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Abstract

Background: Adherence to medication is often represented in the form of a success percentage over a period of time. Although
noticeable changes to aggregate adherence levels may be indicative of unstable medication behavior, a lack of noticeable changes
in aggregate levels over time does not necessarily indicate stability. The ability to detect developing changes in medication-taking
behavior under such conditions in real time would allow patients and care teams to make more timely and informed decisions.

Objective: This study aims to develop a method capable of identifying shifts in behavioral (medication) patterns at the individual
level and subsequently assess the presence of such shifts in retrospective clinical trial data from patients with serious mental
illness.

Methods: We defined the term adherence volatility as “the degree to which medication ingestion behavior fits expected behavior
based on historically observed data” and defined a contextual anomaly system around this concept, leveraging the empirical
entropy rate of a stochastic process as the basis for formulating anomaly detection. For the presented methodology, each patient’s
evolving behavior is used to dynamically construct the expectation bounds for each future interval, eliminating the need to rely
on model training or a static reference sequence.

Results: Simulations demonstrated that the presented methodology identifies anomalous behavior patterns even when aggregate
adherence levels remain constant and highlight the temporal dependence inherent in these anomalies. Although a given sequence
of events may present as anomalous during one period, that sequence should subsequently contribute to future expectations and
may not be considered anomalous at a later period—this feature was demonstrated in retrospective clinical trial data. In the same
clinical trial data, anomalous behavioral shifts were identified at both high- and low-adherence levels and were spread across the
whole treatment regimen, with 77.1% (81/105) of the population demonstrating at least one behavioral anomaly at some point
in their treatment.

Conclusions: Digital medicine systems offer new opportunities to inform treatment decisions and provide complementary
information about medication adherence. This paper introduces the concept of adherence volatility and develops a new type of
contextual anomaly detection, which does not require an a priori definition of normal and allows expectations to evolve with
shifting behavior, removing the need to rely on training data or static reference sequences. Retrospective analysis from clinical
trial data highlights that such an approach could provide new opportunities to meaningfully engage patients about potential shifts
in their ingestion behavior; however, this framework is not intended to replace clinical judgment, rather to highlight elements of
data that warrant attention. The evidence provided here identifies new areas for research and seems to justify additional explorations
in this area.

(JMIR Ment Health 2020;7(9):e21378) doi: 10.2196/21378
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Introduction

Lack of adherence to medication is a major issue, contributing
to increased health care utilization and less favorable outcomes
[1-3]. Common methods of measuring medication adherence
such as the proportion of days covered or the medication
possession ratio rely on claims data. Although useful for many
applications, these methods do not provide objective evidence
that the medication was ever taken. More objective measures
such as electronic cap systems and electronic blister packs
provide more granular observations at the event level but capture
an interaction with the packaging, not the ingestion. Recently,
the Food and Drug Administration approved the first ever digital
medicine system (DMS) [4] to track medication ingestion in
patients with serious mental illness (SMI). This system
comprises an electronic sensor embedded in an active
pharmaceutical, a wearable sensor (a patch), and a mobile
application to collect and share data as appropriate (Figure 1).
Systems such as the recently approved DMS hold promise for
improving objective information available to patients, clinicians,
and care teams, enabling better decision making. In this study,
we sought to evolve the framework by which medication
adherence information is leveraged in clinical decision making.

Adherence to medication is often represented in the form of a
success percentage over a period of time, where success may
refer to observations such as prescription refills, bottle openings,
or, in the case of digital medicine, the detection of medication
ingestions by the DMS. However, a single success rate over a
period of time, regardless of the objectivity of the measure, may
not—by itself—be sufficient to adequately assess a patient’s
treatment adherence behavior. Although noticeable changes to
aggregate adherence levels are certainly indicative of unstable
medication-taking behavior, a lack of noticeable changes in
these levels over time does not necessarily indicate stable,
interpretable, medication adherence values. As demonstrated
in the Results section, it is possible for anomalous shifts to be
identified in day-to-day ingestion patterns in the absence of
noticeable changes to the aggregate success rate. For instance,
although a patient may be missing the same number of doses
across defined intervals, one interval could have regularly
interspersed misses whereas the other interval could have a
single series of consecutive misses. Although the immediate
clinical consequences of such differences would likely be
dependent on compound properties such as half-life and
therapeutic index, they could also indicate a more significant
(potentially ongoing) behavioral change that is yet to manifest
in an observable difference in the aggregate adherence value.
Timely knowledge of such (potentially subtle) shifts in
medication behavior may provide early opportunities for
discussions and interventions.

One potential approach to detecting behavioral shifts in
medication data is to apply contextual (or behavioral) anomaly
detection. Anomaly detection, change point detection, or outlier
detection refers to the task of identifying some part or pattern
of data that is meaningfully different in some respects [5,6]. In
general, there are 3 types of anomalies [5]: (1) point anomalies

are individual points in the data that can be considered
anomalous to the others, (2) contextual anomalies (also called
conditional anomalies [7]) require the anomaly to be defined
within a construct specific to the data, and (3) collective
anomalies are extensions of point anomalies in that the presence
of a set of points, which may not be individually anomalous,
constitutes an anomaly when present together. Developing
methodologies for anomaly detection typically requires specific
consideration of the application at hand to frame the problem
appropriately [5]. In the field of mental health, new and existing
anomaly detection methods have begun to appear as an
appealing option for a variety of applications, including relapse
prediction [8-10], detection of illness [11,12], worsening
cognitive impairment [13], motor skills [14], and anomalous
traveling patterns [15,16]. For instance, by leveraging passively
collected smartphone sensor data and digitally delivered patient
surveys, Barnett et al [9] identified increases in the rate of
anomalous behavioral patterns in 3 schizophrenia patients up
to 7 days before a relapse. This study represents an important
step in demonstrating the feasibility and applicability of
individual-level anomaly detection for clinically relevant
outcomes, albeit on a small sample size. Barnett et al [9]
appropriately included in their discussion that the relapses “…
quantified in the three subjects may not have reflected other
potential trajectories and mechanisms that can lead to relapse,”
supporting the value in developing other characterizations of
behavioral anomalies from additional data sources. Using a
natural language approach, Birnbaum et al [10] enrolled patients
with recent onset psychosis and retrospectively combined social
media data with medical records to identify anomalous linguistic
patterns across monthly periods of relative health or relapse.
Similar to Barnett et al [9], Birnbaum et al [10] note “Going
forward, integrating multiple sources of digital data (sensors,
social media, online searches) to predict mental health outcomes
in clinical settings, could change the way clinicians diagnose
and monitor patients …,” again speaking to the value of
expanding the scope and depth of anomaly detection in the
mental health space to inform links between behavioral changes
and clinically meaningful outcomes at the individual level.
Specific to the space of medication adherence, anomaly
detection has been employed in patients with Parkinson disease,
where observable changes in treatment pharmacodynamics (eg,
gait patterns) were leveraged as a surrogate for medication
compliance [17]. However, this approach cannot provide
information on daily medication behavior, and when there are
temporal lags between medication ingestion and effect (as is
common in the mental health space), this type of approach may
not provide an optimal alert window for detected anomalies.
Although we are unaware of any similar studies validating
specific behavioral anomalies to an intended clinical outcome,
these initial studies demonstrate a growing ability to identify
correlations in behavioral changes (anomalies)—at the patient
level—to clinically meaningful observations, suggesting that
further evidence and methods on novel data sources such as
digital medicine will be of value to the clinical and research
communities.
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Figure 1. An overview of the digital medicine system (DMS). From left to right: Patient takes medication embedded with an ingestible sensor, which
is activated in the stomach. The ingestible sensor is detected by a wearable sensor, which sends its collected information (including additional sensors
not depicted) to the patient’s smartphone. The information is the passed on to a secure cloud infrastructure where it can be made available to appropriate
members of the patient’s care team. Image reproduced under creative commons license from the article published in [18].

Previously published work has demonstrated that a first-order
Markov model could describe digital medicine ingestion data
at the population level [18]; however, this work did not address
the temporal evolution of Markov chains at the individual level
or provide a mechanism by which such information might be
used proactively by clinicians, patients, or their support teams
to aid in treatment decisions. This study addresses these 2
additional components. Furthermore, we defined the concept
of adherence volatility as “the degree to which medication
ingestion behavior fits expected behavior based on historically
observed data.”

Adherence volatility is formally represented as the longitudinal
evolution of the entropy rate of a single (in this case binary)
Markov chain generated from a patient’s medication ingestion
data across treatment, where the success state indicates an
observed ingestion on a given day (1) and an unobserved
ingestion on a given day represents the unsuccessful state (0).
The entropy rate has been utilized previously for characterizing
behavioral data in rodents and can be thought of as “a
quantification of the predictability of the next observation given
the history of observations that occurred before it” [19]. When
viewed longitudinally, the entropy rate metric can provide
information as to shifts in both the marginal (stationary) and
conditional dependence structures simultaneously, making it a
promising measure by which to detect contextual (behavioral)
anomalies.

On the basis of the aforementioned logic, an anomaly detection
system was built that is computationally nonintensive and can
be leveraged in real time to identify contextual behavioral
anomalies, and shifts, at the individual level. Although we are
aware of entropy rates previously explored for anomaly
detection in complex dynamic systems [20,21], the current
application differs in a critically distinct way: there is no
baseline truth or external stimuli required in this system. A
patient’s own evolving behavior (adherence volatility) is used
to construct the expectation bounds for each future interval,

eliminating the need for training or relying on a difference from
a particular static reference sequence.

The results of this study provide some basic simulations to
highlight behavioral anomalies and shift detection by leveraging
the concept of adherence volatility. We also demonstrated the
existence of such anomalies and behavioral shifts in previously
collected clinical data. Although this is a retrospective analysis,
we believe that knowledge of this approach, as well as its
application and evolution, will be valuable to the medical and
informatics communities as digital and objective medication
adherence data become more prevalent in clinical practice.
Finally, although the application of this approach is conceived
based on medication ingestion data, there is no fundamental
reason why the methods presented here could not be leveraged
to implement the concept of contextual anomaly detection in
any data that can be adequately represented as a stationary,
irreducible Markov process.

Methods

Clinical Study Data
Ingestion data from two 8-week clinical trials (NCT02722967
and NCT02219009) of patients with SMIs (schizophrenia, major
depression, and bipolar 1) being treated with a DMS was used.
In this system (Figure 1), a patient-worn patch detects a signal
from a digitized medication that contains an ingestible sensor.
The patient-worn patch then transmits data to a mobile device
and subsequently to a secure cloud infrastructure where it can
be made available to clinical (and nonclinical) care teams to aid
in decision making. We have previously provided descriptions
of these studies [18] but recapitulated below for clarity.

Both of these studies provided smartphones with the appropriate
DMS software preloaded and required male and female patients
to be on stable, once-daily doses of oral aripiprazole. It was
required that patients were deemed capable of using a DMS.
During these studies, patients received only the digital versions
of their stable oral aripiprazole dose. Both studies received
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human subject approvals from the Copernicus Group
Institutional Review Board (One Triangle Drive, Suite 100,
Research Triangle Park, North Carolina, United States), and
subjects provided informed consent. Future use of clinical trial
data for research was included in the consent for both studies,
and no additional ethical approvals were required to leverage
the data.

Study 1 was a multicenter, 8-week, open-label study with a
primary objective of capturing the usability of the DMS by adult
subjects with a diagnosis of schizophrenia with regard to their
ability to independently (and successfully) replace their patch
by the end of week 8 (NCT02219009). Patients were expected
to perform 5 site visits following the screening period: baseline
and weeks 1, 2, 3, and 8.

Study 2 was a multicenter, 8-week, open-label, single-arm,
exploratory trial with the primary objective of assessing the
functionality of an integrated call center for the DMS by adult
subjects with primary diagnoses of schizophrenia, major
depressive disorder, or bipolar 1 disorder (NCT02722967). This
study consisted of 2 phases: a 2-week prospective phase and a
6-week observation phase. To progress to the 6-week
observation phase, patients were required to have at least 50%
patch data capture for the 7 days before the week 2 visit.
Subjects who met this criterion were eligible to continue into
the 6-week observation phase and would be expected to
complete 4 total site visits (baseline and weeks 2, 4, and 8).

We leveraged data from patients (either study) who had more
than 10 days of ingestion data (see the Anomaly Detection from
Adherence Volatility section below: n=105/119) and defined
Time on System as the difference between the minimum patch
record or mobile application login and the maximum record
from the same data sources. In some cases, the time on system
may exceed the availability of patch and medication (eg, if last
visit after 60 days and mobile application is still accessed in
that timeframe), which will be annotated in the Results section
where appropriate.

Entropy Rate of a Markov Chain and Adherence
Volatility
For a binary Markov chain (assumed to be stationary and
irreducible), the entropy rate [19] is defined as

where πq is the stationary distribution of each state q ∈{0,1}

representing . The logarithm term in this
implementation refers to the natural logarithm. For a subject i
on day T, the observed data are represented as

, where xt ∈ {0,1} represents whether an
ingestion was observed (1) or not (0) on day t. From the
observed transition count data, nq,r, representing the counts of
transitions q→r (q,r ∈{0,1}), the transition probabilities (TPs)
are empirically estimated at any point in time using the

maximum-likelihood definition of [19]. The 2-state
Markov chain for this subject, up to day T, is then represented
by the transition matrix

capturing the observed probabilities of ingestion successes and
failures to be followed by success or failure. An estimate of the
entropy rate of this Markov chain under these conditions is

The stationary distribution is estimated using the eigenvalue

decomposition method on [19,22]. Adherence volatility for

subject i is represented as the longitudinal evolution of .

The relatively short duration of data sets encountered in the
current digital medicine application (generally around 60 days
or less) makes it difficult to truly verify or explore the
assumption of stationarity, and our assumption of irreducibility
is based on the assertion that when applied to human behavior,
no observed event eliminates the possibility of other events,
provided that the behavior is observed over a sufficiently long
timeframe. However, at short durations, it is possible for
individual data sets to appear absorbing: for example, after 8
days, one patient’s data may be 11100000, which has the illusion
that the unsuccessful event may be absorbing. The accurate
estimation of the entropy rate at this relatively short duration,
even when the true order of the system is known (assumed first
order in this case), has been shown to be challenging for multiple
estimation methodologies [19]; however, the precision of
estimation accuracy at any one point is not required to carry out
contextual anomaly detection in this sense (discussed in the
following section).

Anomaly Detection From Adherence Volatility
It is acknowledged that individual alert systems could
alternatively be constructed by directly tracking the occurrence
rate of each particular sequence of interest in the data, for
example, detecting an increasing number of consecutive missed
doses. However, we propose to leverage the entropy rate for
the evolving Markov chain as an ideal base candidate by which
to identify anomalous behaviors in these data sets because it is
a parsimonious metric that encompasses information on both
the stationary and conditional distributions simultaneously.

The lack of ground truth (normal) makes leveraging existing
anomaly detection systems challenging for application in this
space. The expected behavior here should be allowed to shift
over time to accommodate the actual shifting patterns in patient
behavior, that is, anomalous behavior during one period should
shift expectations for the future; no a priori assumptions are
made about what normal behavior looks like, nor how many
different shifts in behavior may occur over the (relatively short)
observed sequences. These aspects of digital medicine ingestion
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data compromise the ability of existing techniques to identify
anomalous shifts in the data from natural shifts.

Contextual anomaly detection in this study is built with an
approach that could be classified as adaptive outlier detection.
Figure 2 displays the pseudocode for the algorithm. Briefly,
after an initial observation period (to allow for some TPs to be
generated), the central tendency of the entropy rate observations
for the next n days is calculated as a weighted average of all
possible entropy rates n days into the future. For a binary

Markov chain and an n-day observation window, there are 2n

possible future states: The weights are calculated as the
probability of each event given the historically observed data
to that point. In this work, the expectation boundaries around
the central tendency are set to 1 SD calculated from the observed

weighted variance. Although there are existing methodologies
and research around generating standard error bounds on
estimates of entropy rate for a stochastic process [19], the
intention here is to generate boundaries for the expected central
tendency and variation in the empirical entropy rate over the
next n days, simultaneously. After the expectation boundaries
have been set for the observation window, the next n days are
observed, logging an anomaly if the observed entropy rate goes
outside the boundaries. At the end of each observation window,
the boundary conditions are updated to include recent data; this
process repeats until the treatment is completed. In this study,
an initial period of 10 days was used, with a subsequent
observation window of 5 days. These choices were made from
practical and intuitive considerations so as to evenly divide a
1-month (30-day) treatment cycle.

Figure 2. Contextual (behavioral) anomaly detection algorithm pseudocode.

To demonstrate proof of concept, this study highlights only one
possible way in which the central tendency and boundary
conditions can be set for the observation windows; however,
the approach could be modified for specific use cases or as
evidence suggests better alternatives. Further, we acknowledge
that the full set of statistical properties of the weighted entropy
rate distribution for each of the observation windows have not
been described, but given that we define contextual anomaly
detection here relative to observed data only, this formal
characterization is not a prerequisite for application of the
proposed approach.

From the definition outlined above (and in Figure 2), we define
a behavioral anomaly as an observation window where the
observed entropy rate goes outside the expectation range for
any duration within that window and a behavioral shift as at
least two consecutive anomalous windows. Although the
aforementioned behavioral anomalies may provide potential
indicators, the above definition may result in anomalous
windows arising from a single missed ingestion; therefore, for

the Results section, the majority of the focus will be on
identifying behavioral shifts, as these are more robust indicators
of change.

Results

The salient results presented in this paper are observational and
based on case studies. The intent is to highlight the presence
and identification of behavioral anomalies and shifts, regardless
of the level of aggregate adherence observed or the directionality
of the anomaly with respect to ingestion success. Examples
from simulations, as well as real clinical data, are provided and
attempt to demonstrate the concepts with a broad range of
observed adherence rates. Although these results have been
generated retrospectively, the observations (anomalies and
shifts) are reported in the moment for real-time access to clinical
and care teams.
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Simulation Results
Figure 3 highlights 6 different simulated Markov chains, their
resulting adherence volatility traces (blue lines), and their
corresponding expected boundaries across 5-day observation
windows (the gray-shaded region). Simulation durations of 60
days were chosen to mirror the available clinical data. For each
of the simulations, the underlying TP matrix remains
constant—the selected use cases represent only a few
representative high- and low-adherence scenarios. This
simplistic setup is presented for 2 primary reasons: (1) to
demonstrate that even when the underlying behavior is not
changing, there are noticeable shifts that can occur relative to
historically observed data and (2) conversely, to highlight that
an anomaly in this setting could arise for multiple reasons and
does not inherently need to indicate a shift in the underlying
system. For instance, simulations E and F both end treatment
during an identified behavioral shift despite no change in the
TPs. If these were observed in a clinical setting, additional data
may be desirable before making a decision regarding the
consistency of medication adherence. Simulations A and B,
however, present stable ingestion patterns—demonstrated by

the overlapping trace plots with the expectation boundaries over
time (with the exception of an early anomaly)—despite very
different levels of aggregate adherence.

All behavioral shifts (at least two consecutive anomalies) in the
figures are identified by green or red boxes, with the
corresponding sections of observed data highlighted. The green
and red colors indicate if the driving factors for the detected
shifts are anomalous patterns of dosing successes or unobserved
doses, respectively. The behavioral shift in Figure 3 (D) is driven
by increasing the frequency of dosing successes clumped
together at shorter intervals than historically observed. In Figure
3 (E), the concentrated patches of zeros at the end are very
irregular for that simulation to that point, and the presence of
(at least) one more unobserved dose after only 3 consecutive
observed doses is also irregular. These 2 instances in
combination drive each of the last 2 windows to be tagged as
anomalies, leading to its classification as a possible shift in
behavior. Similar to simulation D, simulation F demonstrates
successful events moving closer and appearing more frequently,
albeit still at a very low rate.
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Figure 3. Adherence volatility plots for 6 simulated—representative—binary Markov chains over 60 days. The binary string at the top represents the
underlying simulated data (0=unsuccessful, 1=successful). The 2 numeric values on the insets represent the observed aggregate adherence rates at 30
and 60 days, respectively. The blue line in the figures represents the calculated empirical entropy-rate based on the observed transition probability (TP)
matrix to that day, whereas the shaded gray area represents the defined expected boundary across 5-day windows. Anomalies (single windows with
deviations) are not highlighted in this figure; however, observed behavioral shifts (at least two consecutive windows with deviations) are identified in
the data and trace plots by the green and red boxes. (A) Underlying TPs p01=.3, p10=.1 (expected success rate, ADHexp=0.75). The simulation has high
observed adherence rates and 2 identified anomalies from observation windows 1 and 3. (B) Underlying TPs p01=.1, p10=.5 (ADHexp=0.17). The
simulation has low aggregate adherence and only one anomaly identified from observation window 2. Both simulations (A) and (B) represent what
could be considered as a stable observed ingestion behavior. (C) Underlying TPs p01=.3, p10=.5 (ADHexp=0.38). The simulation again has low observed
aggregate ingestion success, but a dramatic anomaly at observation window 8, which seemingly restabilizes. (D) Again has underlying TPs p01=.3,
p10=.5. Despite only 5% change in observed ingestion success rate, a behavioral shift is identified across observation windows 8-10 being driven by
tighter groups of successes. Both (E) and (F) display behavioral shifts at the end of the simulations, with TPs p01=.5, p10=.1 (ADHexp=0.83) and p01=.1,
p10=.3 (ADHexp=0.75) respectively. Groupings of unobserved events are driving the behavioral shift in (E), whereas groupings of successful events
are driving the shifts in (F). In the last 2 examples, there is only a 5% to 7% change in observed success rates. These simulations are illustrative but
provide insights that anomalies and shifts in this methodology are not required to represent shifts in the underlying system parameters, rather it detects
contextual anomalies relative to what has been observed to date.
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Clinical Data Results
Figure 4 highlights selected patients across 2 clinical studies
who were enrolled for 8 weeks of digital medicine treatment.
These patients were selected to loosely recapitulate what was
highlighted in the simulated data sets: the top 2 patients (A-B)
had generally stable ingestion patterns at different ends of the
adherence spectrum, and the middle 2 patients (C-D) end with
stable behaviors but demonstrated behavioral shifts from the
perspective of their day-to-day ingestion patterns: of note for
Patient C, only the 60-day treatment window in which patches
and medication were available is summarized in this analysis
(identified up to the dashed line). Finally, the last 2 patients
(E-F) demonstrated ongoing behavioral shifts with respect to
their historical data, without much change in the aggregate
adherence values. All behavioral shifts are identified in the plots
as red or green boxes along with the corresponding subsequences
in the observed data. Patient A demonstrates a behavioral shift
driven by increasingly concentrated missed doses relative to
historical observations. However, after this behavior is observed,
the information is incorporated into future bounds, and when a
similar pattern occurs again (light orange box over the observed
data), it no longer results in an anomaly. Patient C demonstrates
a behavioral shift starting around day 37, which is driven by
the presence of unobserved doses appearing more tightly
clumped together, including consecutive unobserved doses
appearing for the first time. Patient D demonstrates a strong
behavioral shift across 3 observation windows (15 days): in this

scenario, sequences of 3 and 4 missed doses begin to surface.
Of particular interest in the clinical data is Patient F. Despite
successfully registering 87% (47/54) of prescribed ingestions
across the treatment period, when viewed from the perspective
of the adherence volatility plots, the last 30 days of treatment
suggest a continuing shift in ingestion behavior that has not
stabilized by the time treatment is over. It is unclear whether
the ingestion patterns would have continued to shift in this
direction, but this is a very clear example from the available
clinical data of where this approach can add a unique perspective
to clinical intuition: a medication adherence rate of 87% is
considered high, but the adherence volatility data suggest that
there are significant changes occurring in the patient’s observed
ingestion behavior.

Table 1 shows the count distribution of observed behavioral
shifts in each patient included in the analysis: 22.8% (24/105)
of patients had no behavioral shifts observed during treatment,
71.4% (75/105) of patients had only 1 behavioral shift observed,
and 5.7% (6/105) of patients had 2 behavioral shifts observed
across their treatment (NB: these counts include total Days on
System, not just the treatment window as is discussed in Figure
4). This table is included to provide information on the current
scale of identified behavioral shifts across patient data; however,
given the relatively small sample size for this analysis and the
current inability to provide context around these behavioral
shifts, no comparisons are made across demographics.
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Figure 4. Clinical data from 6 subjects engaged with the DMS. The binary string at the top represents their observed ingestion data (0=unsuccessful,
1=successful). The 2 numeric values on the insets represent the observed aggregate adherence rates at their individual midway and end-of-treatment
points. The blue line in the figures represents the calculated empirical entropy rate based on the observed transition probability matrix to that day,
whereas the shaded gray area represents the defined expected boundary across 5-day observation windows. Anomalies (single windows with deviations)
are not highlighted here; however, observed behavioral shifts (at least two consecutive windows with deviations) are identified in the data and trace
plots by green or red boxes. (A) Demonstrates a behavioral shift driven by increasingly concentrated missed doses relative to historical observations.
However, after this behavior is observed, the information is incorporated into future expectation, and when a similar pattern occurs again (light orange
box over the observed data), it no longer results in an anomaly. (B) Has a low observed ingestion success rate but appears stable, with only one slight
anomaly in window 2. (C) Demonstrates a behavioral shift starting in window 6 being driven by the presence of unobserved doses appearing more
tightly clumped together, including consecutive unobserved doses appearing for the first time. Of note for Patient C, only the 60-day treatment window
in which patches and medication were available is summarized in this analysis (identified up to the dashed line). (D) Demonstrates a behavioral shift
across 3 windows, where sequences of 3 and 4 missed doses begin to surface. (E) Despite early difficulties to day 14, this patient appeared to be
experiencing success in week 2 but ends treatment on a behavioral shift. (F) Ends treatment with 87% ingestion success; however, the number and
frequency of missed doses in the last 30 days is still changing when the treatment ends. The adherence volatility data for (E) and (F) suggest that there
are changes occurring in the patient’s ingestion behavior at the end of treatment that may warrant additional data collection despite their different success
rates. Note: These events are generated purely on a statistical basis and would require clinical context and discussion to determine appropriate course
of action (if any) when leveraged in real time. DMS: digital medicine system.
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Table 1. Count distribution of observed behavioral shifts in clinical data.

Fraction popParticipants, NNumber of shifts

0.23240

0.71751

0.0662

Discussion

Medication adherence is an important issue in chronic
conditions. Although tools for monitoring adherence to
medication have seen dramatic improvements—including the
first approved DMS for patients with SMI—there have not been
parallel advances in data products and algorithms to accompany
them. In this study, we present the concept of adherence
volatility and provide a complementary anomaly detection
system that focuses on contextual behavioral anomalies.
Anomaly detection in this framework does not require an a
priori definition of what normal means and allows expectations
to evolve with shifting behavior such that observing an anomaly
in one observation period informs the expectations of subsequent
observation periods. Further, this framework is not intended to
replace clinical judgment: anomalous data patterns detected
here are intended to highlight elements of data that may warrant
attention from the patient’s clinical and support teams who
would determine the best course of action (if any) when
identified in real time.

The DMS leveraged in this study requires compliance with both
a wearable and an ingestible component to generate a successful
signal. Thus, although a successfully observed signal is a robust,
objective indicator of ingestion, an unobserved ingestion may
arise from multiple scenarios. Although this makes the exact
interpretation of anomalies difficult here, the current iteration
represents when ingestion behavior, at the system level, is
momentarily different or shifting, which we believe is a
beneficial starting point given that future iterations could
become more specific as to which component is driving a
detected anomaly, or collect patient feedback in the moment if
an anomaly is detected.

We leveraged the entropy rate of a Markov chain as the basis
to build the proposed anomaly detection system. Despite its
catch all nature in terms of what types of anomalous patterns
can be detected, observing the evolution of this metric over
short durations will undoubtedly contain both expected and
anomalous shifts in observed values: deciphering the expected
from the anomalous shifts in this metric, and at these scales, is
not a task for which current standard anomaly detection systems
are equipped to succeed. We also frame the anomaly detection
problem as a contextual problem, which is not dependent on
accurate point estimates of the entropy rate. Rather, the approach
is concerned with the magnitude of relative changes at a given
point. This change alleviates the downstream complexity of
generating accurate point estimates of the entropy rate for short
durations [19].

From an interpretation standpoint, a detected anomaly or shift
does not directly indicate either a true shift in the underlying

system or a change in aggregate adherence levels per se.
However, this indicates that the current observed patterns are
not consistent with expectations based on data generated up to
that point. The simulated sequences presented in this paper
(Figure 3) highlighted this by demonstrating anomalies and
shifts from evolving Markov chains with stable underlying
transition matrices. The choice to adopt a weighted average and
variance approach was used to highlight the initial system and
demonstrate the proof of concept; however, this framework and
approach may evolve over time as additional data and evidence
become available to support other measures, or boundary
conditions, which may be more effective at detecting certain
types of clinical scenarios. The same would also apply for the
choice of observation window duration: as clinical outcomes
and observations are collected in conjunction with digital
medicine data, optimal observation window durations may arise
beyond the currently displayed 5-day duration.

Data available for this study were from once-daily dosing of a
single medication (aripiprazole) for patients who were already
on stable doses. The homogeneity of the patient population from
a stability and dosing regimen standpoint and a lack of
in-the-moment feedback or clinical exploration into observed
behavioral shifts are clear limitations to the generalizability of
this study. Formal exploration of how these methods and
concepts interact with more complicated underlying dynamics
and clinical outcomes are additional opportunities for future
research. Despite the current inability to provide insight into
the clinical relevance of detected anomalies and shifts in the
presented data, we believe this study demonstrates that focusing
solely on aggregate adherence levels misses opportunities to
effectively interact with patients and make the most informed
treatment decisions. It was particularly interesting to find
examples of both stable and shifting adherence volatility
behaviors at high- and low-adherence levels despite the lack of
heterogeneity in the available data.

DMSs, such as the one leveraged in this study, offer new
opportunities to inform treatment decisions and provide
complementary information about medication adherence. The
anomaly detection framework that has been developed identifies
one way of leveraging such information to improve patient care
by identifying potentially meaningful changes in medication
behavior over time. This unique approach to medication
behavior also opens the door to new areas of potential research.
Although much work remains to be carried out to determine
(and validate) how and when to leverage such information to
inform clinical care, the evidence provided here, along with the
growing body of evidence supporting the potential for applying
anomaly detection to advance the goal of personalized care,
seems to justify continued explorations.
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