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Abstract

Recent developments in artificial intelligence technologies have come to a point where machine learning algorithms can infer
mental status based on someone’s photos and texts posted on social media. More than that, these algorithms are able to predict,
with a reasonable degree of accuracy, future mental illness. They potentially represent an important advance in mental health
care for preventive and early diagnosis initiatives, and for aiding professionals in the follow-up and prognosis of their patients.
However, important issues call for major caution in the use of such technologies, namely, privacy and the stigma related to mental
disorders. In this paper, we discuss the bioethical implications of using such technologies to diagnose and predict future mental
illness, given the current scenario of swiftly growing technologies that analyze human language and the online availability of
personal information given by social media. We also suggest future directions to be taken to minimize the misuse of such important
technologies.
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Introduction

In 2018, football commentator and former Liverpool defender
Mark Lawrenson was alerted to a facial cancerous blemish by
one of his viewers [1]. General practitioner Alan Brennan
emailed England’s BBC and alerted Lawrenson after watching
him on TV and spotting the suspicious skin lesion. Lawrenson

successfully treated the skin cancer and later would bring the
doctor to the TV show to interview and thank him. In 2020,
reporter Victoria Price was on air when a spectator noticed a
lump on her neck [2]. The woman promptly emailed the reporter
alerting that Price should have her thyroid checked—the
spectator reported she also had a neck bulging in the past that
was revealed to be cancer. After exams and appointments with
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oncologists, Price confirmed that the lump was a thyroid cancer
and underwent an effective treatment [2]. These are two
examples among many others in which signs of someone’s
undiagnosed disease could be noticed by a third party who
seized the opportunity to alert the person about it. Such attitudes
are often lifesaving, as they end up in diagnosis and effective
treatment. However, what if mental illness could somehow also
become perceptible?

In this paper, we discuss the intrinsic privacy protection of
mental illnesses and how current technologies, specifically
artificial intelligence (AI), allow us to “see” mental illness and
potentially bypass this protection. By “see,” we mean to view
by digital means. Stigma is then addressed, as it is the main
issue that makes the ability to “see” mental illness have different
consequences as compared to “seeing” other illnesses. Bioethical
issues related to both previous items and to the use of such
technologies are discussed. We then address the interpretability
of AI models, an issue that may threaten bioethical principles.
Lastly, we discuss problems related to the use of such
technologies outside clinical and research settings.

The Privacy Protection of Mental Illness

We usually think of psychiatric illness as having an intrinsic
privacy protection, since we need someone to talk about their
thoughts and feelings to make a mental status assessment.
However, many psychiatric disorders are somewhat apparent
to the trained eye—and ears—of the mental health professional
and even to lay people. Appearance and behavior are the first
items in the mental status examination, a road map for mental
health professionals that is equivalent to the physical exam of
the general practitioner [3]. Along this examination, the content
and form of what someone says is also carefully assessed, as
speech is the main access we have to the patient’s thoughts and
feelings. These are all items of what we denote in a broad
definition as communication: the first is called nonverbal
communication (or nonverbal language), and the other is verbal
communication [4]. Therefore, the way someone behaves and
what someone says, even while not being in a psychiatric
interview, can sometimes provide enough data to presume the
possibility of a mental disorder. This is similar to the case with
jaundice, weight loss, or lumps across the body in other illnesses,
for instance. However, confirmation of the diagnosis is
dependent upon further examination beyond the signs shown.
This confirmation, as well as the disclosure of the diagnosis, is
contingent on the patient’s acquiescence to be submitted to
laboratory tests, imaging, and physical examination, and to
reveal their feelings and experiences by further questioning
about their mental status during an interview. Nevertheless, this
“privacy protection” might be overcome by technology and by
the quick and recent progress in AI modeling.

To begin with, the wide use of social media has made an
unprecedented amount of private data publicly available. This
is not a novel issue, as it has been addressed in movies and
publications in diverse fields [5,6], and was recently put in the
spotlight of public debate as a consequence of privacy lawsuits
against the big information technology corporations [7]. While
the use of such personal big data for profiting purposes has been

unveiled, its use for mental health purposes remain largely
unknown. People share images, videos, and texts on their social
media, showing how they behave and what they speak and think.
These are the very tools used by mental health professionals to
make their diagnosis. Evidently the issues displayed in social
media are not the ones investigated in a mental health
consultation, but they often overlap as users frequently post
their intimate feelings, share their mood, and so on, online.
Besides this, AI techniques have evolved to an extraordinary
level, and their machine learning (ML) algorithms for verbal
and nonverbal language analyses of individuals has evolved
likewise [8,9]. A study published in 2020 used language and
images posted to Facebook to identify signs associated with
psychiatric illness [10]. A ML algorithm was fed with 3,404,959
Facebook messages and 142,390 images across 223 participants
with schizophrenia spectrum disorder or mood disorders and
healthy volunteers. All data prior to the first psychiatric
hospitalization was uploaded to minimize the potential
confounds on social media activity of medications,
hospitalizations, and relapses, and receiving a formal psychiatric
diagnosis. The algorithm was able to differentiate the diagnosis
using Facebook activity alone over a year in advance of the
first-episode hospitalization, with areas under the curve (AUCs)
varying between 0.72-0.77.

Regarding this “visibility” of severe mental disorders, in more
clinical/research settings, video diagnosis frameworks have also
been tested, with encouraging results. Researchers have found
that neuromotor precursors of schizophrenia, for instance, can
be traced back to childhood [11]. Accordingly, an analysis of
brief videotape footage of children eating lunch suggested that
observed movement anomalies were able to discriminate among
those children who later developed schizophrenia and those
who did not [12]. More recently, verbal language features
extracted from video and audio recordings were shown to be
important early signs of psychotic illness [13-17]. These features
include discourse coherence, syntactic complexity, speech
content poverty, metaphorical language, and language structural
connectedness [13-17]. Bedi et al [13], for instance, showed
that discourse coherence was significantly correlated with
subclinical psychotic symptoms. Though derived from a small
sample of individuals with at-risk mental states (ARMSs) for
psychosis, their model could predict with 100% accuracy
progression from the risk state to schizophrenia. This finding
of lower speech connectedness in at-risk individuals was also
replicated by Spencer et al [17], who used speech graphs in their
analyses, another technique to assess syntactic complexity and
speech content poverty. These features are commonly referred
to as natural language processing and, in larger samples, were
used to obtain AUCs as high as 0.88 for predicting which at-risk
individuals will develop a psychotic disorder in the future. For
individuals at first-episode psychosis, AUCs of up to 0.92 were
obtained to predict who would receive the diagnosis of
schizophrenia 6 months in advance [16]. Audio features such
as pauses [18] and nonverbal behavior such as gestures [19]
and movement in general [20] were also seen to be
discriminative between healthy and ARMSs. Besides serious
mental disorders [21], AI frameworks have also been developed
to detect and classify other mental disorders, as shown by
numerous publications and challenges to establish an accurate
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depression estimation from audio, video, and text information
[22,23].

Thus, the possibility to “see” mental disorders is, per se, an
innovative technology. It could increase access to mental health
care and allow for prevention, early diagnosis, and treatment,
as in the cases of the illnesses cited in the beginning of this text.
It could also aid clinicians in diagnosing, following-up, and
prognosing their patients in their daily practice. This would
greatly improve the outcome and quality of life for those
afflicted with a mental illness. However, one issue distinguishes
mental disorders from other illnesses, making the idea of
“seeing” them less desirable. This issue is stigma.

Stigma of Mental Illness

Mental illness carries a great deal of social stigma, which most
physical illnesses do not [24]. Prejudice and discrimination
toward people with mental disorders is historical, existing from
before the birth of psychiatry [25,26]. Unfortunately, despite
the great advances seen in psychiatry in the last decades, stigma
still persists in several forms [27]. Its causes are many, but as
mental disorders generate behavioral changes, they often tend
to be judged by the public as a moral act of the patient. If one
conceives mental illness as a strictly biological disease, with
genetic causes, for instance, fear and feelings of insecurity arise
toward the mentally ill, as if the person would not have control
of their actions [28]. If mental illness is conceived as a sole
psychosocial issue, the patients are to blame for their depressive
symptoms, anxiety, and so on. The situation is worse for the
group of severe mental disorders. Hallucinations and delusions
seen in schizophrenia symbolize a mismatch of people with the
disorder with the public’s common experience, generating fear,
perceived danger, and the desire for social distancing [29-31].

As such, stigma constitutes a major treatment barrier for those
with mental disorders, hampering preventative initiatives and
substantially worsening outcomes. This barrier appears before
treatment has begun (low mental health literacy, stereotypes
endorsement, and diagnosis delay and denial) and continues
thereafter (self-stigma, low treatment adherence, diagnosis
disclosure) [32]. Stigma also contaminates those that surround
the mentally ill, including family members, friends, and health
professionals. Reproducing the prejudice seen in other illnesses
such as AIDS and leprosy in the past, mental disorders are often
faced as if they were contagious [33]. This worsens
discrimination and social isolation as even close people tend to
stay away from those with the diagnosis—something called
courtesy stigma [34,35]. Due to this multifaceted burden of
stigma, revealing that someone may have a depressive disorder,
or that someone may be at risk of having schizophrenia in the
future, is different from pointing out that someone should seek
a doctor because of a suspected thyroid or skin cancer [36].

To make the stigma issue worse, there is the problem of false
positives [37]. There is an ongoing debate on the accuracy of
one of the most studied preventive paradigms in psychiatry,
namely, the ARMS for psychosis concept (or clinical high risk
for psychosis) [38]. Researchers are trying to enhance the
accuracy of the ARMS criteria, as studies showed that most
individuals that fall into the criteria (76%) do not develop a

psychotic disorder at all [39]. In other words, the use of ARMS
criteria alone generates a large number of false positives. The
use of language to classify ARMS individuals who will develop
a future disorder can potentially predict up to 80%-90% of cases,
as seen in some studies—though with small samples. This
accuracy is similar to that of a pap smear to screen for cervical
cancer, eliciting a false-positive rate of around 20% [40].
However, while pap smears are routinely used as an important
preventive public health strategy and concerns are directed
toward improving the false-negative ratio [41], “seeing” severe
mental disorders through language analysis would still be a
concern. Even though language frameworks can substantially
reduce the number of false positives, the great stigma related
to the condition and the uncertainty regarding intervention at
this phase still hinder the implementation of preventive
strategies. As such, the number of prevented cases must be
weighed against the number of individuals harmed by being
misdiagnosed as being at risk [42].

Bioethical Issues

Given that mental disorders might be now “visible” to AI
algorithms that analyze communication, and that there is a
stigma related to these disorders, one must consider the
bioethical implications. The four main principles of bioethics
are (1) beneficence, (2) nonmaleficence, (3) autonomy, and (4)
justice [43].

Beneficence is the principle that guides physicians to act for
the benefit of patients. It also implies several other actions
beyond the usual patient-doctor relationship in a clinic, such as
rescuing persons in danger, removing conditions that will cause
harm, and helping individuals with a disability. Beneficence is
a positive concept in the sense that one has to be active, to
propose actions and intervene. Nonmaleficence, on the other
hand, concerns the obligation physicians have to not harm their
patients, not worsen their health, not incapacitate, not cause
suffering, and not deprive others of the goods of life. In practice
this implicates the weighting of benefits against burdens of all
interventions and treatments and in considering not to act [43].
Autonomy asserts that every person has the power to make
rational decisions and moral choices, and everybody should be
allowed to exercise their capacity for self-determination. The
principle of autonomy branches out into three other important
principles [43]:

1. Informed consent: patients must receive full disclosure and
comprehend the disclosure to voluntarily agree to a medical
procedure or research.

2. Truth-telling: a vital component in a physician-patient
relationship, as autonomous patients have the right to know
their diagnosis but also the option to forgo this disclosure.

3. Confidentiality: physicians are obliged not to disclose any
confidential information given by patients to another party
without their consent.

Justice is the fourth ethical principle. It encompasses the need
for a fair, equitable and appropriate treatment of persons. This
principle may encompass microsettings, such as adequately
treating individuals in an emergency service, as well as
macrosettings involving health care policies.
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That being said, the use of language detection algorithms for
mental health purposes may pose some bioethical dilemmas,
and the use of such tools must still be approached with caution.
The role of medical advice and diagnosis in one’s disease
trajectory is relevant, and the early detection of mental illness
can enable health care practitioners to intervene and avoid
negative outcomes. On the other hand, the attribution of labels
can also increase the chances of self-stigma [42]. Social stigma
is a great burden for people with mental disorders and is
especially associated with the psychiatric diagnosis (ie, labels)
[29], generating poorer outcomes and other negative
consequences [44]. This is especially important considering the
high rate of false positives among the previously cited ARMS
condition [39]. That is, individuals (wrongly) classified as
ARMS but who would never develop a mental disorder. Using
the ARMS paradigm indiscriminately to diagnose individuals
without properly demystifying this information and
destigmatizing mental illnesses would constitute a threat to the
nonmaleficence principle [42]. Besides, it would also be
potentially paternalistic, harming autonomy.

To understand the biological pathways toward psychosis and
to develop new treatments, research efforts are being directed
to the enhancement of the predictive power of the ARMS
concept [45]. This is being done by investigating biological
markers or by using ML algorithms. In this sense, the use of AI
for natural language processing has produced encouraging
results, with a diagnostic accuracy similar or superior to other
classifiers used in medicine [14,15]. However, if stigma is not
addressed in a comprehensive way, no matter how few false
positives there are, they will still be a concern regarding
nonmaleficence. Moreover, the use of such algorithms to
interpret language data also poses a threat to nonmaleficence
and to autonomy, more specifically concerning the lack of
comprehension of certain information given by such algorithms,
which we depict below.

Interpretability and Validity of Algorithms

The issue that some ML models are impossible to interpret has
recently gained a growing interest [46]. There’s an ongoing
discussion on the repercussions of such algorithms for
high-stakes decisions. Such models are called black box models,
for their operation with the inputted variables is not completely
observable. They are known to learn from subtle metadata, and
this may carry the risk of hidden bias (eg, the Clever Hans
problem) [47].

Exemplifying this, in 2018, a study aimed to investigate the
generalizability across sites of a deep learning model to detect
pneumonia in chest radiographs [48]. At first, the model
performed very well in distinguishing high-risk patients from
non–high-risk patients. However, upon external validation, the
performance plummeted. The AI model was not learning from
clinically relevant information from the images. Instead, it was
learning and basing its decisions on hardware-related metadata
tied to a specific x-ray machine. This machine was being used
in an intensive care unit (ICU) to image mostly high-risk
individuals [49]. That is, the algorithm would attribute a
high-risk classification to most images coming from that ICU’s

x-ray, instead of using clinical data from the x-rays themselves
to make decisions. Several scholars have discussed
explainability as a major problem for the use of AI in health
care [50].

For some computational problems, it is hard to associate
meaningful parameters with individual variables. For instance,
in images examined by computer vision, each pixel is
meaningless without context, while the full set of pixels taken
together contain local (eg, pixels that together form a smile)
and global (eg, sources of light inferred from shadow directions)
characteristics. Complex models make use of several heuristics
to capture abstract notions according to each application.
Concepts such as objects in pictures and seasonality in time
series are encoded and distributed across different structures
within the model. Therefore, simple descriptions such as
“anxiety increases as stress increases” are rarely possible,
contrary to what happens in familiar regression methods. Since
multiple conditional dependencies preclude direct statements
about results, additional analytical and experimental steps are
required for the interpretation of complex models [51].

In short, it is not enough only to enhance predictive power and
avoid false positives but also to understand the real-world
underpinnings of black box algorithms [49]. Both machine
statements and human statements are congruent with a given
ground truth [50]. Taking the above example, we have two
statements, accordingly. First, a specific characteristic of some
given x-rays is associated with a higher risk for pneumonia
(machine statement). Second, we should prioritize patients with
those x-rays, as they are at higher odds of having pneumonia
according to the ML model (human statement). Both statements
are equally used for decision-making. Nevertheless, human
models are often based on causality as an aim for understanding
underlying mechanisms and for intervention. While the
correlation is accepted as a basis for decisions, it is viewed as
an intermediate step. For instance, why are those specific patients
at higher risk of having pneumonia? We should investigate their
characteristics to understand the higher risk of pneumonia and
to develop a specific antibiotic. On the other hand, ML
algorithms are typically based on probabilistic models and
provide only a crude basis for further establishing causal
relationships. Upon opening the black box, the relationship
between that specific set of x-rays and pneumonia was due to
a given x-ray machine located in an ICU service that was
working on many more cases of pneumonia than the other
machines. That is, ML models offer important decision-making
tools, namely, prioritizing those individuals. However, further
investigations beyond the simple association should be
conducted, opening the black box and addressing
physiopathological explainability and causability.

Decisions in health care imply liability, including legal and
financial repercussions. Therefore, each decision must be
logically reasoned with explainable evidence [49]. AI models
might be insightful for scientists, but they should also be
sufficiently clear and explainable for end users to support their
decisions [52]. Otherwise, it could constitute a threat to the
patient’s autonomy. Accordingly, traditional algorithms must
handle sources of information in an interpretable manner, such
as the GRACE score for acute coronary syndrome and the
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Sequential Organ Failure Assessment score for organ failure in
ICUs [53,54]. They map higher probabilities of a bad outcome
to signs of severity (eg, abnormal values in biological markers).
Clinical support decision systems based on opaque (“black-box”)
algorithms must, as such, provide a clear rationale to be useful
for practitioners. Besides carrying hidden bias, the use of opaque
algorithms leads to a defensive medical practice. When no
underlying rationale is presented [55], physicians tend to agree
with the machine to avoid liability. On the other hand,
interpretable outputs will help practitioners to treat their patients
with fewer overlooked findings and misled predictions.

Post hoc techniques of analysis (local interpretable
model-agnostic explanations, Shapley Additive Explanations,
multilingual unsupervised and supervised embeddings, etc) are
an option when model parameters are numerous and
computational processes go beyond elementary functions and
operators [51]. Specifically regarding language data, researchers
should treat findings from computer based evaluations as they
do with traditional indicators. It is crucial, for instance, to have
representative data as a basis for normative curves for each
proposed behavioral marker. How does it develop through ages;
how does it change according to gender or ethnicity; what are
the effects of social factors such as socioeconomic status,
educational level, neighborhood, or exposure to urban violence?
Before jumping to the conclusion on the relationship of some
behavioral marker to a pathological factor, we first need to map
and understand normative variability across cultures, languages,
and countries [56,57]. For example, language structural
connectedness that diminishes according to negative symptom
severity under psychosis [16] also increases during typical
development, being tightly associated with educational levels.
Years of formal education are more important to explain this
developmental trajectory than years of age to the point that
illiterate adults narrate their stories with a structural pattern
similar to preschool children [58].

After gaining insights on potential pathological markers and
mapping on pathological confounding factors, we still need to
discuss potential public policies that protect the individual rights
to not be evaluated or even judged without consent.

Legislation and Data Privacy

Otto Hahn won the Nobel Prize for discovering nuclear fission
in 1939 and allowing nuclear reactors to produce enormous
amounts of energy [59]. However, he is a controversial historical
figure once his discovery also allowed the building of the World
War II atomic bombs. Arthur W Galston studied the effects of
2,3,5-triiodobenzoic acid on the growth and flowering of
soybeans. Later the military developed it into Agent Orange
and used it in the Vietnam War as a chemical weapon. This led
Galston to become a bioethicist and give talks on the misuse of
science [60]. Likewise, internet, smartphones, social media, and
search mechanisms revolutionized our relationship with
knowledge and with each other as humans. However, unethical
misuse of big data to control one’s exposure to information, to
stimulate consumerism, and to capture someone’s time for
profiting purposes are the proxies of such inventions’perversion
[61]. The number of discoveries—either scientific or not—that

got misused by third parties other than their inventor is
countless. It is easy to figure out how technologies that address
mental status through language can follow the same way.

Automated analysis of free speech, for instance, can establish
thought disorder indexes based on what someone says or writes
[13]. Additionally, these indexes can predict future serious
mental disorders like schizophrenia. That is, the data fed into
the analysis can be extracted from written text from books,
transcripts, or other data sets that are available to the public (eg,
social media or personal blogs). This raises the possibility of
malicious use, given the online availability of people’s written
data on the internet. Another example of the possible use of
available information to infer the mental status of individuals
is the Facebook study mentioned at the beginning. The algorithm
could predict a future and severe mental disorder with a
72%-77% level of certainty. All these works importantly
advance science and provide the perspective of useful tools to
be used by clinicians and policy makers. Additionally these
findings are developed in environments strictly guided by ethical
standards given by ethics committees and supervised by the
scientific community. However, the problem is not related to
these regulated settings but when the invention goes beyond
scientists.

Likewise, ethical boards review and regulate scientific studies
and health professionals’practice; apart from these settings, the
law exists to oversee and penalize irregular use of big data [62].
As such, there is now a growing concern about digital privacy,
especially after the awareness raised by the lawsuits against big
tech claiming too much power over people’s lives and personal
information a few years ago. This has led to an increase in
legislation to regulate access and use of personal information,
especially that which is somewhat publicly available in online
social networks. However, there is always the risk of a legal
gap as cutting-edge inventions are temporally ahead of
legislation protecting them from misuse. This is especially
evident today as new ML algorithms and technologies arise
with increasing frequency. This can potentially foster
discrimination of individuals with mental disorders in countries
where such a gap is not covered by personal information privacy
protection legislation. For instance, allowing the misuse of such
technologies in job interviews, academic interviews, and so on,
to dismiss people from the selection process based on
preconceived ideas about mental disorders.

Conclusion

Summarizing, new technologies derived from AI have the
potential to “see” mental disorders by someone’s behavior and
discourse. These technologies per se would greatly help in early
detection and disease outcome. However, the historical and
enduring stigma attached to mental disorders hampers the use
of such tools. Fighting prejudice and discrimination related to
mental disorders should constitute future directions so that
stigma does not constitute a barrier for the use of these
innovative technologies. Moreover, to comply with
nonmaleficence and avoid the stigma, these technologies also
need to have low rates of false positives in predicting someone’s
possibility of future mental illness. There is a further risk that
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these ML algorithms turn into black box models. This hidden
bias problem could potentially harm the patients’autonomy and
disclosure. So, it is necessary to clearly describe the algorithm,
to use post hoc interpretation methods, and to conduct
bias-checking procedures. Additionally, because of stigma and
due to the high online availability of personal information on
an individual’s verbal and nonverbal language, information
derived from the algorithms carries the risk of being misused,

such as to discriminate against individuals because of their
mental health status. In this sense, awareness should be raised
in regulating the use of these technologies in real-world settings.
There is a challenge for legislators to catch-up with the
ever-renovating new technologies and algorithms designed to
decipher human behavior to prevent these inventions from being
misused.
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