higueras Y, Candeliere-Merlicco A, Aladro-Benito Y, Rodríguez-De la Fuente O,
et al. Assessing fatigue in multiple sclerosis: Psychometric properties of the five-item Modified Fatigue Impact Scale
(MFIS-5). Mult Scler J Exp Transl Clin 2019 Nov 09;5(4):2055217319887987 [FREE Full text] [doi:
10.1177/2055217319887987] [Medline: 31741743]

40. Buysse DJ, Reynolds CIII, Monk TH, Hoch CC, Yeager AL, Kupfer DJ. Quantification of subjective sleep quality in healthy
elderly men and women using the Pittsburgh sleep quality index (PSQI). Sleep 1991;14(4):331-338. [doi:
10.1093/sleep/14.4.331]

41. Fictenberg NL, Putnam SH, Mann NR, Zafonte RD, Millard AE. Insomnia screening in postacute traumatic brain injury:
utility and validity of the Pittsburgh Sleep Quality Index. Am J Phys Med Rehabil 2001 May;80(5):339-345. [doi:
10.1097/00002060-200105000-00003] [Medline: 11327555]

42. Ferreira D, Kostakos V, Dey AK. AWARE: mobile context instrumentation framework. Front. ICT 2015 Apr 20;2:1-9.
[doi: 10.3389/fict.2015.00006]

43. Hayes A. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach. New
York, US: Guilford Press; 2017.

44. Saeb S, Zhang M, Kwasny MM, Karr CJ, Kording K, Mohr DC. The relationship between clinical, momentary, and
sensor-based assessment of depression. Int Conf Pervasive Comput Technol Healthc 2015 Aug;2015:1-10 [FREE Full text]
[doi: 10.4108/icst.pervasivehealth.2015.259034] [Medline: 26640739]

45. Wang R, Chen F, Chen Z, Li T, Harari G, Tignor S, et al. Studentlife: assessing mental health, academic performance and
behavioral trends of college students using smartphones. 2014 Presented at: ACM international joint conference on pervasive
and ubiquitous computing; September 13-17, 2014; Seattle, Washington. [doi: 10.1145/2632048.2632054]

46. Canzian L, Musolesi M. Trajectories of depression: unobtrusive monitoring of depressive states by means of smartphone
mobility traces analysis. 2015 Presented at: ACM international joint conference on pervasive and ubiquitous computing;
September 7-11, 2015; Osaka, Japan p. 1293-1304. [doi: 10.1145/2750858.2805845]

47. Xu X, Chikersal P, Dutcher JM, Sefidgar YS, Seo W, Tumminia MJ, et al. Leveraging collaborative-filtering for personalized
behavior modeling. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol 2021 Mar 19;5(1):1-27. [doi: 10.1145/3448107]

48. Xu X, Chikersal P, Doryab A, Villalba DK, Dutcher JM, Tumminia MJ, et al. Leveraging routine behavior and
contextually-filtered features for depression detection among college students. Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol 2019 Sep 09;3(3):1-33. [doi: 10.1145/3351274]

49. Tong C, Craner M, Vegreville M, Lane ND. Tracking fatigue and health state in multiple sclerosis patients using connnected
wellness devices. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol 2019 Sep 09;3(3):1-19. [doi: 10.1145/3351264]

50. Min JK, Doryab A, Wiese J, Amini S, Zimmerman J, Hong JI. Toss 'n' turn: smartphone as sleep and sleep quality detector.
2014 Presented at: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems; April 26, 2014;
Toronto, Canada p. 477-486. [doi: 10.1145/2556288.2557220]

51. Sano A, Phillips AJ, Yu AZ, McHill AW, Taylor S, Jaques N, et al. Recognizing academic performance, sleep quality,
stress level, and mental health using personality traits, wearable sensors and mobile phones. 2015 Presented at: IEEE 12th
International Conference on Wearable and Implantable Body Sensor Networks (BSN); October 19, 2015; Cambridge, MA,
USA p. 1-6.

52. Demirci K, Akgönül M, Akpinar A. Relationship of smartphone use severity with sleep quality, depression, and anxiety in
university students. J Behav Addict 2015 Jun;4(2):85-92 [FREE Full text] [doi: 10.1556/2006.4.2015.010] [Medline:
26132913]

53. Kwon M, Lee J, Won W, Park J, Min J, Hahn C, et al. Development and validation of a smartphone addiction scale (SAS).
PLoS One 2013;8(2):e56936 [FREE Full text] [doi: 10.1371/journal.pone.0056936] [Medline: 23468893]

54. Costigan SA, Barnett L, Plotnikoff RC, Lubans DR. The health indicators associated with screen-based sedentary behavior
among adolescent girls: a systematic review. J Adolesc Health 2013 Apr;52(4):382-392. [doi:
10.1016/j.jadohealth.2012.07.018] [Medline: 23299000]

55. Nutt D, Wilson S, Paterson L. Sleep disorders as core symptoms of depression. Dialogues in Clinical Neuroscience 2022
Apr 01;10(3):329-336. [doi: 10.31887/dcns.2008.10.3/dnutt]

56. Press WH, Rybicki GB. Fast algorithm for spectral analysis of unevenly sampled data. The Astrophysical Journal. URL:
https://adsabs.harvard.edu/pdf/1989ApJ...338..277P [accessed 2022-07-27]

57. Mantua J, Gravel N, Spencer RMC. Reliability of sleep measures from four personal health monitoring devices compared
to research-based actigraphy and polysomnography. Sensors (Basel) 2016 May 05;16(5):646 [FREE Full text] [doi:
10.3390/s16050646] [Medline: 27164110]

58. Cook JD, Prairie ML, Plante DT. Utility of the Fitbit Flex to evaluate sleep in major depressive disorder: A comparison
against polysomnography and wrist-worn actigraphy. J Affect Disord 2017 Aug 01;217:299-305 [FREE Full text] [doi:
10.1016/j.jad.2017.04.030] [Medline: 28448949]

59. de Zambotti M, Goldstone A, Claudatos S, Colrain IM, Baker FC. A validation study of Fitbit Charge 2™ compared with
polysomnography in adults. Chronobiol Int 2018 Apr;35(4):465-476. [doi: 10.1080/07420528.2017.1413578] [Medline:
29235907]

JMIR Ment Health 2022 | vol. 9 | iss. 8 | e38495 | p. 12https://mental.jmir.org/2022/8/e38495
(page number not for citation purposes)

Chikersal et alJMIR MENTAL HEALTH

XSL•FO
RenderX

https://journals.sagepub.com/doi/10.1177/2055217319887987?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed
http://dx.doi.org/10.1177/2055217319887987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31741743&dopt=Abstract
http://dx.doi.org/10.1093/sleep/14.4.331
http://dx.doi.org/10.1097/00002060-200105000-00003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11327555&dopt=Abstract
http://dx.doi.org/10.3389/fict.2015.00006
http://europepmc.org/abstract/MED/26640739
http://dx.doi.org/10.4108/icst.pervasivehealth.2015.259034
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26640739&dopt=Abstract
http://dx.doi.org/10.1145/2632048.2632054
http://dx.doi.org/10.1145/2750858.2805845
http://dx.doi.org/10.1145/3448107
http://dx.doi.org/10.1145/3351274
http://dx.doi.org/10.1145/3351264
http://dx.doi.org/10.1145/2556288.2557220
http://europepmc.org/abstract/MED/26132913
http://dx.doi.org/10.1556/2006.4.2015.010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26132913&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0056936
http://dx.doi.org/10.1371/journal.pone.0056936
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23468893&dopt=Abstract
http://dx.doi.org/10.1016/j.jadohealth.2012.07.018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23299000&dopt=Abstract
http://dx.doi.org/10.31887/dcns.2008.10.3/dnutt
https://adsabs.harvard.edu/pdf/1989ApJ...338..277P
https://www.mdpi.com/resolver?pii=s16050646
http://dx.doi.org/10.3390/s16050646
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27164110&dopt=Abstract
http://europepmc.org/abstract/MED/28448949
http://dx.doi.org/10.1016/j.jad.2017.04.030
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28448949&dopt=Abstract
http://dx.doi.org/10.1080/07420528.2017.1413578
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29235907&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


60. Chow PI, Fua K, Huang Y, Bonelli W, Xiong H, Barnes LE, et al. Using mobile sensing to test clinical models of depression,
social anxiety, state affect, and social isolation among college students. J Med Internet Res 2017 Mar 03;19(3):e62 [FREE
Full text] [doi: 10.2196/jmir.6820] [Medline: 28258049]

61. Saeb S, Lattie EG, Schueller SM, Kording KP, Mohr DC. The relationship between mobile phone location sensor data and
depressive symptom severity. PeerJ 2016;4:e2537 [FREE Full text] [doi: 10.7717/peerj.2537] [Medline: 28344895]

62. Block VJ, Bove R, Zhao C, Garcha P, Graves J, Romeo AR, et al. Association of continuous assessment of step Count by
remote monitoring with disability progression among adults with multiple sclerosis. JAMA Netw Open 2019 Mar
01;2(3):e190570 [FREE Full text] [doi: 10.1001/jamanetworkopen.2019.0570] [Medline: 30874777]

63. Stuart CM, Varatharaj A, Domjan J, Philip S, Galea I, SIMS study group. Physical activity monitoring to assess disability
progression in multiple sclerosis. Mult Scler J Exp Transl Clin 2020 Dec 07;6(4):2055217320975185 [FREE Full text]
[doi: 10.1177/2055217320975185] [Medline: 33343919]

64. Sun S, Folarin AA, Ranjan Y, Rashid Z, Conde P, Stewart C, RADAR-CNS Consortium. Using smartphones and wearable
devices to monitor behavioral changes during COVID-19. J Med Internet Res 2020 Sep 25;22(9):e19992 [FREE Full text]
[doi: 10.2196/19992] [Medline: 32877352]

65. Ong J, Lau T, Massar SAA, Chong ZT, Ng BKL, Koek D, et al. COVID-19-related mobility reduction: heterogenous effects
on sleep and physical activity rhythms. Sleep 2021 Feb 12;44(2):zsaa179 [FREE Full text] [doi: 10.1093/sleep/zsaa179]
[Medline: 32918076]

66. Pépin JL, Bruno RM, Yang R, Vercamer V, Jouhaud P, Escourrou P, et al. Wearable activity trackers for monitoring
adherence to home confinement during the COVID-19 pandemic worldwide: data aggregation and analysis. J Med Internet
Res 2020 Jun 19;22(6):e19787 [FREE Full text] [doi: 10.2196/19787] [Medline: 32501803]

67. Huckins JF, daSilva AW, Wang W, Hedlund E, Rogers C, Nepal SK, et al. Mental health and behavior of college students
during the early phases of the COVID-19 pandemic: longitudinal smartphone and ecological momentary assessment study.
J Med Internet Res 2020 Jun 17;22(6):e20185 [FREE Full text] [doi: 10.2196/20185] [Medline: 32519963]

Abbreviations
MFIS-5: Modified Fatigue Impact Scale-5
MS: multiple sclerosis
MSRS-R: Multiple Sclerosis Rating Scale—Revised
PHQ-9: Patient Health Questionnaire-9
PSQI: Pittsburgh Sleep Quality Index

Edited by J Torous; submitted 06.04.22; peer-reviewed by N Marotta, N Chiaravalloti; comments to author 27.06.22; revised version
received 15.07.22; accepted 16.07.22; published 24.08.22

Please cite as:
Chikersal P, Venkatesh S, Masown K, Walker E, Quraishi D, Dey A, Goel M, Xia Z
Predicting Multiple Sclerosis Outcomes During the COVID-19 Stay-at-home Period: Observational Study Using Passively Sensed
Behaviors and Digital Phenotyping
JMIR Ment Health 2022;9(8):e38495
URL: https://mental.jmir.org/2022/8/e38495
doi: 10.2196/38495
PMID: 35849686

©Prerna Chikersal, Shruthi Venkatesh, Karman Masown, Elizabeth Walker, Danyal Quraishi, Anind Dey, Mayank Goel, Zongqi
Xia. Originally published in JMIR Mental Health (https://mental.jmir.org), 24.08.2022. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Mental Health,
is properly cited. The complete bibliographic information, a link to the original publication on https://mental.jmir.org/, as well
as this copyright and license information must be included.

JMIR Ment Health 2022 | vol. 9 | iss. 8 | e38495 | p. 13https://mental.jmir.org/2022/8/e38495
(page number not for citation purposes)

Chikersal et alJMIR MENTAL HEALTH

XSL•FO
RenderX

https://www.jmir.org/2017/3/e62/
https://www.jmir.org/2017/3/e62/
http://dx.doi.org/10.2196/jmir.6820
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28258049&dopt=Abstract
https://doi.org/10.7717/peerj.2537
http://dx.doi.org/10.7717/peerj.2537
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28344895&dopt=Abstract
https://jamanetwork.com/journals/jamanetworkopen/fullarticle/10.1001/jamanetworkopen.2019.0570
http://dx.doi.org/10.1001/jamanetworkopen.2019.0570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30874777&dopt=Abstract
https://journals.sagepub.com/doi/10.1177/2055217320975185?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed
http://dx.doi.org/10.1177/2055217320975185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33343919&dopt=Abstract
https://www.jmir.org/2020/9/e19992/
http://dx.doi.org/10.2196/19992
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32877352&dopt=Abstract
http://europepmc.org/abstract/MED/32918076
http://dx.doi.org/10.1093/sleep/zsaa179
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32918076&dopt=Abstract
https://www.jmir.org/2020/6/e19787/
http://dx.doi.org/10.2196/19787
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32501803&dopt=Abstract
https://www.jmir.org/2020/6/e20185/
http://dx.doi.org/10.2196/20185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32519963&dopt=Abstract
https://mental.jmir.org/2022/8/e38495
http://dx.doi.org/10.2196/38495
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35849686&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

