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Abstract

Background: Uncertainty surrounds the ethical and legal implications of algorithmic and data-driven technologies in the mental
health context, including technologies characterized as artificial intelligence, machine learning, deep learning, and other forms
of automation.

Objective: This study aims to survey empirical scholarly literature on the application of algorithmic and data-driven technologies
in mental health initiatives to identify the legal and ethical issues that have been raised.

Methods: We searched for peer-reviewed empirical studies on the application of algorithmic technologies in mental health care
in the Scopus, Embase, and Association for Computing Machinery databases. A total of 1078 relevant peer-reviewed applied
studies were identified, which were narrowed to 132 empirical research papers for review based on selection criteria. Conventional
content analysis was undertaken to address our aims, and this was supplemented by a keyword-in-context analysis.

Results: We grouped the findings into the following five categories of technology: social media (53/132, 40.1%), smartphones
(37/132, 28%), sensing technology (20/132, 15.1%), chatbots (5/132, 3.8%), and miscellaneous (17/132, 12.9%). Most initiatives
were directed toward detection and diagnosis. Most papers discussed privacy, mainly in terms of respecting the privacy of research
participants. There was relatively little discussion of privacy in this context. A small number of studies discussed ethics directly
(10/132, 7.6%) and indirectly (10/132, 7.6%). Legal issues were not substantively discussed in any studies, although some legal
issues were discussed in passing (7/132, 5.3%), such as the rights of user subjects and privacy law compliance.

Conclusions: Ethical and legal issues tend to not be explicitly addressed in empirical studies on algorithmic and data-driven
technologies in mental health initiatives. Scholars may have considered ethical or legal matters at the ethics committee or
institutional review board stage. If so, this consideration seldom appears in published materials in applied research in any detail.
The form itself of peer-reviewed papers that detail applied research in this field may well preclude a substantial focus on ethics
and law. Regardless, we identified several concerns, including the near-complete lack of involvement of mental health service
users, the scant consideration of algorithmic accountability, and the potential for overmedicalization and techno-solutionism.
Most papers were published in the computer science field at the pilot or exploratory stages. Thus, these technologies could be
appropriated into practice in rarely acknowledged ways, with serious legal and ethical implications.

(JMIR Ment Health 2021;8(6):e24668) doi: 10.2196/24668
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Introduction

Background
Data-driven technologies for mental health have expanded in
recent years [1,2]. The COVID-19 pandemic has accelerated
this shift, with physical distancing measures fast-tracking the
digitization and virtualization of health and social services [3,4].
These initiatives extend from hospital- to community-based
services for people with mental health conditions and
psychosocial disabilities (the term mental health conditions and
psychosocial disabilities is used to refer to the broad range of
mental health conditions and the associated disability; the term
is used by the World Health Organization [5]). Government
agencies, private technology firms, service user groups, service
providers, pharmaceutical companies, professional associations,
corporate services, and academic researchers are among the
actors involved [5-7]. The technologies they create serve various
functions, including information sharing, communication,
clinical decision support, digital therapies, patient or service
user and population monitoring, bioinformatics and personalized
medicine, and service user health informatics [1]. Only some
of these broader digital technologies will use algorithmic
technologies to which this paper will turn.

Throughout this paper, we use the term algorithmic and
data-driven technologies to describe various technologies that
rely on complex information processing to analyze large
amounts of personal data and other information deemed useful
to making decisions [6]. The term is used here to encompass
technologies variously referred to as artificial intelligence,
machine learning, deep learning, natural language processing,
robotics, speech processing, and similar automation
technologies. The paper is premised on the view that the term
algorithmic and data-driven technologies offers a useful
category for the purposes of this review, although important
conceptual and practical differences exist between technologies
within this broad category (eg, between artificial intelligence
and machine learning).

In the mental health context, algorithmic and data-driven
technologies are generally used to make inferences, predictions,
recommendations, or decisions about individuals and
populations. Predictive analysis is largely aimed at assessing a
person’s health conditions. Data collection may occur in a range
of settings, from services concerning mental health, suicide
prevention, or addiction support. Collection may also occur
beyond these typical domains. For example, web-based
platforms can draw on users’ posts or purchasing habits to flag
their potential risk of suicide [7]. CCTV systems with machine
learning sensors in suicide hotspots can be programmed to assess
bodily movements that may precipitate a person’s suicide
attempt [8]. Education institutions may flag students who appear
to be in distress based on attendance records, social media use,
and physiometric monitoring [9]. There are also examples of
algorithmic technologies being used in forensic mental health
settings [10] and other criminal justice settings [11], including
databases that combine noncriminal mental health data with
user-generated social media content for the apparent purpose
of preventive policing [12].

Some prominent mental health professionals have argued that
digital technologies, including algorithmic and data-driven
technologies, hold the potential to bridge the “global mental
health treatment gap” [13] by “reach[ing] billions of people”
worldwide [14]. A 2019 Lancet Psychiatry editorial describes
a “general agreement that big data and algorithms will help
optimize performance in psychiatry” [15]. Others have described
“widespread agreement by health care providers, medical
associations, industry, and governments that automation using
digital technology could improve the delivery and quality of
care in psychiatry, and reduce costs” [16]. Indeed, governments
and some private sector actors appear enthusiastic [1]. For
people who use mental health services and their representative
organizations, views on algorithmic technology in mental health
care appear more ambivalent, although research by service user
researchers, advocates, and their representative organizations
comprises only a very small part of scholarship and commentary
in the field [17-19].

This study set out to identify to what extent and on what matters
legal and ethical issues were considered in the empirical research
literature on algorithmic and data-driven technologies in mental
health care. Empirical research refers simply to scholarship
that seeks to use algorithmic and data-driven technology in an
applied way in the mental health context.

Ethics and Law
Ethics refer to guiding principles, whereas laws, which may be
based on ethical or moral principles, are enforceable rules and
regulations with penalties for those who violate them.
Scholarship on the ethical and legal dimensions of algorithmic
and data-driven technologies in mental health care is relatively
scant but growing [20-26]. Existing research generally draws
together two strands of research: first, the ethicolegal issues
involved in algorithmic and data-driven technological mental
health initiatives [25-27] and, second, a broader scholarship
concerning algorithmic and data-driven technologies [28-30].
We briefly discuss each of these strands of research.

According to Lederman et al [25], most web-based mental health
interventions have not been subject to ethical scrutiny,
particularly those that go beyond one-to-one web-based or
phone-based counseling, such as mental health apps and
moderated web-based forums. Lederman et al [25] suggest using
the classic health ethics framework, with its four principles of
nonmaleficence, beneficence, respect for autonomy, and justice,
particularly given its widespread use and acceptance among the
health professions [26]. However, given the emergence of digital
mental health initiatives in nonclinical settings (eg, in education,
work settings, social media, and financial services), other ethical
frameworks and practices may be required [7,31]. Nonhealth
settings are not governed by the same entrenched bioethical
principles, norms of conduct, or regulatory frameworks as
formal health care systems [31]. Burr et al [31] pointed out that
the transfer of responsibility from traditional health care
providers to institutions, organizations (both private and public),
and individuals who are creating web-based mental health
initiatives gives rise to new ethical considerations. These include
the duty to intervene in emergencies, competency to address
people’s support needs, and ensuring the decisional capacity
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and health literacy of consumers of commercialized products
[31]. This expanded scope is a sign that the ethical literature
concerning digital technology in the mental health context is
growing [20,24,32-34], even if ethical analyses may not occur
in most applied initiatives, as suggested by Lederman et al [25].
Legal scholarship on digital technology in mental health care
is sparse [1] but tends to focus on the regulatory frameworks
applicable to digital health, privacy, confidentiality,
cybersecurity, and software as medical devices [35-39].

The broader ethical and legal dimensions of algorithmic
technologies have been the subject of a much larger scholarship
[28-30,40,41]. Scholars in this field are typically concerned
with issues of fairness, accountability, transparency, privacy,
security, reliability, inclusivity, and safety, which are examined
in contexts as diverse as criminal law, consumer transactions,
health, public administration, migration, and employment. Legal
scholars have tended to call for technological due process
(involving fair, accountable, and transparent adjudications and
rulemaking), net neutrality (broadly, equal treatment of
web-based content by providers of internet access services)
[42], and nondiscrimination principles [43]. Early legal and
ethical scholarship focused on efforts to ensure basic standards
of algorithmic transparency and auditing, but a more recent
movement of scholars, regulators, and activists has begun to
ask more fundamental questions, including whether algorithmic
systems should be used at all in certain circumstances, and if
so, who gets to govern them [44].

Methods

Design
This study adapted a scoping review methodology to undertake
a broad exploration of the literature. Scoping reviews are
particularly useful for surveying a potentially large and
interdisciplinary field that has not yet been comprehensively
reviewed and for which clarification of concepts is required
[45], a characterization that appears apt for the use of
algorithmic and data-driven technologies in mental health care.
The scoping review method was also considered the most
appropriate approach because it could capture the literature from
several sources and disciplines with varying terminology and
conceptual boundaries.

We adapted the Arksey and O’Malley framework for scoping
reviews [46]. The framework involves the following five steps
or framework stages: (1) identifying the research question; (2)
identifying relevant studies; (3) selecting studies; (4) charting
results; and (5) collating, summarizing, and reporting results.

A description of each step is outlined below.

We drew on elements of the Joanna Briggs Institute scoping
review methodology [47] and PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-analyses) extension
for scoping reviews [48] to support the rigor of our methods.
Study selection included all study types, and the overall aim
was to chart data according to key issues, themes, and gaps [46].
Materials were analyzed using conventional content analysis
supplemented with keyword-in-context analysis (discussed
below).

Identifying the Research Question (Step 1)
We sought to identify all studies within a selective sampling
frame [49] that answered the following research questions:

• In what ways are algorithmic and data-driven technologies
being used in the mental health context?

• How and to what extent are issues of law and ethics being
addressed in these studies?

These questions were chosen to maintain a wide approach to
generate the breadth of coverage [46].

Identifying Relevant Studies (Step 2)
A rapid or streamlined literature search was conducted. We
started with a search string that emerged from our initial
literature review (noted in the Background section). However,
the search string was updated as we surveyed the literature, and
new terms and ideas from other disciplines and practices were
considered. We also undertook a hand search of relevant
reference lists of included papers to identify other papers for
inclusion. The search was not exhaustive because of the breadth
of the topic area, but it aimed to be inclusive of diverse
disciplines and varying conceptualizations of the topic.

The following search strings emerged through an iterative
process (Textbox 1). They were applied in keyword fields or
abstract and title fields (where available in each database).
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Textbox 1. Iteratively developed search string.

Scopus

• (TITLE-ABS-KEY ('mental (health OR ill* OR disability OR impair*)' OR 'psychiatr*' OR 'psycholog*' OR 'beahvioral health') AND
TITLE-ABS-KEY ('algorithm*' OR 'artificial intelligence' OR 'machine learning') AND TITLE-ABS-KEY ('internet' OR 'social media' OR
'chatbot' OR 'smartphone' OR 'tracking'))

Embase Ovid

• ('mental (health OR ill* OR disability OR impair*)' or 'psychiatr*' or 'beahvioral health').mp. [mp=title, abstract, heading word, drug trade name,
original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word]

• “mental illness”.mp. or mental disease/

• algorithm/ or machine learning/ or artificial intelligence/

• ('algorithm*' or 'artificial intelligence' or 'machine learning').mp. [mp=title, abstract, heading word, drug trade name, original title, device
manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word]

• Internet/ or “web-based”.mp.

• ('internet' or 'social media' or 'chatbot' or 'smartphone' or 'tracking').mp. [mp=title, abstract, heading word, drug trade name, original title, device
manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word]

• The above search strings were applied in various combinations.

Association for Computing Machinery

• ('mental health' OR 'mental ill*' OR 'psychiatr*' OR 'behavio* health') AND ('algorithm*' OR 'artificial intelligence' OR 'machine learning') AND
('internet' OR 'social media' OR 'chatbot' OR 'smartphone' OR 'tracking')

No date limit was placed, although the search was conducted
between August 2019 and February 2020 iteratively. A language
filter was applied to focus on English-language results, which
was applied for pragmatic reasons to reduce the search scope
and complexity (for more on limitations, including terms we
appear to have overlooked, see the Discussion section).

After an extensive search, 1078 relevant peer-reviewed research
studies were identified in the study selection stage. From these,
papers that were not available in English, duplicates, and papers
not available in the full text were excluded.

Study Selection (Step 3)
The process of identifying relevant studies among the 1078
papers was iterative, involving several discussions between
coauthors. Unlike systematic reviews, where inclusion and
exclusion criteria for studies are established at the outset, this
study developed these criteria during the search process
(Textbox 2) [46]. The purpose of deciding on criteria post hoc
is to avoid barring studies that might not align with current
understandings of the issue or topic [46]. This was especially
important when including computer science databases in the
search strategy because of the heterogeneity of studies broadly
related to mental health.

Textbox 2. Inclusion and exclusion criteria.

Inclusion criteria

• Study undertaken in a mental health context or with application to a mental health context

• Text available in English

• Study related broadly to the use of big data, internet technology, artificial intelligence, sensors, smart technology, and other contemporary
algorithmic technologies

Exclusion criteria

• Commentary pieces

• Studies focused on other health conditions

• Application of data science methods to clinical data collected via clinical technologies (eg, application of data science methods to magnetic
resonance imaging data)

• Data science methods paper with no specific real-world application or objective

• Application of data science methods to psychiatric research in general

• Studies applied to animals or animal models
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Owing to the large number of studies identified at step 2, we
did not undertake a full-text review. Instead, we reviewed only
the abstract and title according to our inclusion criteria.
According to the PRISMA criteria described by Moher et al
[50], systematic reviews would include a full-text review after
duplicates were removed to assess all articles for eligibility. We

did not take this step, as the screening and eligibility phases of
the review could take place by reviewing the abstracts or titles
(after all, we were simply looking for applied mental health
research that used algorithmic and data-driven
technologies—Figure 1).

Figure 1. Study selection for review.

This adaptation enabled us to review a large body of work in a
rapidly expanding field. Our broad inclusion approach was also
chosen to prevent the exclusion of studies from disciplines that
do not conform to traditionally appropriate research designs,
which might preclude them from reviews with stricter inclusion
and exclusion criteria (eg, using an insufficient study design
description as an exclusion criterion). For example, we found
that many computer science papers were published in conference
journals [51] and did not always include in-depth methods or
an explicit statement of the research aim or objectives.

This process resulted in 132 empirical research papers included
in the review. Figure 1 provides a PRISMA diagram that sets
out the process of exclusion for our adapted study.

Charting Results (Step 4)
Through initial deductive analysis of the abstracts and
discussions between the researchers, we identified several key
issues and themes through which to consider the broad research
field. We settled on a typology that considered both the form
of technology used in the study (eg, social media, sensors, or

smartphones) and the stated purpose for the mental health
initiative (eg, detection and diagnosis, prognosis, treatment, and
support).

The second step involved analyzing the data to determine how
legal and ethical issues were discussed. The material was
analyzed using the computer software package NVivo 12 (QSR
International) [52]. Conventional content analysis was
undertaken, supplemented by keyword-in-context analysis [52].
We used the following terms, drawn from themes and keywords
arising in the literature noted in the Ethics and Law section,
which are typically associated with legal and ethical matters
arising in the use of digital technologies in mental health: law*
or legal*; ethic*; human rights; transparen*; oversight;
accountab*; bias; fairness; privacy; trust; regulat*

We sought a uniform approach to the 132 studies included in
this review. However, in practice, it was often impossible to
extract all the information required where research reports used
varying terminology and concepts and potentially failed to
include relevant material.
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Collating, Summarizing, and Reporting Results (Step
5)
Several typologies can be used to categorize the algorithmic
and data-driven technologies identified in these studies. As
noted, we integrate two here: (1) the primary forms of
technology and (2) their stated purpose. Such distinctions can
help to highlight the predominant areas of technological inquiry
and differentiate relevant ethical and legal concerns for the
various categories.

Results

Typology: Form and Stated Purpose

Overview
We derived five major categories of technology (Textbox 3):
(1) social media (53/132, 40.1%), (2) smartphones (37/132,
28%), (3) sensing technology (20/132, 15.1%), (4) chatbots
(5/132, 3.8%), and (5) miscellaneous (17/132, 12.9%). We have
discussed these categories in detail in the following sections.
We further evaluated the papers according to the stated purpose
of the technology using a typology created by Shatte et al [53].
They categorized papers into the following four categories: (1)
detection and diagnosis; (2) prognosis, treatment, and support;
(3) public health; and (4) research and clinical administration.

Textbox 3. Categorization of articles by the form and stated purpose of technology.

Social media

• Detection and diagnosis (26/132, 19.7%) [54-79]

• Prognosis treatment and support (4/132, 3%) [80-83]

• Public health (22/132, 16.7%) [84-105]

• Research and clinical administration (1/132, 0.7%) [106]

Smartphones

• Detection and diagnosis (17/132, 12.9%) [107-123]

• Prognosis treatment and support (20/132, 15.1%) [124-143]

• Public health (0/132, 0%)

• Research and clinical administration (0/132, 0%)

Sensing technology

• Detection and diagnosis (6/132, 4.5%) [144-149]

• Prognosis treatment and support (12/132, 9.1%) [150-161]

• Public health (2/132, 1.5%) [162,163]

• Research and clinical administration (0/132, 0%)

Chatbots

• Detection and diagnosis (0/132, 0%)

• Prognosis treatment and support (5/132, 3.8%) [164-168]

• Public health (0/132, 0%)

• Research and clinical administration (0/132, 0%)

Miscellaneous

• Detection and diagnosis (8/132, 6.1%) [169-176]

• Prognosis treatment and support (8/132, 6.1%) [177-184]

• Public health (1/132, 0.7%) [185]

• Research and clinical administration (0/132, 0%)

Neat distinctions were not always possible. For example,
Nambisan et al [95] sought to validate a method of detecting
depression among social media users in a large-scale data set
(a common aim in the social media category). At first glance,
their study might appear to fall within the detection and

diagnosis category. However, the ultimate aim of the study was
to improve public health informatics, which improves the
accuracy of population-wide prevalence analysis. Hence, we
placed this study in the public health category (defined in the
following sections).
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The four categories by Shatte et al [53] offer clinical or medical
framing, which broadly matches the clinical orientation of the
scholarship (as a counterview, some researchers have called for
the demedicalization of digital platforms designed to help people
in mental distress [186], a point to which we will return in our
discussion). Shatte et al [53] found that most studies in their
scoping review on machine learning in mental health research
focused on detection and diagnosis—this is indeed reflected in
our own findings. We found that 43.2% (57/132) of the studies
broadly concerned detection and diagnosis.

We determined that 37.1% (49/132) of the studies broadly
concerned technology aimed primarily at prognosis, treatment,
and support, which includes initiatives for personalized or
tailored treatment and technologies used in services where
treatment is provided. Examples include the use of smartphone
apps to provide personalized education to someone based on
psychometric data generated by the app.

A total of 18.9% (25/132) of studies were on public health.
Public health papers used large epidemiological or public data
sets (eg, social media data and usage data from Wi-Fi
infrastructure) to monitor or respond to persons who appear to
be experiencing or self-disclosing an experience of distress,
mental health crisis, or treatment. However, we struggled in
applying this category, as many were borderline cases in the
detection and diagnosis category. This ambiguity may be
because many studies were based in the field of computer
science and were contemplated at a higher level of generality,
with limited discussion of the specific setting in which they
might be used (eg, a social media analytical tool could be used
in population-wide prevalence studies or to identify and direct
support to specific users of a particular web-based platform).

Our search uncovered only 1 study related to research and
clinical administration; this particular study focused on the
triage of patients in health care settings.

Finally, it is noteworthy that despite the reasonably large volume
of studies, all but a few were at an exploratory and piloting
stage. This is not surprising given the predominance in our
survey of scholarship from computer science journals in
databases such as ACM. A key issue in this area of inquiry is
the large context gap between the design of these technological
innovations and the context of implementation. In many papers
from the computer science discipline, the authors made
assumptions or guesses as to how their innovations could be
implemented, with seemingly little input from end users. This
is not a critique of individual researchers; instead, as we shall
discuss later, it reflects the need for interdisciplinary and
consultative forms of research at the early stages of ideation
and piloting. This matter also raises questions as to whether
there is a strong enough signal or feedback loop from practice
settings back to designers and computer scientists in terms of
what needs they should be responding to and why.

Social Media
We found 53 studies concerning social media, in which data
were collected through social media platforms. Two major
platform types were identified: mass social media, including
mainstream platforms such as Facebook, Twitter, and Reddit;

and specialized social media, comprising platforms focused on
documenting health or mental health experiences. Both forms
of social media involve the collection of textual data shared by
users and self-reported mental health conditions, and sometimes
expert opinion on diagnoses attributable to users (identified
through information shared on the web). For example,
researchers may examine whether the content of posts shared
correlates with, and can therefore help predict, people’s
self-reported mental health diagnosis. Most studies concerned
mass social media platforms (Twitter: 17/53, 32%; Reddit:
14/53, 26%; Facebook: 6/53, 11%), with a small number
concerning specialized social media (PatientsLikeMe: 1/53, 2%;
Psycho-babble:1/53, 2%; Reachout: 1/53, 2%).

The largest sub-category in the social media group (26/53, 49%)
have focused on predicting or detecting depression, with some
concerning other diagnostic categories. Some studies attempted
to capture multiple diagnostic categories or aimed to detect
broad signs of mental ill-health.

Mobile Apps
In total, 38 studies concerned mobile apps used to collect and
process data from participants, of which two main subcategories
emerged. The first included apps that required active data input
by participants (27/38, 71%), which either took the form of
validated surveys (eg, Patient Health Questionnaire-9) or an
experience sampling method; the second included those that
passively collected data from inbuilt smartphone sensors (15/38,
39%). Some papers were counted twice as they had methods
that covered both subcategories. Contemporary smartphones
include a range of sensors related to sleep patterns, activity
(movement), location data (GPS, Wi-Fi, and Bluetooth),
communication or in-person human interaction (microphones),
web-based activity (phone or text logs and app usage), and
psychomotor data (typing and screen taps).

Apps that draw on these data sources can be considered passive
sensing because the individual generally does not have to input
data actively. Data collection generally requires participants to
install an app that collects data from smartphone sensors and
sends it to the researchers.

Sensing Technology
In total, 20 studies focused on broader sensor technology
designed to continuously collect data on a person’s activity or
environment. We differentiated this category from smartphone
passive sensing, although there is a clear crossover with some
personal wearables that fall under the sensing technology
category. As we use it here, sensing technology includes a range
of both wearables and environmental sensing technology (our
search strings included variations on this theme, including
tracking, biometric monitoring, and behavioral sensing). Many
wearables were off-the-shelf personal wearables such as Fitbits,
although there were several others, such as radio-frequency
identification tags. Environmental sensors refer to technologies
that collect data within the environment or about the
environment but are not personal wearables, such as smart-home
devices.

The list of sensing technologies includes personal wearables
(9/20, 45%), smart-home sensors, automated home devices,
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internet of things (3/20, 15%), Microsoft Kinect (a software
developer kit that includes computer vision, speech models, and
algorithmic sensors; 1/20, 5%), skin conductance technology
(1/20, 5%), portable electroencephalogram (1/20, 5%),
radio-frequency identification tags (2/20, 10%), the use of Wi-Fi
metadata (2/20, 10%), and data collected via care robots (eg,
Paro Robot; 1/20, 5%).

Some studies have examined sensor systems for use in
psychiatric settings. For example, Cheng et al [159] used a
wireless monitoring system to monitor the location and heartrate
of psychiatric inpatients. Other studies have used sensors in
everyday settings. For example, Dickerson et al [158] sought
to create a "real-time depression monitoring system for the
home" for which data are collected that are "multi-modal,
spanning a number of different behavioral domains including
sleep, weight, activities of daily living, and speech prosody"

Chatbots
The fourth group of studies explored the use of chatbots and
conversational agents in web-based mental health contexts, of
which 5 studies appeared. This group includes studies focused
on chatbots being used by both people experiencing mental
health conditions or psychosocial disabilities and those who
provide them with care or support. For example, D’Alfonso et
al [83] studied the development of a "moderated online social
therapy" web application, which provides an interactive social
media-based platform for youth recovering from psychosis.

Miscellaneous
This final group (17/132, 12.9%) included a range of studies
that did not fit the previous categories. This category included
the collection of data from video games and data sources where
there was no explicit outline of how such data would be
collected in practice (eg, facial expression data). We included
the video game data in this miscellaneous category, although it
could also possibly sit in the social media category.

Law and Ethics

Law
As noted, we conducted a thematic analysis supplemented by
keyword-in-context analysis to identify themes related to law
and ethics, as discussed in the Background section of this paper.
There was little explicit discussion of legal issues, although
issues such as privacy, which have precise legal dimensions,
were discussed. However, privacy has rarely been discussed in
terms of the law in the literature surveyed. We will return to
the issue of privacy shortly. The term law appeared in just 1
study with reference to the legal implications of the particular
algorithmic and data-driven technology being considered [187].
The term legal appeared in passing in three papers [92,99],
among which the most substantial statement, by Faurholt-Jepson
et al [133], referred to legal concerns as one of several
considerations in different national contexts:

Using smartphones to collect large amounts of data
on personal behavioral aspects leads to possible
issues on privacy, security, storage of data, safety,
legal and cultural differences between nations that

all should be considered, addressed and reported
accordingly. [133]

A passing reference was made to the rights of user subjects in
some studies (eg, Manikonda and De Choudhury [98] asked,
“[h]ow...automated approaches, that are themselves prone to
errors, [could] be made to act fairly, as well as secure one’s
privacy, their rights on the platforms, and their freedom of
speech?”). Other studies referred very briefly to compliance
with the relevant regulatory or legislative frameworks under
which the algorithmic and data-driven technologies were tested,
such as the Health Insurance Portability and Accountability Act
of 1996 (United States) [73,108,155].

Ethics
In terms of explicit reference to ethics, 10 studies included a
specific section on the ethical issues raised by their work
[64,73,80,87,92,98,99,105,163,187] and 10 others included a
broad  re fe rence  to  key  e th ica l  i s sues
[64,70,122,124,126,133,140,152,184]. The latter material varied
from one or two sentences to a paragraph or more. Although
we searched for several ethical and legal themes (eg, privacy,
security, safety, transparency, autonomy, and justice), the theme
of privacy was dominant.

Privacy
Privacy was discussed in several ways across all the included
studies but was primarily addressed as part of the research
method rather than in the real-world implementation of the
technology. Approximately 19.7% (26/132) of papers sought
to address user privacy through anonymization, deidentification,
or paraphrasing of personal information. For example, Li et al
[93] stated, “to protect Weibo users’ privacy, personally
identifiable information (eg, names, usernames) were excluded
from any research outputs.”

The second major approach concerns what we have referred to
as privacy protocols. This included aligning processes to legal
requirements [73,108,155,187] but for the most part concerned
some kind of process for data management, such as ensuring
the consent of and providing notice to user subjects. For
example, Manikonda and De Choudhury [98] proposed
“guidelines to be incorporated in the design and deployment of
[their] interventions and tools,” which sought “voluntary consent
from the population being studied and those likely to benefit
from the technologies.” However, unlike Manikonda and De
Choudhury [98], very few studies have discussed the issue of
consent at the implementation stage of their proposed
technology. Instead, most authors discussed consent in terms
of how their research was conducted. In some cases, mainly
regarding social media, the authors argued that consent was not
needed given the public nature of user-generated content on
social media (a topic to which we will return).

A collection of privacy engineering approaches was taken,
including hashing and encryption and managing the data
processing location. There were a variety of approaches around
when and where data were processed and how this aligned with
ideas about privacy. Some studies have used encryption before
sending data to servers for processing, whereas others have
analyzed data locally on the smartphone or did not store specific
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data postprocessing. Wang et al [141], for example, noted, “we
do not record any speech on the phone or upload to the cloud
and all audio signal processing and feature extraction is based
on privacy preserving algorithms.”

Some authors referred to the tension between privacy and data
quality—framed, for example, as “[p]rivacy versus lives saved”
[92]. This framing was seen within specific methods and
technological approaches, such as the data and
privacy-preserving qualities of sensor data, compared with Wi-Fi
infrastructure data. For example, Ware et al [162] argued that
whereas Wi-Fi infrastructure data could be considered more
privacy-preserving than collecting data from smartphones, it
may also be less accurate. Ji et al [66] discussed how a method
they tested “has an advantage over data protection methods
because it trains on the entire dataset, but it also violates user
privacy and breaks the data protection setting,” and ultimately
argued that their chosen “method achieves a balance between
preserving privacy and accurate detection.”

The final point in the privacy theme was expectations. Very
few studies have considered the expectations people may have
about how their data are used. This led to an acknowledgment
that the use of data from sources such as social media or video
games to make predictions about people’s mental health changes
the meaning of these data and could have unintended
consequences. Eichstaedt et al [68], for example, noted that
social media data used for health reasons might change how
people perceive that data and thus the type of data they report.
De Choudhury et al [99], in their analysis of mental health
content in social media, warned that an unhelpful outcome could
include “chilling effects in participation in the community, or
suicide ideation moving on to fringe or peripheral platforms
where such populations might be difficult to extend help to.”

Discussion

Principal Findings

Overview
To summarize, we identified five major types of
technology—social media, mobile apps, sensing technology,
chatbots, and others—in which algorithmic and data-driven
technologies were applied in the mental health context. The
primary stated purpose of these technologies was broadly to
detect and diagnose mental health conditions (approximately
57/132, 43.2% of studies). Only 15.1% (20/132) of papers
discussed ethical implications, with a primary focus on the
individual privacy of research participants.

Privacy
As noted, the privacy of participants was addressed in the studies
primarily with reference to engineering methods and, in some
instances, concerning regulatory compliance. In the smartphone
group, notice and consent combined with engineering methods
were used to address user-subject privacy concerns. In the social
media group, privacy was discussed in terms of how data were
managed and the technical elements of the algorithms used,
including privacy-preserving algorithms [96] and limiting the
use of identifiable information [87]. In the sensor group, privacy

was addressed in several ways, particularly by collecting
low-fidelity data [150] and anonymization [148].

Questions may be raised about how privacy is (or should be)
conceptualized and how the technologies will fare in real-world
settings. Taking a strictly legal approach to privacy, for example,
may not necessarily confer a social license to operate. An
example of a failure to align law and social license is the United
Kingdom’s proposed care.data scheme, where secondary data
from general practitioners were to be collected for research
purposes [188]. Although this scheme aligned, and in some
cases, went further than legal requirements, it still faced a public
backlash and was ultimately shut down.

Privacy as a concept exists as an expression of claims to dignity
and self-determination. These more expansive concerns of
dignity and autonomy were not the subject of explicit
consideration in the studies examined in this review. This point
raises the issue of possible gaps in the literature.

Gaps

Overview
It is difficult to discuss what did not appear in the literature, as
such observations are necessarily subjective and will differ
based on a person’s disciplinary background, interests, and
priorities. For our part, we noted four interconnected matters
that we believe are important and which arise in the literature
noted in the Background section. They are the paucity of ethical
inquiry and consideration of algorithmic accountability, the
near-complete lack of service user or subject input, and concerns
with a medico-technological framing.

Gaps in Ethical Enquiry
Notwithstanding the common interest in matters of privacy
across almost all papers, there was a relatively low engagement
with broader ethical dimensions of the algorithmic and
data-driven technology in question—a finding that appears to
support the view of some scholars in the field [25].

However, an important distinction should be made between
empirical studies designed to validate or explore a particular
technology and (as we discussed in the Background section)
the literature concerned specifically with ethical and legal issues
arising from algorithmic technology. The very form of journal
articles that examine applied research concerning algorithmic
and data-driven technologies in mental health care may tend to
preclude a focus on the ethical and legal issues that arise
(although some authors clearly felt it worth noting pressing
issues in their papers). Some disciplines, including computer
science, appear to have traditionally separated ethics or legal
articles from publications concerned with findings or validation
regarding emerging technologies, although this tradition is
somewhat challenged in the literature on ethics in design
[189,190].

Furthermore, the gap between applied research, on the one hand,
and research that is specifically focused on ethics, on the other
hand, does not appear to be unique to the mental health context.
For example, Hübner et al [191] point out that “ethical values
have not yet found their firm place in empirically rigorous health
technology evaluation studies” more generally. This dynamic
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“sets the stage for further research at the junction of clinical
information systems and ethics” [191]. Indeed, others have
sought to create frameworks to meet the new ethical and
regulatory challenges of health care in the digital age [32].

A minority of the studies in our review discussed these
challenges. Birnbaum et al [54], for example, discussed the
limits of contemporary ethical standards for research on social
media in the mental health context, noting that “[e]xisting ethical
principles do not sufficiently guide researchers” and new
technological approaches to “illness identification and symptom
tracking will likely result in a redefinition of existing clinical
rules and regulations.” However, many other studies have not
discussed or alluded to these challenges. In one study, web-based
videogame players were recruited to conduct a web-based survey
asking for "sociodemographic and gaming information" and
feedback concerning psychometric indicators to develop
machine learning to predict psychological disorders. The
researchers requested electronic consent from participants to
take part in the study but “did not apply for, or receive, any
approval from any board or committee for this research as this
was a techno-behavioral general study which was non-medicinal,
non-intrusive, and non-clinical in nature” [169]. Furthermore,
the authors noted, “[we] are affiliated to a technology university
which has no internal committee related to research on human
subjects” [169].

New critical questions are required. For example, several studies
in the social media category, the largest group of studies,
eschewed institutional review board approval based on claims
that their data sets were publicly available, raising ethical and
legal concerns surrounding emergent, inferred, or indirect data
concerning mental health and the potential appropriation of
detection and screening tools in unethical (and potentially even
illegal) ways. Such claims are being increasingly challenged,
particularly following concerns about the creation of inferred
data about unsuspecting and nonconsenting users in the health
context generally [192] and the mental health context in
particular [193]. Arguably, the likelihood of these risks being
overlooked in research is exacerbated by the near-complete
exclusion of persons with experience of mental health service
use as active contributors to knowledge production in this field,
whether as co- or lead investigators or even as advisors.

Lack of Service User Involvement
Very few studies (4/132, 3%) in this survey appear to have
included people who have used mental health services, those
who have experienced mental health conditions or psychosocial
disability, or even those who were envisaged as
end-beneficiaries of the particular algorithmic and data-driven
technology, in the design, evaluation, or implementation of the
proposals in any substantive way (except as research
participants). In studies where service users were involved, this
tended to comprise of research participants being involved in
the co-design of content or codeveloping user-interfaces.
D’Alfonso et al [83], for example, noted, “[t]he creation of
therapy content [in their web-based platform]...was driven by
feedback from users and expert youth mental health clinicians
through iterative prototyping and participatory design.”

With very few exceptions, however, the survey indicated a
near-complete exclusion of service users in the conceptualization
or development of algorithmic and data-driven technologies
and their application to mental health initiatives. It is also
noteworthy that even mental health practitioners, who may well
be end users envisaged by technologists, were involved in
relatively few studies.

The active involvement of mental health service users and
representative groups for persons with psychosocial disabilities
has become a prominent ethos in mental health and disability
policies worldwide [194] and is imperative in international
human rights law [195]. A study in our survey included an
acknowledgment of the limitations of not working with affected
populations [105]. However, the authors referred to study
populations as research subjects rather than active contributors
to technological development. Manikonda and De Choudhury
[98] did recommend the “[a]doption of user centered design
approaches in intervention and technology development, to
investigate specific needs and constraints of the target users, as
well as their acceptability, utility, and interpretability.”
Similarly, Ernala et al [73] noted that the field could benefit
extensively from cross-disciplinary partnerships and partnerships
between “computational and clinical researchers, and patients.”
They also recommended “[p]articipatory research efforts such
as the Connected and Open Research Ethics (CORE) initiative
[for use] to develop dynamic and relevant ethical practices to
guide and navigate the social and ethical complexities of patient
data collection” [32,73].

From a pragmatic perspective alone, the involvement of service
users and others with psychosocial disabilities is generally
agreed to increase the likelihood of “viable and effective—rather
than disruptive and short-lived—advances” in digital
technologies in the mental health context [14].

Of the scant commentary and research in the field by persons
with psychosocial disabilities and service users, commentators
have raised concerns about: the potential need for a right to
explanation concerning algorithmic decision making for
individuals (not only the right of an individual to understand
how a decision about them was made but also to query the
values that go into a particular algorithmic decision system)
[196]; the risk of discrimination or harm where sensitive
personal information is leaked, stolen, sold, or scraped from
social media [197]; and the deployment of data-driven
technologies in coercive psychiatric interventions and policing
[19,196]. Keyword searches along these lines did not yield any
relevant results. Emerencia et al [184] prioritized the ethical
imperative of shared decision making (“an approach in which
patient and clinician are equal participants in deciding the
treatment plan”) in their study on algorithmic technologies that
might generate "personalized advice for schizophrenia patients",
and Saha et al [87] highlighted the potential harms caused by
the use of social media data to examine “psychopathological
effects subject to self-reported usage of psychiatric medication.”
However, these were unusual considerations among the studies
reviewed and were noted in passing.
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Concerns With Algorithmic Accountability
As discussed in the Background section, ethical and legal
scholars on algorithmic and data-driven technologies have begun
to raise fundamental concerns about whether algorithmic
systems should be used at all for certain purposes and, if so,
who should govern them [44]. Pasquale [44] illustrates the
evolution of these concerns with reference to mental health
apps:

For some researchers who are developing mental
health apps, the first-wave algorithmic accountability
concerns will focus on whether a linguistic corpus of
stimuli and responses adequately covers diverse
communities with distinct accents and modes of
self-presentation. Second-wave critics...may bring in
a more law and political economy approach,
questioning whether the apps are prematurely
disrupting markets for (and the profession of) mental
health care in order to accelerate the substitution of
cheap (if limited) software for more expensive, expert,
and empathetic professionals.

Second-wave concerns give rise to questions as to who is
benefiting from (and burdened by) data collection, analysis, and
use [44]. Such concerns are spurred by questions about which
systems deserve to be built, which problems most need to be
addressed, and who is best placed to build and monitor them
[198]. Scholarship on algorithmic and data-driven technologies
in mental health services appears to have seldom asked such
questions, at least explicitly ([196]; notable exceptions include
[17] and [23]). The debate about algorithmic accountability in
mental health care is likely to accelerate in the coming years
amid broader calls for algorithmic decision systems to be subject
to contest, account, and redress to citizens and representatives
of the public interest.

Overmedicalization and Concerns of Techno-Solutionism
The issues the studies aimed to address were presented in
medical terms and framed as problems that are amenable to
digital technological solutions. This is not surprising. However,
some scholars have raised concerns regarding this framing. In
their survey of the messaging of mental health apps, Parker et
al [186] argued that prominent apps tend to overmedicalize
states of distress and may overemphasize “individual
responsibility for mental well-being.” There may be legitimate
reasons to demedicalize some approaches to supporting people
in distress via digital initiatives and remain cautious about
framing the matters as medical problems amenable to digital
technological solutions [193,199]. Rose [194] argues that:

most forms of mental distress are inextricably linked
to problems of poverty, precarity, violence, exclusion,
and other forms of adversity in people’s personal and
social experiences, and are best addressed not by
medicalization, but by low intensity but committed
and durable social interventions guided by outcomes
that are not measured in terms of symptom reduction,
but by the capacities that people themselves desire in
their everyday lives.

This argument raises broader questions about the politics of
mental health, for which it would be unrealistic to expect
empirical studies of algorithmic and data-driven technologies
in mental health care to resolve. Nevertheless, there is an
argument that such political considerations and value choices
are currently overlooked, with an overwhelming emphasis on
scientific methods and measurements of risk and benefit.

Comparison With Previous Work
Reviews such as those conducted by Shatte et al [53] and Tai
et al [200] applied systematic literature search methods to
identify the use of machine learning and artificial intelligence
in modifying therapeutics and prevention strategies in
psychiatry, and Doorn et al [201] performed a scoping review
on its role in psychotherapy. However, to the best of our
knowledge, no studies have surveyed the field to identify how
ethical and legal issues are incorporated into applied research.

Limitations
A disadvantage of using a rapid scoping review method is the
difficulty in reproducing the results, given the use of numerous
search strings in multiple combinations. This is exacerbated by
our aim to cover multiple technology types across several
cross-disciplinary databases (resulting in 1078 potential studies
reduced manually to 132). There are trade-offs in this broad,
exploratory approach. In addition to the challenges of
replicability, we cannot claim to have achieved an exhaustive
review, as may be possible in systematic reviews of specific
technologies or subtypes (such as machine learning).
Furthermore, the wide range of new and emerging technologies
in our scope poses terminological challenges; hence, we
undoubtedly missed studies that used terms overlooked in our
search strings (as a peer reviewer pointed out, we did not use
the term recommender system). This is exacerbated by the
intrinsic challenge of pinning down terms and concepts in any
area of rapid technological change [202].

Despite these limitations, a survey of empirical studies offers
valuable information. The principal strength of a scoping review
is its breadth. Our broad and cross-disciplinary approach enabled
us to identify cross-cutting trends in the literature as a whole,
and the trends we identified are striking, that is, roughly 15.1%
(20/132) of the studies in the survey contained even a brief
consideration of ethical issues, and only 3% (4/132) of studies
appeared to involve mental health service users or affected
populations. We argue that this is a significant finding that
warrants our chosen method and research design.

Conclusions
Our findings suggest that the disciplines undertaking applied
research in this field do not generally prioritize explicit
consideration of ethical and legal issues in their studies—and,
perhaps more broadly, “the moral, political, social and policy
issues at stake” [203]. Research institutions tend to focus
strongly on protecting human participants involved in research,
as they should, which is generally reflected in the studies in our
survey (although not always). However, other important
considerations, such as participatory and community-engaged
research, which is an increasingly accepted requirement of
mental health research, policy and practice, as well as broader
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ethicolegal issues in the field appear to be overlooked. This
situation may have several explanations warranting further
investigation, including editorial requirements for scholarly
papers, the workings of institutional review mechanisms,

funding arrangements, and prevailing evidentiary and
epistemological cultures. However, with an increase in adverse
effects involving flows of data concerning mental health [1],
the situation must surely change.
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