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Abstract

Background: Emotion dysregulation is a key dimension of adult psychological functioning. There is an interest in developing
a computer-based, multimodal, and automatic measure.

Objective: We wanted to train a deep multimodal fusion model to estimate emotion dysregulation in adults based on their
responses to the Multimodal Developmental Profile, a computer-based psychometric test, using only a small training sample and
without transfer learning.

Methods: Two hundred and forty-eight participants from 3 different countries took the Multimodal Developmental Profile test,
which exposed them to 14 picture and music stimuli and asked them to express their feelings about them, while the software
extracted the following features from the video and audio signals: facial expressions, linguistic and paralinguistic characteristics
of speech, head movements, gaze direction, and heart rate variability derivatives. Participants also responded to the brief version
of the Difficulties in Emotional Regulation Scale. We separated and averaged the feature signals that corresponded to the responses
to each stimulus, building a structured data set. We transformed each person’s per-stimulus structured data into a multimodal
codex, a grayscale image created by projecting each feature’s normalized intensity value onto a cartesian space, deriving each
pixel’s position by applying the Uniform Manifold Approximation and Projection method. The codex sequence was then fed to
2 network types. First, 13 convolutional neural networks dealt with the spatial aspect of the problem, estimating emotion
dysregulation by analyzing each of the codified responses. These convolutional estimations were then fed to a transformer network
that decoded the temporal aspect of the problem, estimating emotional dysregulation based on the succession of responses. We
introduce a Feature Map Average Pooling layer, which computes the mean of the convolved feature maps produced by our
convolution layers, dramatically reducing the number of learnable weights and increasing regularization through an ensembling
effect. We implemented 8-fold cross-validation to provide a good enough estimation of the generalization ability to unseen
samples. Most of the experiments mentioned in this paper are easily replicable using the associated Google Colab system.

Results: We found an average Pearson correlation (r) of 0.55 (with an average P value of <.001) between ground truth emotion
dysregulation and our system’s estimation of emotion dysregulation. An average mean absolute error of 0.16 and a mean
concordance correlation coefficient of 0.54 were also found.

Conclusions: In psychometry, our results represent excellent evidence of convergence validity, suggesting that the Multimodal
Developmental Profile could be used in conjunction with this methodology to provide a valid measure of emotion dysregulation
in adults. Future studies should replicate our findings using a hold-out test sample. Our methodology could be implemented more
generally to train deep neural networks where only small training samples are available.

(JMIR Ment Health 2022;9(1):e34333) doi: 10.2196/34333
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Introduction

Emotion regulation is currently conceptualized as involving the
following 5 distinct abilities: (1) having awareness and an
understanding of one’s emotions, (2) being able to accept them,
(3) being able to control impulsive behaviors related to them,
(4) having the capacity to behave according to our desired goals
in the midst of negative emotions, and (5) having the capacity
to implement emotion regulation strategies as required to meet
individual goals and situational demands. The absence of these
abilities indicates the presence of emotion dysregulation [1].
Psychopathology is characterized by intense or protracted
maladaptive negative emotional experiences. Emotion
dysregulation is a core vulnerability to the development of both
internalizing and externalizing mental disorders [2]. For
example, high emotion dysregulation is a key component of
substance abuse [3], generalized anxiety disorder [4], complex
posttraumatic stress disorder [5], and borderline personality
disorder [6].

Emotion dysregulation is typically assessed through a self-report
questionnaire, the Difficulties in Emotional Regulation Scale
(DERS) [1], or one of its shorter forms (eg, Difficulties in
Emotion Regulation Scale, brief version [DERS-16]) [7]. It can
also be assessed physiologically by measuring heart rate
variability (HRV) in a controlled experiment, with the advantage
that this requires no insight from the participant and represents
an objective measure. However, traditionally, this form of
assessment represented serious costs of collection, and varying
baselines among people posed a problem [8]. Since at least one
study has shown that the DERS and the HRV-based assessment
of emotion dysregulation are correlated [8], the DERS has
become the de-facto “gold standard.”

Attempts to measure psychological dimensions “in the wild”
(ie, a naturalistic approach) using machine learning and
unimodal sensing approaches, such as measuring heart rate
throughout the day with a smartwatch or measuring the patterns
of social media interactions by a user, have not yet produced
good enough results leading to major changes in the way the
mental health industry practices psychometrics. It still relies
almost entirely on self-assessment questionnaires or professional
interviews [9]. In our view, this absence of disruption comes
down to 2 issues. First, the problem of relying on a single
modality. In the field of affective computing, multimodal fusion
has shown promise by beating unimodal approaches in several
benchmarks [10]. This is because multimodality provides
cross-validation of hypotheses, where one sense modality can
reaffirm or negate what was perceived by another, reducing
error and increasing reliability. This is how we, humans,
perceive. Second, measuring psychological dimensions “in the
wild” might be a bad idea due to the unknown number of
confounding factors surrounding daily life. In particular, many
authors underline the need for considering the specific demands
of the situation at hand, as well as the specific goals of the
individual in that context, when evaluating emotion
dysregulation [1].

To overcome these limitations, in 2017, we introduced the
Biometric Attachment Test (BAT) in the Journal of Medical

Internet Research [11]. It was and continues to be the first
automated computer test to measure adult attachment in a
multimodal fashion, including physiology measures (HRV) as
well as behavioral ones. The BAT uses picture and music stimuli
to evoke situations and feelings related to adult attachment,
such as loss, fear, parent-children relationships, or romantic
relationships. It sits well within the psychometric tradition of
projective tests, such as the Thematic Apperception Test [12].
In 2019, we presented a machine learning methodology to
automatically score the BAT using a small training data set,
and we validated the use of a remote photoplethysmography
(RPPG) algorithm to measure HRV in a contactless fashion as
part of the BAT software [13]. We have now renamed our test
to the Multimodal Developmental Profile (MDP), because we
hypothesize its stimuli and design can work for measuring not
only adult attachment, but also several other dimensions of
psychological functioning that are developmental in nature and
crucial to the forming of psychopathology [14]. In particular,
we hypothesize that the MDP can measure emotion
dysregulation in adults.

Developing deep multimodal fusion models to combine the
MDP obtained features in order to predict actual psychological
dimensions, such as emotion dysregulation, is a challenge due
in part to the small nature of samples in psychology research
[13].

In this work, we propose a series of methods that we hypothesize
will allow us to train a scoring model for the MDP to estimate
emotion dysregulation in adults. We hypothesize that such an
estimation of emotion dysregulation will have psychometric
convergence with the “gold standard” measure, the DERS. Our
approach of choice is particularly important for the machine
learning field. We hypothesize that our methodology will
unleash training deep neural networks for multimodal fusion
with a very small training sample.

The organization of the rest of this paper is as follows. First,
we will introduce the multimodal codex, which is the heart of
our approach, and the techniques required to build it and fill its
missing values. Second, we will present our convolutional neural
network (CNN)-transformer network architecture, including
our new layer, the Feature Map Average Pooling (FMAP) layer.
Third, we will discuss our training methodology. Fourth, we
will present our results, including the quality of our estimation
of emotion dysregulation in adults. Lastly, we will discuss these
results.

Methods

Recruitment

American Subsample
This subsample consisted of 69 participants (39 females and 30
males) and was recruited online using Amazon Mechanical Turk
and Prolific services between January and July 2019. The mean
age for this subsample was 35.05 years (SD 12.5 years,
minimum 18 years, maximum 68 years). We did not
intentionally recruit any clinical participants for this subsample,
but we cannot guarantee the absence of clinical patients within
it.
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French Subsample
This subsample consisted of 146 participants (88 females and
58 males) recruited between the months of January and July
2019, and was formed from multiple sources in different regions
of France. Of the 146 participants, 10 clinical patients were
recruited at University Hospital Center Sainte-Etienne and 22
at the Ville-Evrard Center of Psychotherapy and Psychotrauma
in Saint-Denis, 33 volunteers were enrolled in Paris and 19 in
Lyon, 3 college students were enrolled at Paris Descartes
University and 11 at University Bourgogne Franche-Comté
(Dijon), and 43 clinical private practice patients were enrolled
in Paris and 5 in Lyon. The mean age for this subsample was
39.25 years (SD 13.6 years, minimum 18 years, maximum 72
years). Clinical patients were included to examine whether the
MDP was capable of rightly assessing more extreme emotion
dysregulation cases.

Tunisian Subsample
This subsample consisted of 33 Tunisian participants (21
females and 12 males) recruited in July 2019 in the city of Tunis.
The mean age was 37.6 years (SD 10.5 years, minimum 17
years, maximum 55 years). While there was no intention to
recruit clinical participants for this subsample, we cannot
guarantee the absence of clinical patients within it.

Measures

DERS-16
The original DERS [1] is a 36-item self-report questionnaire
that measures an individual’s typical level of emotion
dysregulation. Internally, it is based on the following 6 different
subscales: (1) nonacceptance of negative emotions, (2) inability
to engage in goal-oriented behaviors when in distress, (3)
difficulties for controlling impulsive behaviors when in distress,
(4) limited or no access to emotion regulation strategies
perceived as effective, (5) lack of awareness of one’s emotions,
and (6) lack of emotional clarity. Respondents have to rate items
on a 5-point Likert-type scale from 1 (almost never) to 5 (almost
always) depending on how much they believe each proposition
applies to them. The shortened version of the DERS that we
used in this work, called DERS-16 [7], consists of 16 items that
assess the same 6 dimensions of emotion regulation difficulties.
The total score on the DERS-16 ranges from 16 to 80, where
higher scores reflect greater levels of emotion dysregulation.
Importantly, this shortened version of the DERS retained
excellent internal consistency, good test-retest reliability, and
good convergent and discriminant validity, with only minimal
differences when compared to the original DERS [7].

MDP
Explored in depth in an article in the Journal of Medical Internet
Research [11], the MDP as a test consists of 14 themes or
narratives that depict human experiences that can be either
stressing or soothing in nature (loss, grief, and solitude, as well
as human connection, romantic love, and kinship). The themes
are evoked using rotating stimuli from a pool of pictures and
short music clips that were vetted through a standardized
procedure using crowd-sourced feedback. Some themes are
evoked using picture stimuli alone, some are evoked using a
combination of picture and music, and some are evoked by

music alone (to evoke raw emotions such as sadness and fear).
During the test situation, each stimulus is shown and/or heard
for 15 seconds, after which the computer asks the participant
to describe aloud what they have felt. They have 20 seconds to
respond, before a 5-second break and then moving to the next
stimulus. The whole session takes 9 minutes and 33 seconds to
be completed.

Importantly, the first stimulus is fully neutral and allows us to
acquire a baseline for all our measurements, which is later
subtracted from them. In theory, this allows us to work with
signals that react solely to the stimuli. Whether the participants
came already upset to the test situation or whether they were
already fatigued, the test will measure this during the first
stimulus and then subtract it from the following signals; thus,
it will only take into account whether a stimulus made them
more upset or more fatigued, or perhaps whether a stimulus
managed to soothe or relax them. The short duration of the test
assures us that any abrupt changes in the signals from which
the baseline was subtracted will indeed be caused by the test
situation itself and not due to time simply passing by.
Furthermore, the order of the stimuli themselves is such that
stress and soothing themes are alternated, allowing us to get
more contrast in our measurements of what each stimulus is
doing to the person.

A simple way of conceptualizing the MDP is as a series of
dependent experiments. Each stimulus intends to evoke a certain
range of reactions on its own but is also linked to the reactions
that the next stimulus intends to evoke. For example, stimulus
11 will attempt to provoke fear, and stimulus 12 will attempt
to evoke loss, whereas stimulus 13 will evoke a soothing
comforting experience of human connection. We will be
interested in the reactions to each of those stimuli separately,
but we will, more importantly, be interested in the relationship
between them, for example, “If the person was upset by the first
2 stimuli, were they able to calm down during the last one?”

As the participant perceives the stimuli and responds aloud to
them, the software automatically collects video and audio data
and automatically extracts features from them. Specifically, the
MDP uses an RPPG method to extract HRV features that allow
measuring the sympathetic and parasympathetic branches of
the autonomic nervous system; detects facial action units, head
movements, and gaze direction with respect to the stimuli being
presented; and analyzes speech, extracting paralinguistic features
as well as conducting a linguistic analysis [13].

An important aspect of the MDP is that it does not rely on a
naturalistic approach. Rather, it is based on a tightly controlled
experiment carefully conceived and validated in order to evoke
specific reactions.

In addition, the MDP has content validity [11], because it is
underpinned by a strong theoretical foundation and
interpretation. This sets it apart from most machine learning
attempts at measuring mental health, which typically focus on
prediction and convergence with a disregard for content validity
[15].

Finally, contrary to most projects, wherein a machine learning
system is trained to predict a category with relation to mental
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health, such as depressed vs not depressed, the MDP is
dimensional. It measures psychological phenomena in terms of
their continuum score, from which it is easy to produce
categorical decisions (whereas the opposite is impossible to
accomplish). These continuum scores are far more precise and
nuanced, and could allow, among other things, to conduct
outcome studies, measuring the degree of change of a
psychological construct over time.

Machine Learning Methodology

Important Note on Data Leakage
To prevent any form of data leaking, every step described below
was conducted within the 8-fold cross-validation loop. This
loop begins by separating the available data into a validation
set and a training set containing the rest of the samples.

A few participants took the test twice at intervals of a few weeks
to help with a future study on test-retest reliability, and we
included both of their sessions in this study, treating them as if
they were different participants. To prevent data leakage,
however, when one of them was randomly put into the validation
set, their other session got automatically put there as well. This
explains why the validation set size changes from fold to fold
(with a range of 29 to 35).

Data Preparation
All data preparation was performed in MATLAB 2021b
(MathWorks). The MDP outputs a set of CSV files containing
the structured data for each sense modality (facial expressions,
linguistic analysis, etc). In most cases, this comes in the form
of a table containing the timestamps as rows and the features
as columns.

We averaged each feature per stimulus (ie, an average of values
for facial action unit 10 from the moment stimulus 3 was shown
till the moment it disappeared). We discounted the first
stimulus’s results, the neutral one (see previous section), from
all others so that we dealt solely with the variance produced by
the test itself. Features were scaled to the −1 to 1 range, using
either previous knowledge about the actual signal’s minimum
and maximum values, or the empirical minimum and maximum
levels found within the signal in all our training samples for a
given fold.

DERS-16 scores were also linearly scaled, to the 0-1 range, to
allow for quicker training times and easier interpretation of
results. An important step in our data preparation procedure
was to uniformize our training sample with regards to the ground
truth (ie, DERS-16 scores) so that all levels of the ground truth
could be equally represented in terms of the number of samples
being fed to our learning algorithm. Our code did this by binning
the DERS-16 score, and up-sampling our data set until all bins
(ie, all score levels) had the same number of cases representing
them. This, of course, presented the problem of potentially
overfitting these repeated cases. In the section about test time
data augmentation, we present how we dealt with this problem.

Multimodal Codex Sequence
From a clinician’s perspective, a typical assessment interview
can be thought of as having 2 main components as follows:

what is happening at any given moment during the interview,
that is, the specific behavioral or verbal responses a patient
might show to a specific question or nonverbal queue coming
from the clinician, and the manner those interpreted moments
intertwine.

Based on years of clinical experience, we argue that the
psychologist or psychiatrist ends the interview with a newly
acquired succession of intuitive mental images, representing
key moments of the encounter with the patient. These mental
images encode information from multiple sense modalities: a
specific word that was said as well as the tone and posture in
which it was said, and how that led to a long silence. They
represent an utter distillation of the experience, which is the
simplest representation of it.

The multimodal codex is our attempt to imitate this clinical
phenomenon in a machine learning multimodal fusion context.

The multimodal codex is a grayscale computer image that
encodes within it a set of meaningful multimodal features
representing human responses to a controlled experiment. A
multimodal codex sequence is the series of multimodal codexes
that together encode the flow of the test situation.

The multimodal codex is also a practical way to encode
structured tabular data in a format that can more readily be taken
advantage of by CNNs. CNNs are of practical interest because
(1) they ditch the need for feature engineering as they create
their own features and (2) they can be trained with relatively
few learnable parameters, helping to prevent overfitting.

Converting tabular data sets to images in order to use CNNs on
them has been exploited by several researchers recently. Alvi
et al showed that tabular data on neonatal infections could be
successfully exploited using a CNN by implementing a simple
transformation where features (ie, columns) are assigned, one
by one, to an X-Y coordinate, with their values becoming the
pixel’s intensity [16]. We will describe how we implemented
their method in order to perform missing data imputation for
our sample a few paragraphs below.

Buturović et al designed a tabular-data-to-graphical mapping
in which each feature vector is treated as a kernel, which is then
applied to an arbitrary base image [17]. Sun et al experimented
using pretrained production-level CNN models implementing
a diametrically opposite approach consisting of projecting the
literal value of the features graphically onto an image; for
example, if a feature has a value of 0.2 for a given participant
in the sample, the image would include the actual number 0.2
on it [18].

The approach clearly closer to ours is that of DeepInsight [19].
Theirs is the realization that we can use a visualization
technique, t-distributed stochastic neighbor embedding, in a
different manner to what it was intended. While typically one
applies the said technique on a data set in order to reduce the
dimensions of the feature space to foster intuitive visualization
of the sample distribution, they applied the method to their
transposed data set, such that the sample space was reduced to
a cartesian space for an intuitive understanding of the
distribution of the features.
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The approach we used for creating the multimodal codexes is
similar, yet it differs from DeepInsight’s approach in that we
implement a more modern and reliable dimensionality reduction
method, the Uniform Manifold Approximation and Projection
(UMAP) [20]. Its strength is to better preserve the global
structure of the data and thus the relationship between the
features. In addition, we apply this procedure to a very specific
kind of tabular data (multimodal sensing data). To the best of
our knowledge, this has not been proposed before.

Our proposed method to missing data imputation can be
described by the following pseudocode: For each feature in the
data set, (1) produce an image by disposing each feature vector
in the dataset, EXCEPT the current one, as pixels in a grayscale
image, with the intensity of the feature representing the pixel’s
intensity; (2) feed the created picture for each participant to a
simple CNN consisting of 2 convolutional layers and a dense
layer, the mission of which is to find visual patterns in the

projected data that can predict the left-out feature; and (3) use
the created model to predict the missing values corresponding
to that feature.

For each fold, we learn the missing data imputation models
from the learning set and fill with it the missing values of both
training and validation sets.

Our proposed process to create a multimodal codex sequence
is resumed in the following pseudocode: For each of the 13
stimuli, (1) group all features corresponding to a given stimulus
in the form of a SAMPLES × FEATURES matrix; (2) use the
UMAP method over the transposed matrix to obtain the X and
Y coordinates for each feature; and (3) create a 28×28 pixel
grayscale image per person, printing the value of each feature
in their respective X and Y coordinates.

The resultant images look like those in Figure 1.

Figure 1. From test to result. Top left: a woman taking the Multimodal Developmental Profile test. Top center: the audio wave and video frames, with
the latter showing the analysis for head pose, eye gaze, and facial expressions. Top right: tabular data of some of the features extracted from the audio
and video. Bottom: the 2nd, 3rd, 4th, and 14th multimodal codexes for a participant in the sample. CNN: convolutional neural network; w/: with.

This process naturally builds images with distinct clusters of
features for each stimulus depending on the specific relationship
between the typical responses to the said stimulus in the sample
and the ground truth variable. Like a clinician’s intuition
described earlier, our approach could end clustering together a
series of language markers, facial expressions, and HRV
features, which might not initially be obvious, in the context of
what is evoked by a specific stimulus and the typical response
pattern in the sample.

Practically, this takes the guessing out of feature engineering,
while also providing the CNNs with smaller clusters to “look
at,” which in turn puts less stringent requirements on the

receptive field of the network, leading potentially to smaller
kernels and fewer layers.

An important limitation of UMAP and all other visualization
techniques of the sort is that the proximity of points in the
projection they generate does not follow a predictable pattern.
While points that are closer together typically are more related
than those projected far away, this is not guaranteed for all cases,
and the relationship between distance and importance is certainly
not linear.

On occasion, the mapping for two or more features falls in the
exact same X and Y coordinates. While this could be easily
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remediated by enlarging the codex resolution, we decided to
leave this as a feature. When UMAP considers 2 features to be
so close, they might as well mean the exact same thing. In that
case, we average the value of the features to find the value of
the pixel in question.

For each fold, we learned the mapping from the learning set
and created with it the multimodal codexes for the learning and
validation sets.

Multimodal Fusion Network Architecture
As described in the previous section, the problem of assessing
a psychological construct during an interview is both a spatial
problem (ie, measuring different things that happen
simultaneously) and a temporal problem (understanding the
succession of events and their relationship).

For dealing with the first part of the problem, we implemented
13 CNNs, with 1 per stimulus (minus the baseline stimulus).
The reason not to rely on just 1 network for all of the stimuli is
that we do not assume the features that are important to predict
emotion dysregulation are the same during each stimulus
response. On the contrary, a clinician will look for specific
patterns in the patient’s behaviors depending on the queue the
therapist has sent right before during the interview. Patterns can
actually reverse. A cluster of features indicative of emotion
dysregulation given 1 stimulus can actually be indicative of
good regulation during another.

We confronted the following challenges when designing the
architecture for our CNNs: (1) How to create a deep enough
network that will be able to extract complex concepts, while
keeping the number of learnables (ie, weights) very lean to avoid
overfitting (ie, memorizing) our small training set? (2) How to
avoid downsampling/blurriness of the codex when going deeper
into the network, a classic byproduct of pooling layers, so that
deeper layers can still take advantage of details while
simultaneously uncovering more global patterns? To overcome
these challenges, we implemented cutting-edge best practices
as well as some innovations.

The network begins with a multimodal codex augmentation
layer that we will explore later. The rest of the network is
basically constituted of 8 convolutional blocks, each containing
a depth-wise separable convolution layer [21] with 8 3×3-sized
kernels, with different dilation factors (more below), a stringent
L1-L2 norm weight-decay regime, and a constrained range of

values for the weights to take, lying between −1 and 1; a
mean-shifted Symmetrical Gaussian Error Linear Units
(SGELU) [22] activation layer; a group normalization layer
[23]; and our new FMAP layer (details are presented in the next
section). There is a residual connection that allows gradients to
flow directly from the end of the network toward the output of
the 5th convolutional block. After adding the residual and the
upcoming connection from the last convolution block, the
network ends with a depth-wise convolution layer (ie, kernel
1×1), a linear activation layer, and a Global Average Pooling
(GAP) [24] layer. The whole CNN can be seen in Figure 2 (all
13 networks share identical architecture). It has only 339 weights
overall.

Importantly, our proposed architecture dispenses with pooling
layers entirely. They are typically used as a means to increase
the effective receptive field when moving deeper into the
network. They were replaced with a carefully calculated set of
kernel dilation factors, which increase from the 1st block to the
5th, then decrease for blocks 6 and 7, and then increase once
again in block 8 before the network ends. This decrease and
increase between blocks 6 and 8 is what Hamaguchi et al have
called a local feature extraction (LFE) module [25]. In their
important work on satellite imagery, they have shown that in
scenarios where both general patterns and details are important
for prediction, reducing and then rapidly increasing the dilation
factor can allow the network to take into account both detail
and structure all the way to the deepest layers of the network.
In our case, this is crucial, because although we trust the thinking
behind the multimodal codex design, the UMAP method is not
infallible, and a very important feature to predict emotion
dysregulation might still end lying away (graphically) from the
main clusters, as a single pixel somewhere in the image, that
would tend to disappear when down-sampled. Different from
the approach by Hamaguchi et al, though, we included a residual
connection going from block 5 (right before entering the LFE
module) directly into the last block, basically short-circuiting
the LFE module. This allows our network to decide during
training if the module is needed or not, depending on the actual
data correlations it finds, and even to find the right balance of
detail and structure automatically. The dilation factor of each
convolutional layer was carefully calculated so that the effective
receptive field covers the whole image (28×28) by the end of
the network.
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Figure 2. Our convolutional architecture (339 weights). LFE: local feature extraction; SGELU: Symmetrical Gaussian Error Linear Units.

In the following paragraphs, we provide a brief description of
each of the components of the network as well as the rationale
behind their implementation in the context of deep learning
from small data sets.

Depth-wise separable convolutional layers were first introduced
in a previous study by Chollet et al [21] and implemented in
Google’s Xception and MobileNet architectures. A depth-wise
separable convolution separates the convolution process into
the following 2 parts: a depth-wise convolution, and a pointwise
convolution. They can allow for a reduction of parameters of
up to 95% compared to classic convolutional layers [26]. While
this reduction is typically desired from the perspective of
lessening computational and size demands of neural networks,
particularly during prediction time and for mobile hardware
deployment, our rationale for using them is entirely different.
In classical statistics, it is known that small samples should be
fitted with models using relatively few degrees of freedom (ie,
parameters) if one wants to prevent overfitting the training set.

Typically, the best practice ratio is 10 to 1; ie, 10 times fewer
degrees of freedom than data available. While that ideal might
be too stringent when ported to modern machine learning, we
still thought it was vital to keep it as a guiding principle. The
fewer parameters we used, the least the network could overfit
the data. Hence, our utilization of these layers.

SGELU activation was recently introduced in a previous study
by Yu et al [22]. Yu et al took advantage of the already powerful
GELU function, which represents nonlinearity by using the
stochastic regularizer on an input (the cumulative distribution
function derived from the Gaussian error function), which has
shown several advantages over other activation functions and
is currently implemented in modern natural language processing
(NLP) transformer models. The new SGELU function allows
activations to take on equally large negative and positive values,
pushing the weights to also do so. In their investigation, they
found that this new activation function performs better than all
other available activation functions, but this was not the reason
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that had us choose it for our task. Rather, they also reported that
training becomes smoother and more stable when using SGELU
and that they found preliminary evidence of better generalization
of the network when trained with it. Since ours is a task that
deals with a very small data set and thus probably exaggerated
levels of variance, smoother more stable training can be crucial,
and the capacity to generalize better could indicate greater
self-regularization, which is essential when learning from a
small sample.

Mean shifting [27] is a method that consists of simulating
random data, similar to what an activation function might
compute, and passing it through the activation function, in our
case SGELU, to find the empirical mean of the activations.
Once we find it, we can subtract it from 0, the desired mean for
the activations, and then add (ie, shift) that difference to the
activation itself. In so doing, now the empirical mean of the
activation function becomes 0 (for random data). This approach
has been shown to increase both convergence speed and
accuracy.

Group normalization was introduced by the Facebook AI
Research (FAIR) team in 2019 [23]. Its claim to fame was its
capacity to produce performance results that paralleled batch
normalization when using regularly sized batches, but that
strongly outperformed it when using small batches. Small
batches are more typical in the context of parallelization of
neural networks training within computing clusters. Although
we also got interested in it because of its capacity to deal with
small batches, our reasoning was not computational. Instead, it
has been shown that smaller batches increase regularization by,
among other things, increasing stochasticity [28,29].
Importantly, we implemented group normalization after the
SGELU activation functions for the following reason: as
reported by [22], if activations are normalized before they hit
the SGELU activation function, there is a risk that the full extent
of it might not be used, particularly the nonlinear nature of both
extremes of the function. We hard-coded the group norm
hyperparameter, which decides the number of groups, to be
always half of the number of kernels in the previous CNN layer
(so 4 for all of our blocks).

The networks end with a GAP [24] layer to average the final
activation map; the result of that operation is the prediction of
the network. The GAP layer has come to replace fully connected
layers in CNNs lately, mainly because of its capacity to reduce
overfitting and drastically reduce parameters.

The full CNN model is shown in Figure 2.

After each of the 13 CNNs produce an estimation of emotion
dysregulation, those estimations become the sequential data fed
to the next and final architecture, to deal with the temporal
aspect of our problem, which is the transformer.

Endowed with the task of decoding the sequential meaning of
the participant’s responses to the succession of MDP’s
controlled experiments, our transformer network is of course
inspired by the seminal work of Vaswani and the team at Google
Brain [30]. Transformers have replaced recurrent neural
networks and their convolutional counterparts for an
ever-increasing number of sequential learning tasks, including
NLP, video classification, etc. Indeed, they can be trained faster
than models based on recurrent or convolutional layers [30].

At their core is the multiheaded attention mechanism, which
allows evaluating, in parallel and for each data point in a
sequence, which other data points in the said sequence are
relevant to the assessment. The attention heads in our encoder
block are of size 13, to cover the whole MDP sequence, as
opposed to the size of 64 used in the study by Vaswani et al,
and we used 4 heads as opposed to 8. Our encoder block also
includes residual connections, layer normalization, and dropout.
The projection layers are implemented using a 1D convolution
layer.

The encoder was followed by a 1D GAP layer to reduce the
output tensor of the encoder to a vector of features for each data
point in the current batch. Right after this is the multilayer
perceptron regression head, consisting of a stack of fully
connected layers with ReLU activation, followed by a final 1
neuron–sized fully connected layer with linear activation that
produces the actual estimation of emotion dysregulation. We
tried implementing positional encodings, as per the original
paper, as well as look-ahead masking; however, both methods
yielded worse results for our use case, so we discarded them.

In the original paper, Vaswani et al implemented label
smoothing. Given that ours is a regression problem, we switched
this for test-time augmentation (TTA), which will be described
later.

The loss function for our transformer architecture was the
concordance correlation coefficient (CCC) [31]. It was pioneered
as a loss function by Atmaja et al, and tends to find a good
balance of low error and high correlation between predictions
and the ground truth [32]. Our transformer architecture can be
seen in Figure 3.
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Figure 3. Our transformer architecture (4223 weights).

FMAP Layer
This new kind of layer computes the average of the activations
or feature maps produced by a 2D convolution layer as follows:

where a is a 3D “channels-last” tensor and K is the number of
kernels of the previous convolution layer (ie, the number of
channels).

It was inspired by the GAP layer, which revolutionized CNNs
by drastically reducing the number of weights without
sacrificing performance, while increasing regularization.
However, the FMAP layer averages tensors among feature maps
(ie, channels), as opposed to across the 2 dimensions of each
feature map like GAP does.

If included at the end of every convolutional block, FMAP
assures that the depth (ie, number of channels) of the activations
flowing forward in the network remains flat (ie, 1 channel) at
all depths of the network, instead of exponentially increasing,
as is typically the case.

It is important to realize that a sort of weighted average already
happens within regular convolutional layers when they calculate
the dot product (ie, cross-correlations) between the kernel
weights and the image pixels for each of its channels. By
analogy, with FMAP, we are transforming that into a
nonweighted average.

The FMAP can also be thought of as a nonlearnable version of
the depth-wise convolution (ie, convolutions with kernel size
1×1 typically used to reduce the complexity of a model by
merging its feature maps). By using a fixed function (average)
instead of a learned one, though, we obtain a decrease in

learnable weights in our model. For a depth-wise convolution,
we need 1 weight and 1 bias per input feature map, whereas
with FMAP, we need none. We also prevent the network from
overfitting the training set during the computation.

In terms of the decrease in the number of weights for a network,
in our own CNNs, the reduction is of 71% (from 1172 weights
to 339). This remarkable reduction in weights has several effects,
including reducing computational demands for both training
and prediction, and, as we mentioned earlier, reducing the
number of degrees of freedom in the model, thus reducing the
potential to overfit the training set.

We believe this layer forces an ensembling effect onto the
network’s block in which it is inserted. It is a consensual
observation that ensembles of trained neural networks generalize
better than just 1 trained neural network [33]. This is because
their different random initializations increase stochasticity,
empowering each network in the ensemble to explore the loss
landscape by taking entirely different paths toward minima, and
when their predictions are averaged, they can cancel each other’s
overfitting tendencies out. We think that when FMAP layers
are used consistently after all (or at least many) 2D
convolutional layers, the same ensembling effect is introduced
within subnetworks (ie, blocks) of the network, so that each
block ending in an FMAP layer is forced to create an ensemble
of subnetworks. This, we hypothesize, should introduce
desirable block-wise stochasticity that increases model
generalization ability without the need to train multiple entire
neural networks.

Training and Test Time Data Augmentation Scheme
In our quest against overfitting, we implemented data
augmentation. In its classic form, it allows for the on-the-fly
creation of new training examples based on random
transformations of the original ones.
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With regard to our CNNs, we created a layer designed to
introduce uniform random noise within the multimodal codexes.
During training, it introduces up to 10% noise for each pixel
representing a feature in the multimodal codex (while it leaves
all other pixels, the ones not representing any feature, alone).
This meant that, for each epoch, the network saw an up to 10%
different version of each image.

This procedure was especially important given that our
uniformization of the ground truth variable by upsampling meant
that there was a nonnegligible amount of image (multimodal
codex) repetition being fed to the CNNs. So this data
augmentation scheme allowed for them to be actually somewhat
different.

Another more modern form of data augmentation is TTA [34].
This approach consists of, at prediction time, generating on the
fly X-augmented data sets, predicting with each, and then
averaging the results.

The way we implement TTA is innovative. We use it between
our spatial (CNNs) and temporal (transformer) networks. When
our 13 CNNs predict their final emotion dysregulation estimates,
we do so using TTA, and moreover, we repeat the process 10
times. As a result, we provide the transformer with both better
predictions and more diverse data to train on. We believe this
procedure can greatly increase the generalization of the network
to unseen data.

Training Procedure
We used vanilla Adam optimizer for both our CNNs and the
transformer network, with default settings. We did not
implement any learning rate scheduler.

We trained our CNNs for 500 epochs each. We trained our
transformer network for 100 epochs. At each epoch, the models
were saved. By the end of training, our code automatically
selected the best model, which was the one with the highest
Pearson correlation for our CNNs and that with the highest CCC

for our transformer, between predictions and the ground truth
on the validation set.

As we described earlier, all the aforementioned steps were
implemented within each fold of a cross-validation procedure.
Eight folds were utilized overall.

Analyses
Pearson correlation coefficient was calculated using SciPy,
version 1.7.1 (Community Library Project). Mean absolute error
and the CCC were assessed using Tensorflow, version 2.6.0
(Google Brain; code included in the associated Google Colab,
see section below). Means and standard deviations were
calculated using NumPy, version 1.19.5 (Community Project).

Convergent Validity Analysis and Interpretation Criteria
Convergent validity is the extent to which a measure produces
results that are similar to other validated measures measuring
the same construct [35]. A standard way of measuring it is by
using Pearson product moment correlation [36]. We will
interpret Pearson’s results based on a review by Drummond et
al on the best practices for interpreting validity coefficients,
where a value ≥0.5 indicates very high correlation, 0.4 to 0.49
indicates high correlation, 0.21 to 0.4 indicates moderate
correlation, and ≤0.2 indicates unacceptable correlation [37].

Replicability via Google Colab
We decided to port a large portion of our work from MATLAB
to Tensorflow/Keras (created by François Chollet) and to
prepare a Jupyter Notebook within Google Colab so that every
reader can replicate our findings. The notebook can be accessed
online [38]. It can be executed on Colab itself, or downloaded
and run locally.

Results

The results are presented in Figure 4, Figure 5, and Table 1.

Figure 4. Scatter plot. Prediction (ie, estimation) vs Difficulties in Emotion Regulation Scale, brief version (DERS-16) for each fold. Pearson r,
concordance correlation coefficient (CCC), and mean absolute error (MAE) are provided for each fold.
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Figure 5. Eight folds’ validation sets combined (N=248). Pearson r, concordance correlation coefficient (CCC), and mean absolute error (MAE) are
provided for this combined sample.

Table 1. Data per fold for our system’s estimated emotion dysregulation versus the findings with the Difficulties in Emotion Regulation Scale, brief
version (DERS-16; ground truth).

MAEbCCCaP valuePearson rNumberVariable

Fold

0.200.51.0020.51351

0.180.45.010.45312

0.150.44.010.44303

0.180.43.010.46314

0.140.52.0020.54315

0.120.72<.0010.72316

0.170.60<.0010.61307

0.170.64<.0010.64298

0.160.54<.0010.55N/AdMean valuec

0.020.10.010.10N/ASD valuee

aCCC: concordance correlation coefficient.
bMAE: mean absolute error.
cThe mean across folds for each metric.
dN/A: not applicable.
eThe mean of the standard deviations across folds for each metric.

Discussion

Principal Findings
Can computers detect emotion dysregulation in adults, by
looking at their behavior and physiology during a set of
controlled experiments? Can they generate “mental images”

containing different sense modalities, like clinicians do? Can
they do so in a sample that spans different cultures and
languages? Can one train a deep multimodal fusion neural
network using only a couple of thousand parameters? These are
some of the questions we set out to answer in this work. This
study evaluated the convergence validity of MDP’s emotion
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dysregulation estimation with regard to DERS-16, a brief version
of the “gold standard” measure for emotion dysregulation. We
interpret our results as excellent evidence for convergence
validity between MDP’s emotion dysregulation estimation and
the DERS-16 in our sample, suggesting that scores obtained
using the MDP are valid measures of emotion dysregulation in
adults.

It is important to reflect on the diversity of our sample. It
spanned 3 continents and 2 languages, with a broad age range,
and included individuals with psychopathology to represent the
higher end of the emotion dysregulation spectrum. With that in
mind, we believe it is impressive that emotion dysregulation
estimations were so correlated with their DERS-16 counterparts
for all folds, showing similar results. We think this shows a
preliminary form of cross-cultural validity for the approach,
adding to the evidence we found in our prior work [13]. It also
shows that the MDP is capable of assessing emotion
dysregulation in adults with a psychopathology.

We think the multimodal codex approach captures quite well
the mental processes that occur in the mind of a clinician while
conducting an assessment interview. We attribute the success
of our approach in large part to the good framing of the problem
as spatiotemporal, and believe this representation of all sense
modalities as a combined image is closer to the way we humans
do multimodal fusion.

To our knowledge, the MDP is the first test of its kind. It is a
validated exposure-based psychometric test that implements
deep multimodal fusion to analyze responses within a set of
controlled experiments in order to measure psychological
constructs.

Its advantages over classical questionnaires and interview-based
tests are manifold. They are as follows: the MDP takes less than
10 minutes to complete; it can be taken at home with a computer
or tablet and is resilient to unpredictable variability in the test
conditions; it is scored automatically in minutes; it is objective
and replicable in its observations; it is holistic, taking into
account language, voluntary and involuntary behavior, and
physiology; it can be used in different cultures with only
minimal translation efforts; and it can evolve over time, learning
new scoring models based on different validated psychometric
measures.

In terms of deep learning, we cannot stress enough how this
work defies current trends and tenets within the field. In the
current international race toward the trillion-parameter model,
how can anyone dare to present a deep network capable of
estimating very abstract psychological phenomena with only
8630 weights? In a field powered by Google, Apple, Facebook,
Amazon, and other American and Asian tech giants data mining
free online services for millions of data points, how can anyone
dare to present a model that can be well trained with only 274
examples? We think this work should be seen as pertaining to
a concurrent and perhaps literally opposite trend. Humans do
not need that many examples to learn something, even
something complex. Maybe machines do not need it either,
provided intelligent constraints are put in place (sort of bike
wheels for children) to prevent the system from falling into
tendencies (memorization, ie, overfitting) that would prevent

real learning. We think that at the heart of this concurrent view
of machine learning, there is chaos in the form of randomness.
Random noise has been added to our samples as data
augmentation. There are random paths toward minima
spearheaded by an increase in stochasticity due to small batches
during training. There is randomness during prediction by
implementing TTA. There is randomness in the random
initialization of each kernel within each convolutional block,
and the way the FMAP layers force them to ensemble. There
is randomness in the automatic choice of the stimulus from the
stimuli pool so that no single person experiences the exact same
stimuli set. There is randomness in the random errors that occur
in pretty much every one of the feature extraction processes
implemented by the MDP software. Randomness might seem
to be just noise, but what if, in reality, it is what allows us to
separate signal from noise?

Limitations and Future Directions
One of the obvious limitations of our work is the size of our
sample. Although we purposely set to prove that one can learn
very complex and deep multimodal models that can be accurate
and reliable with just a few hundred cases, this does not in any
way disprove the common sense assumption that, with more
data, the model would improve even more. In addition to sheer
sample size, we believe it would be interesting, and quite
unexplored in psychometry, to use census-based samples (data
sets whose distribution in terms of sex, age, income, etc, matches
the census of a given country). Online recruiting agencies are
beginning to propose this as a service, and we hope we will be
able to work with such a sample in the near future.

Another weak point of our study is the lack of a hold-out test
set. We did not implement one primarily because of a lack of
enough data. Indeed, it is known that validation sets can be
overfitted, in a process some have called “model hacking” [39].
Model hacking is the extensive repetition of a cross-validation
scheme for hyperparameter tuning and model development, for
which we report only the best fit found. Similar to “human
overfitting,” our resulting model might obtain great
cross-validation scores but perform more poorly in new unseen
samples. This is especially true with brute-force approaches to
hyperparameter tuning. Small-sized samples, such as ours, that
contain high variability and an extremely diverse population
are somewhat inherently protected against model hacking. Each
fold’s validation set will be strongly different from that of
another fold, not to mention that training samples themselves
will be very different from fold to fold, producing quite different
models. If with such variability the model still shows stable
performance across all or most folds, it might be a good
indication that the methodology and the models resulting from
it do generalize well. In addition, we took some empirical
measures to prevent model hacking, such as having a random
seed set at the beginning of our code, so that the partition of
folds was always equal, and then working with the first fold for
hyperparameter tuning and model tuning. Most importantly, we
have not implemented any sort of automatic search algorithm
for hyperparameter tuning. Instead, we chose to explore only a
handful of theoretically promising options by hand.
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Furthermore, we question whether a hold-out sample,
proportional in size to our overall sample, would have been a
better unbiased estimator (how can a sample with a size of
around 30 be taken as representative of the whole population?).
In the future, we will look to the works of Martin and Corneanu
[40,41] that unlock estimating generalization performance
directly from the characteristics of the model itself. We are
already working on a criterion inspired by their work, which
we call the network engagement criterion. This criterion seems
promising in estimating test error using only the training sample.
Such a method would, in our opinion, close the circle,
completing the set of methods and approaches we presented in
this work to fully implement a cycle of unbiased learning with
the sort of “small data” samples commonly found in the social
sciences.

Conclusion
In this work, we successfully trained a deep neural network
consisting of spatial (convolutional) and sequential (transformer)
submodels, to estimate emotion dysregulation in adults.
Remarkably, we were able to do so with only a small sample
of 248 participants, without using transfer learning. The metrics
of performance we used show not only that the network seems
to generalize well, but also that its correlation with the “gold
standard” DERS-16 questionnaire is such that our system is a
promising alternative. Perhaps most importantly, it was
confirmed that deep learning does not need to mean millions
of parameters or even millions of training examples. Carefully
designed experiments, diverse small data, and careful design
choices that increase self-regularization might be sufficient.
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