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Background: The mobility of an individual measured by phone-collected location data has been found to be associated with
depression; however, the longitudinal relationships (the temporal direction of relationships) between depressive symptom severity
and phone-measured mobility have yet to be fully explored.

Objective: We aimed to explore the relationships and the direction of the relationships between depressive symptom severity
and phone-measured mobility over time.

Methods: Data used in this paper came from a major EU program, called the Remote Assessment of Disease and Relapse–Major
Depressive Disorder, which was conducted in 3 European countries. Depressive symptom severity was measured with the 8-item
Patient Health Questionnaire (PHQ-8) through mobile phones every 2 weeks. Participants’ location data were recorded by GPS
and network sensors in mobile phones every 10 minutes, and 11 mobility features were extracted from location data for the 2
weeks prior to the PHQ-8 assessment. Dynamic structural equation modeling was used to explore the longitudinal relationships
between depressive symptom severity and phone-measured mobility.

Results: This study included 2341 PHQ-8 records and corresponding phone-collected location data from 290 participants (age:
median 50.0 IQR 34.0, 59.0) years; of whom 215 (74.1%) were female, and 149 (51.4%) were employed. Significant negative
correlations were found between depressive symptom severity and phone-measured mobility, and these correlations were more
significant at the within-individual level than the between-individual level. For the direction of relationships over time, Homestay
(time at home) (φ=0.09, P=.01), Location Entropy (time distribution on different locations) (φ=−0.04, P=.02), and Residential
Location Count (reflecting traveling) (φ=0.05, P=.02) were significantly correlated with the subsequent changes in the PHQ-8
score, while changes in the PHQ-8 score significantly affected (φ=−0.07, P<.001) the subsequent periodicity of mobility.

Conclusions: Several phone-derived mobility features have the potential to predict future depression, which may provide support
for future clinical applications, relapse prevention, and remote mental health monitoring practices in real-world settings.

(JMIR Ment Health 2022;9(3):e34898) doi: 10.2196/34898
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Introduction

Depression is a prevalent and serious mental health disorder
that is a leading cause of disability worldwide [1]. It can cause
physical health and psychological function problems, resulting
in loss of productivity and a high social burden [2-5]. Currently,
diagnosis of depression relies on skilled clinicians and
self-report questionnaires, which have limitations that include
subjective bias and dynamic information loss [6]. Consequently,
many people with depression do not receive timely and effective
treatment [7], and more efficient methods for detecting and
monitoring depression are needed. Recently, the use of mobile
phones with embedded sensors for depression detection and
monitoring, to provide new ways for supporting both depressed
people and clinicians, has been investigated [8].

We focused on exploring how phone-collected location data
could link individuals’ mobility and depression. Past
survey-based studies found that mobility is significantly and
negatively associated with depression [9-11]. Several
longitudinal survey–based studies reported a bidirectional
relationship between depression and mobility over time, that
is, decreased mobility worsened subsequent depressive
symptoms and vice versa [10,11]. If the changes in mobility
that occur before changes in depression can be captured by
mobile phone technologies, early intervention can take place,
which could prevent depression relapse or deterioration.
Therefore, it is valuable to investigate relationships between
depressive symptom severity and phone location data over time.

In recent years, there have been several studies [12-22] exploring
the associations between depressive symptom severity and

mobility features extracted from phone-collected location data
that have shown that mobility measured by phones is negatively
associated with the severity of depressive symptoms which is
consistent with past survey-based studies; however, not many
have explored the direction of the relationships between
depression and mobility over time. Meyerhoff et al [22] recently
found that phone-derived mobility features were correlated with
subsequent changes in depression, but not vice versa. However,
the autoregressive nature of depressive states and mobility levels
[23-25] and the influence of individual differences may affect
the results. In addition, the limitations of many previous
phone-based studies [12-14,18-21] included relatively small
and homogeneous (eg, university students) populations and the
lack of comparison of between-individual and within-individual
differences. To address these limitations, we aimed to explore
the relationships and the direction of relationships over time
between phone-derived mobility features and depressive
symptom severity on a large multicenter data set.

Methods

Study Design
We used a large longitudinal data set of an EU research program
called Remote Assessment of Disease and Relapse–Major
Depressive Disorder, which explored the utility of remote
measurement technologies in long-term (up to 2 years)
depression monitoring [26]. We first used existing mobility
features and then designed several new mobility features, which
were extracted from this data set. Then, we assessed the
relationships and direction of the relationships between
depressive symptom severity and mobility features over time
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using dynamic structural equation models [27]. Furthermore,
we investigated the effects of individual differences (such as
demographics) on the models at the between-individual level.

Study Participants and Settings
All participants in the study had at least one diagnosis of
depression in the most recent 2 years and were recruited from
3 countries (Netherlands, Spain, and the United Kingdom);
additional details descriptions are reported in [28]. Participants’
passive data (eg, location, steps, and sleep) and active data (eg,
questionnaires) were respectively collected via passive remote
measurement technologies and active remote measurement
technologies apps provided by an open-source platform
(RADAR-base) [29]. A patient advisory board comprising
service users co-developed the study and were involved in the
choice of measures, the timing, and issues of engagement and
in developing the analysis plan.

Ethics
Ethical approval was obtained from the Camberwell St. Giles
Research Ethics Committee (17/LO/1154) in London, from the
Fundacio Sant Joan de Deu Clinical Research Ethics Committee
(CI: PIC-128-17) in London, and from the Medische Ethische
Toetsingscommissie VUms (2018.012–NL63557.029.17) in the
Netherlands.

Phone Location and Depression Questionnaire Data
We focused on phone location data and data from the 8-item
Patient Health Questionnaire (PHQ-8) [30]. The passive remote
measurement technologies app measured participants’ location
coordinates (longitude and latitude) using 2 providers (GPS and
network sensors) periodically every 10 minutes. To protect
participants’private information, raw locations were obfuscated
by adding a unique and random reference location which was
assigned to each participant at the start of the study [31]. The
participant’s self-reported depressive symptom severity was
measured via the PHQ-8, with a score between 0 and 24 [30],
which was assessed through the active remote measurement

technologies app every 2 weeks (thus, the 2 weeks preceding
each PHQ-8 record was the PHQ-8 interval).

Data Inclusion Criteria
Several factors may affect our analysis, such as the COVID-19
pandemic, location data accuracy, and missing data. Notably,
the COVID-19 pandemic and related lockdown policies greatly
impacted European people’s mobility behaviors [32]. Therefore,
according to suggestions in previous studies [6,14,16,19,33]
and our experiences, we selected a subset of the data set [26]
using the 3 criteria: (1) data from before February 2020 (prior
to COVID-19 interventions in Europe) [6,33] were included,
(2) location records with an error larger than 165 meters were
removed [14,16], and (3) the amount of missing location data
in a given PHQ-8 interval was limited to 50% [14,16,19].

Data Preprocessing
We calculated the distances between consecutive location
records and the instantaneous speeds at all location records. The
distance between 2 consecutive location records was computed
by using the Haversine formula [34]. The instantaneous speed
was approximated by dividing the distance by the time between
2 consecutive location records. We regarded one location record
as a stationary point if its instantaneous speed was less than 1
km/h; otherwise, we considered it a moving point [14,19].

The second procedure was location clustering. Since the
density-based spatial clustering of applications with noise
method [35] can treat low-density location points as outliers,
avoiding overestimating the number of locations clusters [14],
we used this method for location clustering, using
hyperparameters and the method for handling unequal sampling
intervals from [14].

Feature Extraction
We extracted 11 mobility features (Table 1) from location data
in each PHQ-8 interval (14 days), of which 4 features (3
frequency-domain features to reflect periodic characteristics of
mobility and 1 feature to represent the number of temporary
residential locations during the past 14 days) are new.

Table 1. A list of mobility features used in this study and their short descriptions.

DescriptionFeature

Variance of longitude and latitude coordinatesLocation Variance

Percentage of time spent in movingMoving Time

Distance between all location points weighted by available timeMoving Distance

The number of location clusters found using density-based spatial clustering of applications with noiseNumber of Clusters

Entropy of time distribution over different locationsLocation Entropy

Location Entropy normalized by the number of clustersNormalized Entropy

Percentage of time spent at homeHomestay

The number of temporary residential locationsResidential Location Count

Percentage of frequency bins within the long-term period (>1 day) of spectrum for longitude and latitude coordinatesLong-term Rhythm

Percentage of frequency bins within the circadian period (24 hours) of spectrum for longitude and latitude coordinatesCircadian Rhythm

Percentage of frequency bins within the short-term period (<1 day) of spectrum for longitude and latitude coordinatesShort-term Rhythm
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Time-Domain Features

Location Variance
The Location Variance represented the variability of each
participant’s locations [19] and was calculated as
log(Var(Lon)+Var(Lat)), where log is the logarithm, and
Var(Lon) and Var(Lat) represent the variances of the longitude
and latitude coordinates, respectively, in one PHQ-8 interval.

Moving Time
The Moving Time represented the percentage of time that a
participant spent in moving in one PHQ-8 interval [19]. The
feature was computed by dividing the sum duration for all
moving points by the sum of available time in one PHQ-8
interval.

Moving Distance
The Moving Distance was adjusted by dividing the total distance
by the available time (in hours) in one PHQ-8 interval. In
previous studies [18,19], the total distance obtained by
accumulating distances between all location records; however,
this total distance was affected by the missing data rate.

Number of Clusters
The number of the unique location clusters that a participant
visited in one PHQ-8 interval was calculated using density-based
spatial clustering of applications with noise [14].

Location Entropy
Location Entropy represented the distribution of time spent by
a participant at different location clusters in one PHQ-8 interval
[19] and was calculated as

where pi is the percentage of time spent at location cluster i,
thus the greater the average time, the higher the Location
Entropy and vice versa [19].

Normalized Entropy
Because the number of location clusters varies across
participants and the number of clusters is positively correlated
with Location Entropy [14,16,19], we also used Normalized
Entropy which was given by Normalized Entropy = Location
Entropy / log (Number of Clusters)

Homestay
In previous studies [13,14,16,18,19,21], each participant was
assigned only one home location, which was the most visited
location cluster between 12 AM to 6 AM; however, in our study,
due to the long follow-up time and community-based population,
participants may have more than one residential location in one
PHQ-8 interval (for example, for reasons, such as traveling,
business trips, or moving to a new house). Therefore, we
adjusted the method of determining the residential locations.

We first selected all location clusters visited at night (12 AM
to 6 AM) in one PHQ-8 interval. Then, if multiple clusters were
visited in the same night, the location cluster with the most
location records was selected as the home location. This step
partially excluded the impact of activities at night. The
Homestay was the time spent at all stationary location points
belonging to all home locations as the percentage of the
available time in one PHQ-8 interval.

Residential Location Count
This new feature represented the number of residential locations.
Since temporary home locations could reflect traveling [36],
we used the number of residential locations in one PHQ-8
interval to reflect traveling.

Frequency-Domain Features
People’s life rhythms (such as circadian rhythm, sleep rhythm,
and social rhythm) are related to depression [37]. We proposed
3 frequency-domain features to reflect the periodicity of
participants’ mobility. To compute frequency-domain features,
we used linear interpolation and the fast Fourier transformation
to get the spectrums of longitude and latitude data, respectively
(Figure 1). The frequency axis of the spectrum was scaled in
cycles per day to reflect the number of periodic patterns that
occurred daily. To explore the periodic rhythms of different
period lengths, we used the same frequency-domain division
as in our previous publication [6], that is, frequency bands of
low frequency (0 to 0.75 cycles per day), middle frequency
(0.75 to 1.25 cycles per day), and high frequency (>1.25 cycles
per day). The power in the middle frequency was used to
represent the strength of the circadian rhythm (around 1
cycle/day) of the participant’s mobility. Likewise, the power in
low frequency and high frequency represent the long-term (>1
day) periodic rhythm and short-term (<1 day) rhythm,
respectively. We extracted 3 features to reflect the percentages
of these 3 periodic rhythms (long-term, circadian, and short-term
rhythms) in individuals’ mobility. We summed the power in
the same frequency band of longitude and latitude, then divided
it by the sum of the total spectral power of longitude and
latitude. The formulas of these 3 features are

Long-term Rhythm=(PSDlon(LF) + PSDlat(LF)) /
(PSDlon(Total) + PSDlon(Total))

Circadian Rhythm=(PSDlon(LF) + PSDlat(LF)) /
(PSDlon(Total) + PSDlon(Total))

Short-term Rhythm=(PSDlon(LF) + PSDlat(LF)) /
(PSDlon(Total) + PSDlon(Total))

where PSDlon and PSDlat represent the power spectral density
of longitude and latitude, respectively, and LF, MF, HF, and
Total are the low frequency, middle frequency, high frequency,
and total spectral power, respectively. If the individuals’
mobility is regular, the Long-term Rhythm or Circadian Rhythm
will be high, otherwise, Short-term Rhythm will be high.
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Figure 1. Transformation of location data from the time domain to the frequency domain. LF: low frequency (0-0.75 cycles/day); MF: middle frequency
(0.75-1.25 cycles/day); HF: high frequency (>1.25 cycles/day).

Data Analyses
We used dynamic structural equation modeling to explore the
relationships and the direction of relationships between mobility
features and PHQ-8 scores over time. Dynamic structural
equation modeling is a broad integrated framework that blends
multilevel, time-series, and structural equation modeling
[27,38,39] and which has shown to be particularly useful for
intensive longitudinal data [38,39]. Specifically, the 2-level
vector autoregressive model can estimate the lagged effects and
cross-lagged effects between 2 outcome variables while
considering the variability at both within-individual and
between-individual levels [27,39]. The lagged effect is the
impact of one variable on itself over time, which was used to
represent the autoregressive nature of depressive states and
mobility levels [23-25]. The cross-lagged effect is the impact
of one variable on the other variable over time, which was used
to explore the direction of relationships between mobility
features and PHQ-8 score. In this study, we only considered the

Lag-1 model (Figure 2), that is, the lagged effects and
cross-lagged effects between a time point t and the immediately
subsequent (2 weeks later) time point (t + 1).

We built a vector autoregressive model with each mobility
feature and PHQ-8 score as outcome variables and used age,
gender, and work status as covariates [40-42] at the
between-individual level for adjusting individual differences.
The correlations between the PHQ-8 score and the mobility
feature (Figure 2) at both within-individual and
between-individual levels were also estimated by the vector
autoregressive model. We established a total of 11 vector
autoregressive models for all mobility features. All P values of
coefficients in vector autoregressive models and correlations
were adjusted using the Benjamini-Hochberg method [43] for
multiple comparisons. Findings were considered significant at
adjusted P value <.05. Vector autoregressive models were
implemented in Mplus (version 8) [44] and multiple comparison
corrections were performed in R software (version 3.6.3).
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Figure 2. Path diagram of the vector autoregressive model. PHQ8it and Mobit represent the score of 8-item Patient Health Questionnaire and a mobility
feature, respectively, of participant i at time point t. Age, gender, and work status were considered covariates at the between-individual level.

Results

Data Summary
The 2341 PHQ-8 intervals of 290 participants collected between
November 2017 and February 2020 were included in our

analysis. The sample had a median age of 50.0 (IQR 34.0, 59.0)
years, with 215 (74.14%) female participants and 149 (51.38%)
employed participants, with a median of 10 (IQR 5, 15) PHQ-8
scores and a median of 8.0 (IQR 3.0, 14.0) PHQ-8 intervals for
each participant. The pairwise Spearman correlations between
all 11 mobility features are presented in Figure 3.

Figure 3. A heatmap of pairwise Spearman correlations between all 11 mobility features extracted in this paper.

Vector Autoregressive Models

Correlation
Except for Moving Time (P=.11), all mobility features were
significantly correlated with the PHQ-8 score at the

within-individual level (Table 2); Homestay (ρ=0.11, P<.001)
and Short-term Rhythm (ρ=0.07, P=.004) were positively
correlated, while other mobility features were negatively
correlated. Between individuals, Location Variance (ρ=−0.22,
P=.04) and Moving Distance (ρ=−0.26, P=.04) were
significantly and negatively correlated with PHQ-8 scores.
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Table 2. Mobility features’ correlations with PHQ-8 scores at within- and between-individual levels.

Between-individual levelWithin-individual levelMobility feature

Adjusted P valueρAdjusted P valueρ

.04−0.22<.001−0.10Location Variance

.28−0.09.110.03Moving Time

.04−0.26.002−0.08Moving Distance

.44−0.02.001−0.09Number of Clusters

.22−0.09<.001−0.15Location Entropy

.11−0.14.02−0.05Normalized Entropy

.200.10<.0010.11Homestay

.27−0.09.001−0.09Residential Location Count

.09−0.17.004−0.07Long-term Rhythm

.11−0.16<.001−0.12Circadian Rhythm

.090.16.0040.07Short-term Rhythm

Lagged and Cross-lagged Effects
There were significant and positive lagged effects exist in both
PHQ-8 scores (φ1=0.45-0.51, P<.001) and mobility features
(φ2=0.11-0.53, P<.001) (Table 3). For cross-lagged effects,
PHQ-8 scores were significantly and negatively correlated with

the subsequent Circadian Rhythm of mobility (φ3=−0.07,
P<.001), while Location Entropy (φ4=−0.04, P=.02), Homestay
(φ4=0.09, P=.01), and Residential Location Count (φ4=0.05,
P=.02) were significantly correlated with subsequent PHQ-8
scores.

Table 3. Lagged and cross-lagged effects between mobility features and PHQ-8 scores estimated by vector autoregressive models.

Cross-lagged effectsLagged effectsMobility feature

Adjusted P valueφ4Adjusted P valueφ3Adjusted P valueφ2Adjusted P valueφ1

.230.02.22−0.03<.0010.2<.0010.49Location Variance

.310.02.220.02<.0010.53<.0010.47Moving Time

.210.03.210.03<.0010.38<.0010.48Moving Distance

.32−0.01.500.005<.0010.3<.0010.49Number of Clusters

.02−0.04.33−0.01<.0010.22<.0010.47Location Entropy

.450.003.44−0.004<.0010.14<.0010.46Normalized Entropy

.010.09.30−0.01<.0010.34<.0010.45Homestay

.020.05.34−0.01<.0010.11<.0010.51Residential Location Count

.450.001.06−0.05.0010.21<.0010.49Long-term Rhythm

.120.03<.001−0.07<.0010.11<.0010.48Circadian Rhythm

.34−0.03.060.05<.0010.11<.0010.48Short-term Rhythm

The Influence of Individual Differences
Older and employed participants had significantly lower
intercepts of the PHQ-8 score than younger and unemployed
participants (Table 4). For mobility features, age was
significantly and negatively correlated with Number of Clusters
(γ=−0.12, P=.01), Location Entropy (γ=−0.18, P<.001), and
Residential Location Count (γ=−0.16, P<.001), while work
status was significantly correlated with most mobility features
(except for Moving Time [P=.42] and Residential Location
Count [P=.09]). For lagged effects, older participants had
significantly lower lagged effects on Moving Distance (γ=−0.16,

P=.02) and Homestay (γ=−0.14, P=.03) than younger
participants. Female participants had significantly lower lagged
effects on Location Entropy (γ=−0.15, P=.02) and Residential
Location Count (γ=−0.24, P=.01) than male participants.
Compared with unemployed participants, employed participants
have significantly lower lagged effects on the PHQ-8 score
(γ=−0.14, P=.03) and significantly higher lagged effects on
Normalized Entropy (γ=0.25, P=.01). For cross-lagged effects,
age was significantly and negatively correlated with the φ3
coefficient of Circadian Rhythm (γ=−0.49, P=.004) in the
corresponding vector autoregressive model.
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Table 4. Significant effects of individual difference at the between level of the vector autoregressive models. Only significant effects of at least one
covariate are reported.

EmployedFemaleAgeCharacteristic

Adjusted P valueγAdjusted P valueγAdjusted P valueγ

Effects on the intercept of

.01−0.10.090.07<.001−0.21Patient Health Questionnaire–8

.010.12.290.03.06−0.08Location Variance

.010.07.40−0.01.470.01Moving Distance

.030.09.360.02.01−0.12Number of Clusters

<.0010.20.400.01<.001−0.18Location Entropy

<.0010.26.45−0.01.09−0.09Normalized Entropy

<.001−0.15.160.03.320.01Homestay

.090.06.170.04<.001−0.16Residential Location Count

.010.14.340.02.07−0.07Long-term Rhythm

<.0010.13.100.06.08−0.07Circadian Rhythm

<.001−0.16.13−0.06.060.10Short-term Rhythm

Effects on the lagged effect of

.03−0.14.13−0.07.470.01Patient Health Questionnaire–8

.06−0.08.31−0.04.02−0.16Moving Distance

.380.02.02−0.15.46−0.01Location Entropy

.010.25.05−0.19.190.09Normalized Entropy

.270.05.13−0.09.03−0.14Homestay

.36−0.04.01−0.24.480.01Residential Location Count

Effects on the cross-lagged effect of

.250.164.480.01.004−0.49Circadian Rhythm (φ3)a

aφ3 represents the effect of the Patient Health Questionnaire–8 on the subsequent mobility feature.

Discussion

Principal Findings
This study provides a comprehensive understanding of the
relationships and the direction of the relationships between
depressive symptom severity and phone-measured mobility
over time by using dynamic structural equation modeling on a
large longitudinal data set and considering correlations at both
individual and population levels, lagged effects (the
autoregressive nature over time), cross-lagged effects (direction
of the relationships over time), and the influences of individual
differences (demographic characteristics).

Most mobility features extracted in this paper were significantly
correlated with the PHQ-8 score at the within-individual level
(Table 2), which indicated that, for a participant, the higher the
severity of depressive symptoms, the lower mobility. This is
consistent with both past survey-based [9] and phone-based
studies [18,19]. These findings reaffirmed that the link between
depressive symptom severity and mobility can be captured by
mobile phones. However, many of the mobility features’
correlations with PHQ-8 score were not significant at the
between-individual level, possibly due to the significant effects

of individual differences (age and work status) on both PHQ-8
score and mobility features (Table 4). Notably, features of
Location Variance (ρ=−0.22, P=.04) and Moving Distance
(ρ=−0.26, P=.04) were still significantly correlated with PHQ-8
score at the between-individual level, which indicated these
features are relatively robust for reflecting depressive symptom
severity in the whole population. Compared with the results of
previous phone-based studies, our results showed that population
diversity affects correlations between mobility features and the
depression score. Most mobility features were significantly
correlated with depression scores in student-based studies
[16,18], while several features lost their significance in a
community-based population with a wide age distribution [19].
These findings indicated that individual differences need to be
considered during exploring relationships between depression
and mobility.

PHQ-8 score and mobility features both had significant and
positive lagged effects (Table 3), indicating that the
autoregressive nature of individuals’ depressive states [24] and
movement habits [25] could be captured by mobile phones. For
the direction of relationships over time, we found 3 mobility
features significantly correlated with the subsequent PHQ-8
score. Specifically, increases in PHQ-8 score are probably
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preceded by one or more following changes in the mobility: (1)
lower average time spent at different places (Location Entropy),
(2) more time at home (Homestay), and (3) more traveling
(Residential Location Count). Conversely, change in PHQ-8
score was significantly and negatively correlated (φ3=−0.07,
P<.001) with the subsequent circadian rhythm measured by
location data. The findings of a recent study [22] showed
changes in several mobility features were associated with
subsequent depression changes, but not vice versa. The
differences in populations and applied methods could be
potential reasons for the slightly inconsistent results. Both our
study and that study [22] have shown that the changes in
mobility prior to changes in depressive symptom severity can
be captured by mobile phones. An interesting finding is that the
number of residential locations was positively correlated
(φ4=0.05, P=.02) with the subsequent PHQ-8 score (Table 3),
which is opposite to their negative correlation (ρ=−0.09, P=.001)
at the within-individual level (Table 2). As the number of
temporary residential locations could reflect traveling [36], this
finding indicated that traveling may reduce the current
depressive symptoms but may worsen some existing depressive
feelings. This finding may provide insight into a phenomenon
called “post-travel depressed feelings [45,46].” The causes of
“post-travel depressed feelings” are fatigue from trips, the shock
of re-entry of ordinary life, and jet lag [46,47].

For influences of individual differences on the levels of
depressive symptom severity and mobility, we found that PHQ-8
scores tended to be lower in participants who are older or have
jobs, which can be expected because previous survey-based
studies have shown that depression is negatively correlated with
age, and the unemployment rate in the depressed population is
high [40-42]. Gender was not significantly correlated with the
PHQ-8 score (γ=0.07, P=.09) in our population, possibly due
to all participants in our study having at least one diagnosis of
depression in recent 2 years [26], which may reduce the link
between gender and depressive symptom severity. For the effects
of demographic characteristics on mobility features, we found
that the mobility in older participants or participants without
jobs tended to be lower, which is also expected. For influences
of individual differences on the lagged and cross-lagged effects,
we found the participants with jobs had lower autocorrelation
of the PHQ-8 score, indicating more depressive symptoms
severity changes over time in employed participants than
unemployed participants. Female participants, older participants,
and unemployed participants tended to have lower
autocorrelations of some mobility features than male
participants, young participants, and employed participants,
which indicated that variabilities of mobility over time were
larger in these participants. For influences of age on cross-lagged
effects, the impact of changes in PHQ-8 score on the subsequent
circadian rhythm for older participants was significantly lower
than that of young participants (γ=−0.49, P=.004), indicating
that the mobility rhythm of the older participants is affected by
depressive symptoms for a shorter period than the young
participants.

We proposed 3 frequency-domain features to reflect the periodic
characteristics of individuals’ mobility (Figure 1). They were
all significantly correlated with the PHQ-8 score at the
within-individual level. Higher values of Long-term Rhythm
and Circadian Rhythm represent more regular movement and
activity, which were correlated with lower depressive symptom
severity. Notably, Circadian Rhythm had the strongest
correlation (ρ=−0.12, P<.001) among these 3 features, and it
had significant cross-lagged effect (φ3=−0.07, P<.001) with the
preceding PHQ-8 score. These findings demonstrated that the
frequency-domain of location data can provide some additional
information for evaluating depressive symptom severity in future
research.

Limitations
We obfuscated the raw location data due to privacy issues.
Therefore, we did not have access to contextual information,
which may mean some information was lost. Another limitation
is that we only used the Lag-1 vector autoregressive models.
We did not use high-order vector autoregressive models because
we wanted to make our preliminary model simple to allow easier
explanation and to avoid convergence problems in the procedure
of coefficient estimations. We will attempt high-order vector
autoregressive models in future research when we have more
data without the impact of the COVID-19.

We chose to build 11 dynamic structural equation modeling
models, one for each mobility feature. Since each mobility
feature has a specific meaning, the bivariate model can better
explain changes of the feature before and after the changes in
PHQ-8 scores indicating the longitudinal relationships. We
attempted multivariate dynamic structural equation modeling
with all mobility features, but the model failed to converge,
possibly due to the multicollinearity between mobility features
and complexity of the model. As all mobility features were
devised for describing characteristics of individuals’ mobility,
there were high correlations between mobility features (Figure
3). In future research, we plan to solve the multicollinearity in
the multivariate model through further feature engineering and
feature selection methods or by using other multivariate time
series models which are robust to multicollinearity [48].

Conclusions
This study provides initial evidence of the relationship and the
direction of the relationship between depressive symptom
severity and phone-measured mobility over time. We found
several mobility features affected depressive symptom severity,
while changes in the depression score were associated with the
subsequent periodic rhythm of mobility. These mobility features
have the potential to be used as indicators for assessing
depression risk in future clinical applications, which could
provide timely suggestions for both people with depression risk
(eg, encouraging to attend more activities) and physicians (eg,
early interventions). This work may provide support for remote
mental health monitoring practice in real-world settings.
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