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Abstract

Background: Posttraumatic stress disorder (PTSD) is a prevalent psychiatric condition that is associated with symptoms such
as hyperarousal and overreactions. Treatments for PTSD are limited to medications and in-session therapies. Assessing the way
the heart responds to PTSD has shown promise in detecting and understanding the onset of symptoms.

Objective: This study aimed to extract statistical and mathematical approaches that researchers can use to analyze heart rate
(HR) data to understand PTSD.

Methods: A scoping literature review was conducted to extract HR models. A total of 5 databases including Medical Literature
Analysis and Retrieval System Online (Medline) OVID, Medline EBSCO, Cumulative Index to Nursing and Allied Health
Literature (CINAHL) EBSCO, Excerpta Medica Database (Embase) Ovid, and Google Scholar were searched. Non–English
language studies, as well as studies that did not analyze human data, were excluded. A total of 54 studies that met the inclusion
criteria were included in this review.

Results: We identified 4 categories of models: descriptive time-independent output, descriptive and time-dependent output,
predictive and time-independent output, and predictive and time-dependent output. Descriptive and time-independent output
models include analysis of variance and first-order exponential; the descriptive time-dependent output model includes a classical
time series analysis and mixed regression. Predictive time-independent output models include machine learning methods and
analysis of the HR-based fluctuation-dissipation method. Finally, predictive time-dependent output models include the time-variant
method and nonlinear dynamic modeling.

Conclusions: All of the identified modeling categories have relevance in PTSD, although the modeling selection is dependent
on the specific goals of the study. Descriptive models are well-founded for the inference of PTSD. However, there is a need for
additional studies in this area that explore a broader set of predictive models and other factors (eg, activity level) that have not
been analyzed with descriptive models.

(JMIR Ment Health 2020;7(7):e16654) doi: 10.2196/16654

KEYWORDS

heart rate; statistics; PTSD; mental health; physiology

JMIR Ment Health 2020 | vol. 7 | iss. 7 | e16654 | p. 1https://mental.jmir.org/2020/7/e16654
(page number not for citation purposes)

Sadeghi et alJMIR MENTAL HEALTH

XSL•FO
RenderX

mailto:sasangohar@tamu.edu
http://dx.doi.org/10.2196/16654
http://www.w3.org/Style/XSL
http://www.renderx.com/


Introduction

Background
Posttraumatic stress disorder (PTSD) is a psychiatric condition
that develops as a result of experiencing injury, severe
psychological shock, and other trauma [1]. Individuals with
PTSD are affected by the recall of traumatic experiences and
often develop depression, anxiety, emotional instabilities, and
suicidal thoughts [2]. Recent reports suggest that individuals
with PTSD are about 5 times more likely to commit suicide
than individuals without PTSD [3]. Approximately 10% of
American women and 4% of American men experience PTSD
in their lifetime [4]. PTSD is an endemic among veterans as
well, affecting between 17% and 24% of veterans from recent
conflicts [5].

Although an alarming number of individuals are afflicted with
PTSD, there are significant barriers to care delivery [6,7]. These
barriers include a shortage of qualified clinicians and
understaffed mental health clinics, geographical constraints to
accessing mental health facilities, financial obstacles, and
cultural factors such as social stigma, and limited capabilities
in objective diagnosis (currently limited to self-reported
measures such as the PTSD checklist [PCL-5]) [8]. Studies have
shown that self-management and factors such as positivity
directly affect PTSD symptoms and ease in dealing with them
[9]. Mobile health (mHealth) apps have shown promise in
facilitating self-management (eg, education, mindfulness, and
self-assessment) and have the potential to facilitate direct
communication between people who have PTSD and their health
care providers [10]. mHealth apps deployed on wearable devices
(eg, smartwatches) that are equipped with an array of
physiological sensors (eg, heart rate [HR]) may also enable
continuous remote monitoring of signs and symptoms of PTSD.
Indeed, recent efforts have shown promising applications of
watch-based HR sensors to detect the onset of PTSD
hyperarousal events [11].

Objectives
Despite recent work, the extent of knowledge on the
physiological reactions to PTSD and, in particular, HR is
limited, and research is needed to better understand the changes
in HR associated with PTSD. Few models (eg, analysis of
variance [ANOVA], regression analysis) have been developed
to relate changes in heart activity to disorder states. In particular,
given the opportunity to collect HR data nonintrusively, it is
important to use appropriate mathematical and statistical
methods to ensure the accumulation of convergent knowledge
in this field and to characterize and understand HR in terms of

PTSD. In this paper, we document the findings from a review
of the current literature on measures and models used in various
domains to analyze HR data. In addition to summarizing and
synthesizing the HR analysis methods, we provide an evaluation
of methods for applications relevant to PTSD detection and
diagnosis.

Methods

Search Strategy
A scoping review was conducted using the strategies outlined
in the preferred reporting items for systematic reviews and
meta-analyses (PRISMA) methodology [12]. The scoping review
approach was selected because it is effective for knowledge
evaluation and gap identification [13]. The review spanned 5
main databases: (1) Medical Literature Analysis and Retrieval
System Online (Medline) OVID, (2) Medline EBSCO, (3)
Cumulative Index to Nursing and Allied Health Literature
(CINAHL) EBSCO, (4) Excerpta Medica Database (Embase)
Ovid, and (5) Google Scholar. Search terms included
heart*,pulse*,heart rate*, model*, heart beat*, and analysis*.
All studies published in or after the year 2000 were included.
This search was supplemented by a secondary search of cited
articles in the results. The search was completed on January 15,
2020.

Study Selection, Inclusion, and Exclusion Criteria
Abstracts were reviewed for relevance, and articles that did not
discuss HR-related measures in detail and did not provide or
use quantitative methods for analysis were excluded. Other
exclusion criteria were non–English language articles and
articles that assessed non–heart-based physiological measures
such as skin conductance and blood pressure. Furthermore,
studies that did not analyze human physiology were excluded.
The inclusion criteria were all articles that discussed human HR
analysis. Our initial search yielded 1905 results. After removing
duplicate articles and checking for eligibility using Rayyan
QCRI (a web app for assisting literature reviews), 270 articles
were further reviewed. Out of the 270, 138 were exclusively
about non–heart-based measures reactions, 67 did not focus on
human physiology, and 11 had duplicated content. Of these, 54
articles from the search were included in this review based on
their relevance to the topic.

Furthermore, the bibliography of references in each research
paper was investigated thoroughly (backward search) to identify
pertinent articles, and then Google Scholar searches (forward
search) were conducted to find the full text. Figure 1 shows the
PRISMA flow chart for the article selection process.
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Figure 1. Preferred reporting items for systematic reviews and meta-analyses flow chart for the literature review.

Results

We listed the articles identified by the search process into 2
categories based on our synthesis: studies of the effects of PTSD
on heart physiology and quantitative modeling techniques for
heart data. We further partitioned studies of PTSD effects into
2 types: (1) studies that investigate the effect of PTSD on heart
rate variability (HRV) and (2) studies that explore the effect of
PTSD on HR. The literature on models can be further classified
by the model’s focus on describing versus predicting data and
the model output. These categories and subdivisions are
discussed in the following sections.

Effects of Posttraumatic Stress Disorder on Heart Rate
Variability
HRV measures variations in heartbeats and is related to the
electrical activity of the heart [14]. Common frequency domain
analysis metrics for HRV include high frequency power (HF),
low frequency power (LF), the ratio of LF to HF, coherence
score (COH), root mean square of successive differences
between normal heartbeats (RMSSD), and the SD of the

interbeat interval of normal sinus beats (SDNN) [15-18]. LF
and HF are frequency bands of HRV that tend to correlate with
parasympathetic nervous system activity. LF is the frequency
activity in the range of 0.04 to 0.15 Hz, and HF is the activity
in the range of 0.15 to 0.4 Hz. The quantified relative intensity
of these measures is referred to as power [1], and such power
is obtained by applying power spectral and frequency domain
analyses [19].

The reviewed articles found that PTSD causes sustained changes
in the autonomic nervous system (ANS; the part of the nervous
system that is responsible for regulating automated functions
in the body, such as heart activity) [20]. The ANS consists of
the parasympathetic nervous system (PNS), which regulates
blood pressure and breathing rate during rest, and the
sympathetic nervous system (SNS), which adjusts blood pressure
and HR during activity. Heart activity is representative of the
performance of these systems [21]. Various effects of PTSD on
ANS have also been documented. Higher HR levels indicate
lower HRV and are linked to increased rates of mental stress
and physical activity [22,23]. PTSD, as a particular type of
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anxiety disorder, also disturbs HR and HRV. HRV has been
studied widely in the literature to assess PTSD [18,24-26].
Evidence suggests that individuals with PTSD have lower
resting HRV than individuals without PTSD when other factors
(age, gender, and health level) are controlled [27]. According
to the meta-review Nagpal et al [1], HF, a measure for the
parasympathetic activity of ANS, is significantly lower in
individuals with PTSD than in individuals without PTSD

(approximately 0.6 ms2). However, LF, which assesses both the
sympathetic and parasympathetic activity of the ANS, is slightly

reduced in individuals with PTSD (approximately 0.2 ms2).
This results in a significant increase in LF divided by HF of
individuals with PTSD [1,28-30].

RMSSD and SDNN are time-domain measures of HRV. SDNN
is an index of SNS activity [24]. SDNN is decreased in
individuals with PTSD compared with healthy individuals
(approximately 6.7 ms), showing an increase in sympathetic
activity [1,31]. In addition, decreased levels of RMSSD was
observed among individuals with PTSD (approximately 7.5
ms), suggesting lower vagal activity in this population [1,31].

Although an HRV analysis is common among studies of anxiety
[32], some factors need to be considered when HRV measures
are used. First, studies show that HRV is dependent on HR and
cannot be analyzed independently to represent ANS activity
[32,33]. In addition, previous research has linked high HRV to
pathological conditions related to heart deficiencies [32]. For
instance, diseases such as atrial fibrillation increase HRV and
HR and are associated with higher mortality rates [34]. Hence,
higher rates of HRV do not always indicate an abnormal mental
state. Ideally, measurements should take into account patient’s
comorbidities such as heart deficiencies in addition to subjective
(eg, self-reported scales) and objective (eg, HRV, ECG) methods
[35]. Gender, health, age, and HR also affect HRV, and they
need to be considered as covariates when HRV measures are
used [24]. Aging decreases HRV time-domain features such as
SDNN [36,37]. HRV time-domain features increase with
improved health conditions [38,39]. LF and SDNN are also
lower in females than in males; however, the HF parameter of
HRV is greater in women than in men [40]. Higher HR levels
are also associated with decreased HRV [41] because when the
heart beats faster, the beat-to-beat intervals are smaller. Other
factors such as climate, job satisfaction, lifestyle, and
medications can also affect HRV and should be considered as
an influential factor when HRV is analyzed [42].

Effect of Posttraumatic Stress Disorder on Heart Rate
HR is the number of heartbeats per 60 seconds. Normal HR
differs among individuals based on age and gender, health level,
and respiratory activity [43]. Both HR and HRV are modulated
by the ANS [44]. As the SNS activates, PNS activity is
suppressed; therefore, HR increases and HRV decreases [45].
As a result, there is an inverse relationship between HR and
HRV [33].

PTSD can affect HR in 2 modalities: resting and fluctuation
tone [1,46-48]. Studies suggest that resting HR can be between
5 and 6.6 beats higher in individuals with PTSD than in
individuals without PTSD depending on the type of population
(eg, veteran, civilian) [49-51]. For example, resting HR is
roughly higher than 5 beats per minute in civilians with PTSD
than in civilians without PTSD, and this number increases to
6.6 beats per minute in the veteran population [51,52]. In the
nonresting state, evidence suggests that HR increases with
exposure to PTSD stressors [1].

Another HR measure that has been investigated in terms of
PTSD is HR fluctuations (changes in HR levels) in the presence
of stimuli [53]. There are conflicting findings on the comparison
of this measure between individuals with and without PTSD.
Although a study by Roy et al [54] showed that HR changes
are higher in people with PTSD than in people without PTSD,
a study by Halligan et al [55] claims the opposite.

Heart Rate Models
On the basis of our synthesis of the existing literature, we
categorized mathematical models of HR into descriptive and
predictive models, both of which could provide insight relevant
to understanding the psychophysiological responses to PTSD.
Descriptive methods can be used to describe and make
inferences about a data set, whereas predictive methods can be
applied to forecast trends and patterns in the data. Predictive
and descriptive models can be further characterized by their
type of output—time independent or time dependent (Figure
2). Time-dependent outputs use time as one of the descriptive
variables to analyze the dependent variable(s) or output(s).
Time-independent output, however, does not depend on time
and does not change over time. Although the models reviewed
below are summarized and synthesized for relevance to
PTSD-related analysis, these methods are not limited to PTSD
and anxiety disorder domains.
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Figure 2. Taxonomy of heart rate analysis methods. ANOVA: analysis of variance.

Descriptive Models

Time-Independent Output

Analysis of Variance

Linear regression, and in particular ANOVA, is a statistical
model used for the analysis of HR in several articles (Table 1).
ANOVA can be used to compare HR trends and group means
in experimental studies [56,57]. Studies have used ANOVA to
account for the effectiveness of treatments in individuals with
PTSD, as measured by HR [58]. Some studies chose ANOVA
as their method of analysis to show that resting HR is higher in
individuals with PTSD than in individuals without PTSD [57].
For example, the study by Gelpin et al [59] compared the resting
HR in individuals pre-and posttreatment to measure the success
of therapy sessions. Buckley et al [52] used ANOVA to compare
resting HR in patients with PTSD with that of healthy controls,
finding that patients with PTSD, in general, have significantly
higher resting HR levels (approximately a 6 beats-per-minute
difference). Although using ANOVA for the analysis of
time-independent HR data is highly common, ANOVA is limited
in several respects. ANOVA has strong assumptions and is
ill-suited to model-dependent measures with strong temporal
correlations. For instance, the independency of observations is
one of the main assumptions of ANOVA; however, consecutive
HR real time–based data are a highly correlative type of data.
Thus, ANOVA should not be used to make time-based HR
predictions [60].

First-Order Exponential Model

A first-order exponential model provides a function with a
sustained growth or decay rate [61]. In terms of HR analysis,
first-order exponential models have been used to generate a

nonlinear regression model for HR based on heart rate recovery
(HRR) [62]. HRR is an indicator of vagal reactivation and SNS
deactivation [63].

Bartels-Ferreira et al [63] used the first-order exponential
method to measure postexercise time-independent HRR based
on HR decay curves. Recovering from the onset of PTSD
symptoms is associated with activation of vagal tone and
withdrawal of SNS activity, both of which are correlated with
HRR [64]. Although this method shows promise in the
assessment of HR fluctuations associated with PTSD, the
reviewed literature (Table 1) examined ANS in the context of
physical activity, and HR decay after activity was curve fitted
by a first-order exponential function [63]. In this case, the

goodness of fit was moderate (R2 was approximately 0.65),
which warrants additional research. Another limitation
associated with this method is that the exponential functions
show erroneous patterns for very small (30-second) and very
large (600-second) time windows [61]. For instance,
Bartels-Ferreira et al [63] found that the least goodness of fit
was for the smallest time window, which was 30 seconds

(R2=0.42). Conversely, when the length of the window of time
was a moderate number (approximately 360 seconds), a
relatively better goodness of fit was obtained (approximately
0.69). This shows that the HRR curve fitted by first-order

exponential models performs better (higher R2) when windows
of times are neither too big nor too small. Table 1 shows a
summary of articles that studied descriptive models with
time-independent output. In this table, domain is the field of
the study. Independent variables are factors that are controlled
by researchers, and dependent variables are dependent on them.
Independent variables are used to describe or classify dependent
variable.
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Table 1. Results of studies that used descriptive models with time-independent output.

Dependent variablesIndependent variablesDomainMethod and authors

ANOVAa

HRGender, age, HRc, trauma history, event securityPTSDbShalev et al [57]

HRHR, oxygen intake, age, fitnessPhysical activityStrath et al [65]

HRAccelerometer, energy expenditure, HRPhysical activityRomero-Ugalde et al [66]

HRHR, hospitalization duration, ageMedicalKhoueiry et al [67]

HRResting HR, major depressive disorderPhysiologyTonhajzerova et al [68]

First-order exponential

HR variationHR peak, resting HR, HRRdPhysical activityBartels et al [63]

aANOVA: analysis of variance.
bPTSD: posttraumatic stress disorder.
cHR: heart rate.
dHRR: heart rate recovery.

Time-Dependent Output

Classical Time Series Analysis
Classical time series analysis is a common statistical method
that can analyze time-dependent data trends by looking into
linear relationships. Classical time series analysis is also a
promising method for analyzing HR and HR fluctuations as
these measures are time-based [69,70].

Peng et al [70] applied time series analysis to examine the
long-term correlation within HR data and its relation to heart
diseases such as cogestive heart failure. Using this method, the
authors showed that there is some independency between
beat-to-beat HR fluctuations in healthy people that does not
exist in patients with cardiovascular disease. The findings further
suggest that classical time series analysis is a promising direction
for PTSD hyperarousal analysis because similar HR changes
have been documented in patients with PTSD compared with
healthy people in the presence of stimuli [71].

Beyond the analogous use case, the classical time series has
several benefits compared with ANOVA. As the model
explicitly considers autocorrelation, it does not require the
assumption of independence of observations [72]. The models
also have predictive capability and are well validated for
illustrating trends and forecasting [73]. However, 1 drawback
of this method is the stationary assumption (constant mean value
of the series), which is not always reasonable in HR data (eg,
when data are collected before and during exercise).

Mixed Regression Model
Mixed regression analysis has been used in the literature to
evaluate physiological responses to energy expenditure [74].

This type of modeling can be applied with correlated
observations. Thus, it is beneficial for psychophysiology
analyses that need to account for individual similarities such as
gender [60]. Multiple regression typically proceeds in a stepwise
process with a focus on identifying 2 main effects: the
population fixed effect and the random effect. The
population-fixed effect explains similarities in the dataset (for
instance HR), whereas the random effect represents the
differences among observations (the error term). For instance,
Gee et al [75] used respiration as a random effect to estimate
HR and ultimately predict episodes of bradycardia in infants.
Using a mixed regression method and accounting for respiration
as a covariate, in this case, has increased the accuracy of the
measured HR by 11%.

The ability of mixed regression models to account for individual
differences makes them an advantageous choice for modeling
PTSD. Several studies have identified significant individual
differences in people with PTSD [1,57,76,77]. Specifically, HR
and HRV levels are significantly affected by individual
differences such as age, general health, and gender [24].

This type of modeling might produce similar results to ANOVA
in many cases. However, in comparison with ANOVA, mixed
regression models are more effective for data sets with missing
values and multiple random effects [78]. This is important as
in real-world and naturalistic studies, data sets with high rates
of missing values are common and can be challenging to deal
with [79]. Table 2 shows a comparison of time-dependent output
methods.
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Table 2. Results from studies that used descriptive models with time-dependent output.

Dependent variableIndependent variablesDomainMethod and authors

Classical time series

HeartbeatHRa, resting HRHealth care (patient data)Chen et al [69]

HRHR, HRVb, timePhysiologyKazmi et al [33]

Energy expenditureHR, energy expenditure, accelerometer, agePhysical activityZakeri et al [80]

HRHR, heartbeat, timeMedicalPeng et al [70]

Mixed regression

HRHR, heartbeat, respiration, timeBiomedicalGee et al [75]

HRHR, energy expenditure, photoplethysmography, accelerometerPhysical activityBonomi et al [81]

Energy expenditureHR, energy expenditure, different training paradigms, age, height, weightPhysical activityXu et al [82]

aHR: heart rate.
bHRV: heart rate variability.

Predictive Models

Time-Independent Output

Machine Learning Methods

Machine learning methods refer to a set of training and
predictive algorithms that use data to learn complex trends
associated with labels (eg, symptom presence) in a data set.
Machine learning analysis is a multiple-step process consisting
of dividing a data set into training and testing data (or leveraging
resampling techniques such as cross-validation), developing a
model from the training data, and evaluating the model on the
testing data. This approach is advantageous relative to
approaches that use all of the data for training a model (eg,
ANOVA) and approximate metrics to evaluate generalizability

(eg, adjusted R2). Furthermore, the ability of machine learning
algorithms to identify complex patterns in data sets make them
a promising approach for analyzing physiological data that are
often noisy.

The success of applying machine learning methods depends on
the data used to train and evaluate the algorithm. Machine
learning algorithms typically require large training sets—several
thousand observations—and they implicitly assume that the
data and associated labels are of equal quality. In cases where
the data are noisy, or labels are unreliable, machine learning
training algorithms may fail to converge to a generalizable
solution. Furthermore, if the training data examples are biased
(eg, nonrepresentative population samples), the machine learning
algorithms trained on the data may also be similarly biased. It
is often difficult to identify these issues through standard training
and testing processes of machine learning algorithms; thus,
machine learning analyses should be accompanied by descriptive
analyses to obtain a better understanding of the data and
potential errors or bias [83].

Most of the reviewed studies used HRV, along with machine
learning algorithms to predict stress levels in individuals [84-86].
Machine learning studies evaluating HR have primarily focused
on energy expenditure [87,88]. An exception is McDonald et
al [11] who evaluated several machine learning
algorithms—neural networks, decision trees, support vector

machines, convolutional neural networks, and random
forests—to predict the onset of PTSD symptoms in the veteran
population. This study used HR data with a 1 Hz frequency (1
observation per second) as the input of these algorithms.
Although the raw 1 Hz data were used to train the neural
network–based models, additional feature generation and
selection was performed before training the decision tree,
support vector machine, and random forest algorithms. This
feature generation identified linear trends, Fourier transforms,
and change quantiles as relevant features for the detection of
the onset of PTSD symptoms. Among all machine learning
methods, support vector machines, and random forest algorithms
performed best (ie, had the highest area under the receiver
operating characteristic curve (ROC) 0.67). Although machine
learning shows promise for the inferential analysis of HR data
for PTSD research, explaining the purpose of machine learning
components may be difficult, and often predictive results have
a limited rational explanation [89].

Fluctuation-Dissipation Theory

The fluctuation-dissipation theory (FDT) is a common approach
in thermodynamics that is used to predict system behavior by
breaking the system responses into small forces [90]. This
theorem, which follows thermodynamic rules, can model the
HRR after stress moments.

Chen et al [91] used FDT to predict patients’ HR reactions to
prespontaneous and postspontaneous breathing trial treatment.
They used this method to divide the system (in this case, the
treatment process) into different phases, including pretreatment,
midtreatment, and posttreatment. After breaking the entire
treatment process to these small phases, each phase was modeled
separately. The reactions to treatments in each phase were
modeled using HRR measures. All models were then combined
to create the final comprehensive model. Chen et al [91] found
that thermodynamic rules can also model the HR response after
stress moments. This is because of the similar effect of stress
and spontaneous breathing trials on organs (a common clinical
procedure used to assess the ventilation performance of patients).
These researchers suggest dividing the system into prestress
and poststress moments, modeling each phase, and finally
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assembling a model for final prediction. They further suggest
that the HRR extracted from this type of modeling can be used
to personalize care as HR can be remotely monitored through
noninvasive hospital devices.

In terms of mathematical concepts, this type of modeling has a
powerful predictive capability by grouping individuals and
therefore minimizing the error rate [91]. This approach requires
significantly less data than other methods, such as time-variant
modeling of HR. Hence, it enables researchers to include more
variables in their model. Moreover, Chen et al [91] claim that
although models that use Gaussian functions have around 65%
error rate to predict patients’ response to spontaneous breathing
trial, implementing FDT decreases this error rate by over 10%.
Therefore, this approach provides more accurate results than
methods that use Gaussian functions, such as some machine
learning algorithms (eg, adaptive neuro-fuzzy inference system

[ANFIS]). A potential reason for this could be that the system
is broken down into smaller pieces, where each part has its own
specific and defining features. However, in ANFIS, the system
was considered as a whole, and a set of features was defined
for the entire system overlooking dissimilarities within the
system. In addition, unlike most statistical approaches that make
assumptions about the data, this method is assumption-free and
is considered more robust to assumptions (eg, normality of
residuals, independency of measurements). Despite its promising
application to the analysis of HR and the lack of restrictive
assumptions, FDT is computationally intense. This means that
the model needs a high level of proficiency in understanding
the mathematics and statistics behind FDT. Especially, in
comparison with approaches such as ANOVA, classical time
series, and mixed regression, using this approach requires higher
levels of domain knowledge, for example, studies in machine
learning and FDT methods (Table 3).

Table 3. Results from example studies that used predictive models with time-independent output.

Dependent variableIndependent variablesDomainMethod and authors

Machine learning

Work rateHRa, oxygen consumption, work rateBiomedical (energy
expenditure)

Kolus et al [87]

Stress momentHR, subjective stress momentsPTSDbMcDonald et al [11]

To detect stressHR, HRVc, skin conductance, muscle activity, muscle tension, breathing
rate

DrivingHealey et al [86]

Work rateHR, maximum HR, oxygen consumption, body type, work ratePhysical activityKolus et al [88]

HRHR, body attitude information, body movementPhysical activityZhang et al [92]

Fluctuation-dissipation theory

HRHR recovery, blood pressure, instantaneous HRHealth careChen et al [91]

aHR: heart rate.
bPTSD: posttraumatic stress disorder.
cHRV: heart rate variability.

Time-Dependent Output

Time-Variant Modeling
Time-variant modeling is a mathematical approach used to
analyze time-dependent data sets and provide a time-dependent
output. Time-variant models of HR can generate HRR measures
in real time. Some studies suggest that measuring HRR in real
time can especially help assess arousals and arousability in
different individuals in response to mental stressors [93]. This
shows promise for PTSD research given its potential to enable
the comparison between the effect of internal stimuli (stressors
generated through memory) and external stimuli (stressors
generated from the environment) on the arousability of patients
with PTSD.

Although time-variant modeling has been replicated in the
literature and has shown promise in analyzing HR data [33,94],
it is computationally intense. The process of solving the
equations within the model includes defining multiplex matrices
for each variable, which is time and space consuming. Moreover,
time-variant modeling requires large data sets of HF (eg, 100

Hz) HR data, which is often not feasible for real-time data
collection instruments such as wearable devices that record
continuous data for large windows of time (eg, more than 30
min).

Nonlinear Dynamic Modeling
Nonlinear dynamic modeling of HR consists of depicting HR
as the output of a nonlinear dynamic system [95].

Nonlinear dynamic modeling of HR can be a promising method
to assess arousal patterns by measuring SNS activity [96].
Hence, this approach may be useful for analyzing PTSD
hyperarousal patterns as they are associated with SNS activity.
Despite the advantages of this model, it requires high-frequency
HR data (eg, 100 Hz) or even instantaneous HR [96].
Instantaneous HR is an HR measure derived from HRV, which
is different from raw HR measured by wearable devices.
Instantaneous HR can be extracted by multiplying RR intervals
(the time between two consecutive R waves of the HRV signal)
by 60 and needs to be measured at an HF (>250 Hz), whereas
smartwatches collect HR data with a much lower frequency (<5
Hz) [96].
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This model accounts for the natural nonlinearity and
time-dependent features of HR data. In addition, the learnability
and predictability of this method can help detect the onset of
symptoms in patients with PTSD. A limitation of this method
for characterizing PTSD aspects is the assumption of
invertibility [97]. This assumption indicates that all the variable
matrices used in equations are required to be invertible. In many

cases, and mainly in nonlaboratory settings, this assumption
cannot be met [97]. Moreover, these methods are relatively slow
and more computationally intense compared with other methods
such as machine learning (for both training and testing the
model) because they involve solving multiple complex
mathematical equations [66]. Table 4 shows examples of
predictive models with time-dependent output.

Table 4. Results from studies that used predictive models with time-dependent output.

Dependent variableIndependent variablesDomainMethod and authors

Time variant

HRVbHRa, participants’ input power, road gradient,Sports science—biomedicalLefever et al [94]

HR regulationsHR, resting HR, blood pressureBiology, health careOlufsen et al [98]

Nonlinear dynamic

Heart beatResting HR, arterial blood pressure, HR, HRVHealth care (patient data)Chen et al [69]

HRV (they look at
the correlation)

Human normal sinus rhythm, human congestive heart rate failureBiophysicsKazmi et al [33]

aHR: heart rate.
bHRV: heart rate variability.

Discussion

Descriptive Framework Based on the Summary of
Findings
We categorized the methods used to analyze HR data into 2
categories: descriptive and predictive. In the context of PTSD,
descriptive models may be used to characterize PTSD triggers
and the factors that affect their occurrence, whereas predictive
models may be useful to predict PTSD onset to facilitate timely
intervention. The extracted models provide methods for
evaluating, describing, comparing, interpreting, and
understanding patterns in the HR data. However, interpreting

the data in a meaningful way depends on the specific objectives
of the study. The data at hand can be analyzed with one or many
of the reviewed models based on the goal of the study and the
assumptions of the models. Each model corresponds to a distinct
type of output and different interpretations of the data with
different assumptions. On the basis of the process of data
collection, the number of observations, and variables in the data,
researchers might choose one or a combination of models
provided. Table 5 provides a framework for choosing a model
based on the limitations, assumptions, and features of each
model and the data at hand. Furthermore, Table 5 presents the
articles that used a specific method.
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Table 5. Descriptive framework for heart rate–related analysis methods extracted from the literature.

CasesLimitationsFeaturesAssumptionsModel

Descriptive, time-independent output

[47,52-54,57-59,
65-68,99-102]

ANOVAa ••• Restrictive assumptionsCapable of comparing
groups and looking at
trends

Normal distribution of
residuals • Type 1 error

• Constant variance of
populations

• Just applicable to linear
analysis• Computationally simple

• Independence and identi-
cally distributed observa-
tions

[63]A first-order exponential
model

••• Not repeated in studiesEasy to apply and learnContinuous observations
••• Higher error rates than

classical time series and
Gives higher weights to
recent observations

Observations should be
identical (eg, no age,

mixed regressiongender difference)
• Environmental effects

are constant
• Does not show trends
• Not accurate for very

small and very large
windows of time

Descriptive, time-dependent output

[33,69,70,80]Classical time series analy-
sis

••• Requires stationary data
sets

Advantageous for analyz-
ing time-based trends

Stationary observations
(constant mean values of
series) • Does not require indepen-

dence of data points
• Used in the literature to

analyze cardiovascular
disease

• Includes linear and non-
linear analysis

[50,66,67,75,
80-82,103-107]

Mixed regression model ••• Cannot be used for non-
linear models

Accounts for differences
between individuals (eg,
age, gender)

Normality of residuals
distribution

• Can be used for analyz-
ing repeated measures

• Can be applied to non-
normal data

Predictive, time-independent output

[11,86-88,92,108-110]Machine learning methods ••• Can over fit or under fit
data

Proactive algorithm (can
be used for action-reac-

Limited dependencies of
the observations (each

tion type of data sets)machine learning algo- • Cannot be applied to da-
ta sets with highly depen-rithm has its assumptions • Powerful predictive

methodthat need to be checked) dent variables
• The process has little ra-

tional explanation
• Rapid analysis predic-

tion, and processing
• Simplifies time-intensive

computations

[70,91,111]Fluctuation-dissipation
theory

••• Computationally intensePowerful predictive capa-
bility

Equilibrium system (the
system and observations
are not changing)

• Time consuming
• Does not have restrictive

assumptions such as
normality of residuals

• Significantly less data
needed compared with a
general data fitting ap-
proach

Predictive, time-dependent output

[33,93,94,96,
98,112-116]

Time-variant modeling ••• Computationally intenseCan be used to describe
data as well as forecast-
ing the future

Requires big data sets
with high-frequency data
points (more than 60 Hz)

• Slow process
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CasesLimitationsFeaturesAssumptionsModel

[33,66,96,98,104,
112,113,116-121]

• Computationally intense
• Slow process
• Requires invertible matri-

ces that is not always
feasible in naturalistic
settings

• Very accurate
• Replicated multiple

times in studies

• Invertible matricesNonlinear dynamic model-
ing

aANOVA: analysis of variance.

Fit Assessment
Fit assessment can be conducted to examine the efficiency of
each method in modeling a specific dataset. Fit assessment is
especially promising for comparing different methods if they
are applied to the same data set. However, considering the wide
range of applicable fit indices, researchers might struggle to

compare them. In the category of descriptive models, R2 and

adjusted R2 are the main indices of fit assessment. R2 indicates
the degree of variation in the dependent variable caused by the

independent variable(s). Adjusted R2 is a revised version of R2

that accounts for the number of independent variables in a model

[122]. Generally, adjusted R2 is more promising than R2 as it is
more robust to overfitting [122]. In the prediction methods

category, a variety of measures other than R2 and adjusted R2

were used to assess the quality of fit. Some of these measures
include sensitivity, specificity, accuracy, and area under the
ROC curve (AUC)-ROC. Sensitivity is the number of
true-positives divided by the total number of observations, and
specificity is the number of true-negatives divided by the total

number of observations [123]. Accuracy is the number of true
predictions divided by the total number of predictions. The error
rate is 1 minus the accuracy or the number of wrong detections
divided by the total number of observations [124]. Finally,
AUC-ROC is a curve that plots the true-positive rate (Y axis)
versus the false-positive rate (X axis) to measure the
performance of the model. It is important to bear in mind that
fit indices are data dependent; therefore, comparisons are the
best made by fitting multiple models to the same data set.

In the statistical analysis of data in the PTSD domain, fit
assessments have been used to show the efficiency of the results.
For instance, McDonald et al [11] used ROC curves along with
accuracy to show that random forest works better than other
machine learning methods to predict hyperarousal moments in
people with PTSD. Shalev et al [125] used sensitivity and
specificity to predict the development of PTSD based on their
instant responses to trauma. Bartels et al [63] applied adjusted

R2 to assess the goodness of fit for their proposed exponential
model. Examples of fit adjustments are summarized in Table
6.

Table 6. Examples of fit assessment for different methods used in studies.

Fit measureVariablesMethodStudy

R2=0.87HRb, oxygen intake, age, fitnessANOVAaStrath et al [65]

R2=0.84HR, energy expenditure, accelerometer, ageClassical time seriesZakeri et al [80]

Area under receiver operating char-
acteristics curve=0.67

HR, subjective stress momentsMachine learningMcDonald et al [11]

Accuracy=97%HR, HRVc, skin conductance, muscle activity,
muscle tension, breathing rate

Machine learningHealey et al [86]

Error rate=25%HR recovery, blood pressure, instantaneous HRFluctuation-dissipation theoryChen et al [91]

Sensitivity=0.941; predictabili-
ty=0.988

Resting HR, arterial blood pressure, HR, HRVNonlinear dynamicChen et al [66]

aANOVA: analysis of variance.
bHR: heart rate.
cHRV: heart rate variability.

Methodological Considerations for Heart Rate
Assessments
The models identified in this review represent several promising
directions for future exploration, but they also illustrate a hidden
complexity in the use of HR data as model input. HR is impacted
by individual characteristics including age, sex, health, resting
HR, respiration, and lifestyle [24]. The maximum HR typically
decreases with age. Females have higher HR levels than men

[126]. Athletes have lower HR levels than sedentary people
[127]. Resting HR is lower in more active people, and lower
resting HRs result in lower HR levels [128]. As the respiratory
system affects heart activity, studies suggest that incorporating
respiration as a factor in HR models improves HR estimation
significantly [78]. Lifestyle such as smoking habits affects HR
as well; people who smoke have a higher HR than nonsmokers
[129].
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Beyond these general characteristics, it is important to consider
the type of physical activity in the analysis. Physical activity
significantly affects HR [130], where high-intensity activities
such as running and cycling affect HR differently from
low-intensity activities such as sitting and lying down [99].
Concerns regarding activity were common in the reviewed
studies, particularly in the energy expenditure domain [131].
Green et al [131] suggested that body acceleration is a reliable
indicator of physical activity and should be included in all
analyses as a covariate or constraint. Although activity is directly
related to energy expenditure outcomes, it is also relevant for
studies investigating stress. Whereas some of the reviewed
studies on stress included body acceleration in their analysis
[100], many neglected this factor [46,132].

Heart Rate Assessments in Anxiety Domains
HR data have been widely investigated in the domains of
physical activity and energy expenditure. Although there are
some differences between the effects of mental stress on HR
and the effects of physical activity on HR, there are many
similarities that make these domains connected. Physical activity
affects SNS performance in the short term and PNS performance
in the long term [133]. As a result, HR increases during physical
activities (due to SNS activation), and resting HR is lower in
athletes who have higher rates of physical activity (because of
PNS performance) [133].

Similarly, in terms of mental stress, whereas acute stress or
immediate response to stressors activates SNS, chronic stress
increases vagal and parasympathetic activity [134]. These
similarities enable researchers in mental stress domains to
employ models and pathways that are extracted in physical
activity domains. For instance, one main measure that is used
broadly to examine energy expenditure is HRR. This measure
is an accepted indicator of SNS deactivation and PNS activation.
Recovering from acute stress and arousability is also associated
with the withdrawal of SNS and activation of PNS. As a result,
HRR can be a proper measure to be considered in studies that
examine acute stress.

Limitations
This scoping review attempted to include all articles that
analyzed HR; however, it is still likely that some were
overlooked. Furthermore, the authors categorized the HR models
based on their own synthesis of the literature and relevance to
PTSD. These models can be listed and categorized in a variety
of ways, such as deterministic versus stochastic.

Another limitation of this review is that although the identified
models have been applied across various domains (eg, energy
expenditure and general stress prediction), to our knowledge,
only 2 papers [11,57] directly applied these methods to data
from patients diagnosed with PTSD. In particular, only 1 study
[11] used a predictive approach in the PTSD domain. Other
studies were primarily limited to linear descriptive statistics
such as the t test or ANOVA [60,65–67]. These methods are

valid for making inferences about PTSD and comparing their
effects on HR among different groups. However, there is a need
for additional studies in this area that explore a broader set of
predictive models and other factors (eg, activity level) that have
not been analyzed with descriptive models.

Beyond the specific application of these models to PTSD, there
are several more general challenges. The reviewed research
often proceeded independently, with few links between the
various studies. This diversity makes comparisons across studies
difficult. Studies have used different data sets with different
variables based on individual goals. Furthermore, the reviewed
work often focused on testing 1 specific model rather than a
broad comparison. Often critical details, such as the model and
parameter selection process, were not reported in the articles.
Another critical detail often not addressed in the reviewed
studies was the mismatch between the model requirements and
the sampling rates, which may result in conditions such as
overfitting [135].

Collectively, these limitations suggest a need for substantial
additional work in modeling the relationship between HR and
PTSD. Future studies should consider comparisons between
several models, analyze or explicitly discuss decisions made
throughout the modeling process, and comprehensively
document their HR data collection. As future studies are
conducted that enact these criteria, the utility of the modeling
approaches identified here will become clearer, and the path to
more effective PTSD treatments will become more attainable.

Conclusions
The goals of this review were to identify and characterize
quantitative HR models for relevant applications in PTSD. One
of the gaps in this area is the absence of a framework that
researchers can use before, during, and after their data collection
to choose a method to analyze HR data. In this regard, we
developed a descriptive framework that can be used to determine
the method to apply to HR data to achieve more efficient results.
We identified 4 broad categories of methods: descriptive
time-independent output, descriptive time-dependent output,
predictive time-independent output, and predictive
time-dependent output. Descriptive time-independent output
models include ANOVA and first-order exponential, whereas
descriptive time-dependent output models include classical time
series analysis and mixed regression. Predictive
time-independent output models include machine learning
methods and analysis of HR-based FDT. Finally, predictive
time-independent output models include the time-variant method
and nonlinear dynamic modeling.

All of the identified modeling categories have relevance in
PTSD, although modeling selection is highly dependent on the
specific goals of the modeler. For instance, one might use
ANOVA to examine the differences in resting HR in individuals
with PTSD versus without PTSD [54].

Acknowledgments
The authors would like to acknowledge Ms Margaret Foster, a systematic review expert librarian at the Texas A&M University
system, who helped to develop the search strategy.

JMIR Ment Health 2020 | vol. 7 | iss. 7 | e16654 | p. 12https://mental.jmir.org/2020/7/e16654
(page number not for citation purposes)

Sadeghi et alJMIR MENTAL HEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Conflicts of Interest
None declared.

References

1. Gleichauf ML. Meta-analysis of heart rate variability as a psychophysiological indicator of posttraumatic stress disorder.
J Trauma Treat 2013;3(1):1000182. [doi: 10.4172/2167-1222.1000182]

2. Spivak B, Segal M, Mester R, Weizman A. Lateral preference in post-traumatic stress disorder. Psychol Med 1998
Jan;28(1):229-232. [doi: 10.1017/s0033291797005837] [Medline: 9483701]

3. LeBouthillier DM, McMillan KA, Thibodeau MA, Asmundson GJ. Types and number of traumas associated with suicidal
ideation and suicide attempts in PTSD: findings from a US nationally representative sample. J Trauma Stress 2015
Jun;28(3):183-190. [doi: 10.1002/jts.22010] [Medline: 25990916]

4. Resnick HS, Kilpatrick DG, Dansky BS, Saunders BE, Best CL. Prevalence of civilian trauma and posttraumatic stress
disorder in a representative national sample of women. J Consult Clin Psychol 1993 Dec;61(6):984-991. [doi:
10.1037//0022-006x.61.6.984] [Medline: 8113499]

5. Richardson LK, Frueh BC, Acierno R. Prevalence estimates of combat-related post-traumatic stress disorder: critical review.
Aust N Z J Psychiatry 2010 Jan;44(1):4-19 [FREE Full text] [doi: 10.3109/00048670903393597] [Medline: 20073563]

6. Moon J, Smith A, Sasangohar F, Benzer JK, Kum H. A descriptive model of the current PTSD care system: identifying
opportunities for improvement. Proc Int Symp Hum Factors Ergon Health Care 2017 May 15;6(1):251. [doi:
10.1177/2327857917061055]

7. Reisman M. PTSD treatment for veterans: what's working, what's new, and what's next. Pharm Ther 2016 Oct;41(10):623-634
[FREE Full text] [Medline: 27757001]

8. Rodriguez-Paras C, Tippey K, Brown E, Sasangohar F, Creech S, Kum H, et al. Posttraumatic stress disorder and mobile
health: app investigation and scoping literature review. JMIR Mhealth Uhealth 2017 Oct 26;5(10):e156 [FREE Full text]
[doi: 10.2196/mhealth.7318] [Medline: 29074470]

9. Khusid MA, Vythilingam M. The emerging role of mindfulness meditation as effective self-management strategy, part 1:
clinical implications for depression, post-traumatic stress disorder, and anxiety. Mil Med 2016 Sep;181(9):961-968. [doi:
10.7205/MILMED-D-14-00677] [Medline: 27612338]

10. Galea S, Basham K, Culpepper L, Davidson J, Foa E, Kizer K, et al. Treatment for Posttraumatic Stress Disorder in Military
and Veteran Populations: Initial Assessment. Washington, DC: National Academies Press; 2012.

11. McDonald AD, Sasangohar F, Jatav A, Rao AH. Continuous monitoring and detection of post-traumatic stress disorder
(PTSD) triggers among veterans: a supervised machine learning approach. IISE Trans Healthc Syst Eng 2019 Jun
11;9(3):201-211. [doi: 10.1080/24725579.2019.1583703]

12. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and
meta-analyses: the PRISMA statement. Ann Intern Med 2009 Aug 18;151(4):264-9, W64. [doi:
10.7326/0003-4819-151-4-200908180-00135] [Medline: 19622511]

13. Tricco AC, Lillie E, Zarin W, O'Brien K, Colquhoun H, Kastner M, et al. A scoping review on the conduct and reporting
of scoping reviews. BMC Med Res Methodol 2016 Feb 9;16(1):15 [FREE Full text] [doi: 10.1186/s12874-016-0116-4]
[Medline: 26857112]

14. Acharya UR, Joseph KP, Kannathal N, Lim CM, Suri JS. Heart rate variability: a review. Med Biol Eng Comput 2006
Dec;44(12):1031-1051. [doi: 10.1007/s11517-006-0119-0] [Medline: 17111118]

15. Cohen H, Benjamin J, Geva AB, Matar MA, Kaplan Z, Kotler M. Autonomic dysregulation in panic disorder and in
post-traumatic stress disorder: application of power spectrum analysis of heart rate variability at rest and in response to
recollection of trauma or panic attacks. Psychiatry Res 2000 Sep 25;96(1):1-13. [doi: 10.1016/s0165-1781(00)00195-5]
[Medline: 10980322]

16. Ginsberg J, Ayers E, Burriss L, Powell D. Discriminative delay Pavlovian eyeblink conditioning in veterans with and
without posttraumatic stress disorder. J Anxiety Disord 2008 Jun;22(5):809-823. [doi: 10.1016/j.janxdis.2007.08.009]
[Medline: 17913453]

17. Ginzburg K, Ein-Dor T, Solomon Z. Comorbidity of posttraumatic stress disorder, anxiety and depression: a 20-year
longitudinal study of war veterans. J Affect Disord 2010 Jun;123(1-3):249-257. [doi: 10.1016/j.jad.2009.08.006] [Medline:
19765828]

18. Tan G, Dao TK, Farmer L, Sutherland RJ, Gevirtz R. Heart rate variability (HRV) and posttraumatic stress disorder (PTSD):
a pilot study. Appl Psychophysiol Biofeedback 2011 Mar;36(1):27-35. [doi: 10.1007/s10484-010-9141-y] [Medline:
20680439]

19. Kamath M, Fallen E. Power spectral analysis of heart rate variability: a noninvasive signature of cardiac autonomic function.
Crit Rev Biomed Eng 1993;21(3):245-311. [Medline: 8243093]

20. Prins A, Kaloupek D, Keane T. Psychophysiological evidence for autonomic arousal and startle in traumatized adult
populations. In: Friedman MJ, Charney DS, Deutch AY, editors. Neurobiological and Clinical Consequences of Stress:

JMIR Ment Health 2020 | vol. 7 | iss. 7 | e16654 | p. 13https://mental.jmir.org/2020/7/e16654
(page number not for citation purposes)

Sadeghi et alJMIR MENTAL HEALTH

XSL•FO
RenderX

http://dx.doi.org/10.4172/2167-1222.1000182
http://dx.doi.org/10.1017/s0033291797005837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9483701&dopt=Abstract
http://dx.doi.org/10.1002/jts.22010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25990916&dopt=Abstract
http://dx.doi.org/10.1037//0022-006x.61.6.984
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8113499&dopt=Abstract
http://europepmc.org/abstract/MED/20073563
http://dx.doi.org/10.3109/00048670903393597
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20073563&dopt=Abstract
http://dx.doi.org/10.1177/2327857917061055
http://europepmc.org/abstract/MED/27757001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27757001&dopt=Abstract
https://mhealth.jmir.org/2017/10/e156/
http://dx.doi.org/10.2196/mhealth.7318
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29074470&dopt=Abstract
http://dx.doi.org/10.7205/MILMED-D-14-00677
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27612338&dopt=Abstract
http://dx.doi.org/10.1080/24725579.2019.1583703
http://dx.doi.org/10.7326/0003-4819-151-4-200908180-00135
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19622511&dopt=Abstract
https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-016-0116-4
http://dx.doi.org/10.1186/s12874-016-0116-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26857112&dopt=Abstract
http://dx.doi.org/10.1007/s11517-006-0119-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17111118&dopt=Abstract
http://dx.doi.org/10.1016/s0165-1781(00)00195-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10980322&dopt=Abstract
http://dx.doi.org/10.1016/j.janxdis.2007.08.009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17913453&dopt=Abstract
http://dx.doi.org/10.1016/j.jad.2009.08.006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19765828&dopt=Abstract
http://dx.doi.org/10.1007/s10484-010-9141-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20680439&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8243093&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


From Normal Adaptation to Post-traumatic Stress Disorder. Pennsylvania, USA: Lippincott Williams & Wilkins Publishers;
1995:291-314.

21. Hynynen E, Uusitalo A, Konttinen N, Rusko H. Heart rate variability during night sleep and after awakening in overtrained
athletes. Med Sci Sports Exerc 2006 Feb;38(2):313-317. [doi: 10.1249/01.mss.0000184631.27641.b5] [Medline: 16531900]

22. Buchheit M, Simon C, Charloux A, Doutreleau S, Piquard F, Brandenberger G. Relationship between very high physical
activity energy expenditure, heart rate variability and self-estimate of health status in middle-aged individuals. Int J Sports
Med 2006 Sep;27(9):697-701. [doi: 10.1055/s-2005-872929] [Medline: 16944398]

23. Weber CS, Thayer JF, Rudat M, Sharma AM, Perschel FH, Buchholz K, et al. Salt-sensitive men show reduced heart rate
variability, lower norepinephrine and enhanced cortisol during mental stress. J Hum Hypertens 2008 Jun;22(6):423-431.
[doi: 10.1038/jhh.2008.11] [Medline: 18337758]

24. Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Front Public Health 2017;5:258 [FREE
Full text] [doi: 10.3389/fpubh.2017.00258] [Medline: 29034226]

25. Wahbeh H, Oken BS. Peak high-frequency HRV and peak alpha frequency higher in PTSD. Appl Psychophysiol Biofeedback
2013 Mar;38(1):57-69 [FREE Full text] [doi: 10.1007/s10484-012-9208-z] [Medline: 23178990]

26. Pyne JM, Constans JI, Wiederhold MD, Gibson DP, Kimbrell T, Kramer TL, et al. Heart rate variability: pre-deployment
predictor of post-deployment PTSD symptoms. Biol Psychol 2016 Dec;121(Pt A):91-98 [FREE Full text] [doi:
10.1016/j.biopsycho.2016.10.008] [Medline: 27773678]

27. Gillie BL, Thayer JF. Individual differences in resting heart rate variability and cognitive control in posttraumatic stress
disorder. Front Psychol 2014;5:758 [FREE Full text] [doi: 10.3389/fpsyg.2014.00758] [Medline: 25076929]

28. Mellman TA, Pigeon WR, Nowell PD, Nolan B. Relationships between REM sleep findings and PTSD symptoms during
the early aftermath of trauma. J Trauma Stress 2007 Oct;20(5):893-901. [doi: 10.1002/jts.20246] [Medline: 17955526]

29. Lee SM, Han H, Jang K, Huh S, Huh HJ, Joo J, et al. Heart rate variability associated with posttraumatic stress disorder in
victims' families of Sewol ferry disaster. Psychiatry Res 2018 Jan;259:277-282. [doi: 10.1016/j.psychres.2017.08.062]
[Medline: 29091829]

30. Minassian A, Maihofer AX, Baker DG, Nievergelt CM, Geyer MA, Risbrough VB, Marine Resiliency Study Team.
Association of predeployment heart rate variability with risk of postdeployment posttraumatic stress disorder in active-duty
marines. JAMA Psychiatry 2015 Oct;72(10):979-986. [doi: 10.1001/jamapsychiatry.2015.0922] [Medline: 26353072]

31. Park JE, Lee JY, Kang S, Choi JH, Kim TY, So HS, et al. Heart rate variability of chronic posttraumatic stress disorder in
the Korean veterans. Psychiatry Res 2017 Sep;255:72-77. [doi: 10.1016/j.psychres.2017.05.011] [Medline: 28528244]

32. Monfredi O, Lyashkov AE, Johnsen A, Inada S, Schneider H, Wang R, et al. Biophysical characterization of the
underappreciated and important relationship between heart rate variability and heart rate. Hypertension 2014
Dec;64(6):1334-1343 [FREE Full text] [doi: 10.1161/HYPERTENSIONAHA.114.03782] [Medline: 25225208]

33. Kazmi SZ, Zhang H, Aziz W, Monfredi O, Abbas SA, Shah SA, et al. Inverse correlation between heart rate variability
and heart rate demonstrated by linear and nonlinear analysis. PLoS One 2016;11(6):e0157557 [FREE Full text] [doi:
10.1371/journal.pone.0157557] [Medline: 27336907]

34. Stein PK, Domitrovich PP, Hui N, Rautaharju P, Gottdiener J. Sometimes higher heart rate variability is not better heart
rate variability: results of graphical and nonlinear analyses. J Cardiovasc Electrophysiol 2005 Sep;16(9):954-959. [doi:
10.1111/j.1540-8167.2005.40788.x] [Medline: 16174015]

35. Centre for Urban Design and Mental Health. Measuring Mental Health Outcomes in Built Environment Research: Choosing
the Right Screening Assessment Tools URL: https://www.urbandesignmentalhealth.com/how-to-measure-mental-health.
html [accessed 2019-11-19]

36. Bonnemeier H, Richardt G, Potratz J, Wiegand UK, Brandes A, Kluge N, et al. Circadian profile of cardiac autonomic
nervous modulation in healthy subjects: differing effects of aging and gender on heart rate variability. J Cardiovasc
Electrophysiol 2003 Aug;14(8):791-799. [doi: 10.1046/j.1540-8167.2003.03078.x] [Medline: 12890036]

37. Almeida-Santos MA, Barreto-Filho JA, Oliveira JL, Reis FP, da Cunha OC, Sousa AC. Aging, heart rate variability and
patterns of autonomic regulation of the heart. Arch Gerontol Geriatr 2016;63:1-8. [doi: 10.1016/j.archger.2015.11.011]
[Medline: 26791165]

38. Agelink MW, Boz C, Ullrich H, Andrich J. Relationship between major depression and heart rate variability. Clinical
consequences and implications for antidepressive treatment. Psychiatry Res 2002 Dec 15;113(1-2):139-149. [doi:
10.1016/s0165-1781(02)00225-1] [Medline: 12467953]

39. Liao D, Cai J, Brancati FL, Folsom A, Barnes RW, Tyroler HA, et al. Association of vagal tone with serum insulin, glucose,
and diabetes mellitus-the ARIC study. Diabetes Res Clin Pract 1995 Dec;30(3):211-221. [doi:
10.1016/0168-8227(95)01190-0] [Medline: 8861461]

40. Koenig J, Thayer JF. Sex differences in healthy human heart rate variability: a meta-analysis. Neurosci Biobehav Rev 2016
May;64:288-310. [doi: 10.1016/j.neubiorev.2016.03.007] [Medline: 26964804]

41. Zhang D, Shen X, Qi X. Resting heart rate and all-cause and cardiovascular mortality in the general population: a
meta-analysis. Can Med Assoc J 2016 Feb 16;188(3):E53-E63 [FREE Full text] [doi: 10.1503/cmaj.150535] [Medline:
26598376]

JMIR Ment Health 2020 | vol. 7 | iss. 7 | e16654 | p. 14https://mental.jmir.org/2020/7/e16654
(page number not for citation purposes)

Sadeghi et alJMIR MENTAL HEALTH

XSL•FO
RenderX

http://dx.doi.org/10.1249/01.mss.0000184631.27641.b5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16531900&dopt=Abstract
http://dx.doi.org/10.1055/s-2005-872929
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16944398&dopt=Abstract
http://dx.doi.org/10.1038/jhh.2008.11
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18337758&dopt=Abstract
https://doi.org/10.3389/fpubh.2017.00258
https://doi.org/10.3389/fpubh.2017.00258
http://dx.doi.org/10.3389/fpubh.2017.00258
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29034226&dopt=Abstract
http://europepmc.org/abstract/MED/23178990
http://dx.doi.org/10.1007/s10484-012-9208-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23178990&dopt=Abstract
http://europepmc.org/abstract/MED/27773678
http://dx.doi.org/10.1016/j.biopsycho.2016.10.008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27773678&dopt=Abstract
https://doi.org/10.3389/fpsyg.2014.00758
http://dx.doi.org/10.3389/fpsyg.2014.00758
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25076929&dopt=Abstract
http://dx.doi.org/10.1002/jts.20246
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17955526&dopt=Abstract
http://dx.doi.org/10.1016/j.psychres.2017.08.062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29091829&dopt=Abstract
http://dx.doi.org/10.1001/jamapsychiatry.2015.0922
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26353072&dopt=Abstract
http://dx.doi.org/10.1016/j.psychres.2017.05.011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28528244&dopt=Abstract
http://europepmc.org/abstract/MED/25225208
http://dx.doi.org/10.1161/HYPERTENSIONAHA.114.03782
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25225208&dopt=Abstract
http://dx.plos.org/10.1371/journal.pone.0157557
http://dx.doi.org/10.1371/journal.pone.0157557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27336907&dopt=Abstract
http://dx.doi.org/10.1111/j.1540-8167.2005.40788.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16174015&dopt=Abstract
https://www.urbandesignmentalhealth.com/how-to-measure-mental-health.html
https://www.urbandesignmentalhealth.com/how-to-measure-mental-health.html
http://dx.doi.org/10.1046/j.1540-8167.2003.03078.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12890036&dopt=Abstract
http://dx.doi.org/10.1016/j.archger.2015.11.011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26791165&dopt=Abstract
http://dx.doi.org/10.1016/s0165-1781(02)00225-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12467953&dopt=Abstract
http://dx.doi.org/10.1016/0168-8227(95)01190-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8861461&dopt=Abstract
http://dx.doi.org/10.1016/j.neubiorev.2016.03.007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26964804&dopt=Abstract
http://www.cmaj.ca/cgi/pmidlookup?view=long&pmid=26598376
http://dx.doi.org/10.1503/cmaj.150535
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26598376&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


42. Sammito S, Böckelmann I. Factors influencing heart rate variability. Int Cardiovasc Forum J 2016 May 4;6:-. [doi:
10.17987/icfj.v6i0.242]

43. Umetani K, Singer DH, McCraty R, Atkinson M. Twenty-four hour time domain heart rate variability and heart rate:
relations to age and gender over nine decades. J Am Coll Cardiol 1998 Mar 1;31(3):593-601 [FREE Full text] [doi:
10.1016/s0735-1097(97)00554-8] [Medline: 9502641]

44. Albright TD, Jessell TM, Kandel ER, Posner MI. Neural science. Cell 2000 Feb;100:1-55. [doi:
10.1016/s0092-8674(00)00251-8]

45. Mathias C, Bannister R. Autonomic Failure: A Textbook of Clinical Disorders of the Autonomic Nervous System. Oxford,
UK: Oxford University Press; 2013.

46. Shalev AY, Sahar T, Freedman S, Peri T, Glick N, Brandes D, et al. A prospective study of heart rate response following
trauma and the subsequent development of posttraumatic stress disorder. Arch Gen Psychiatry 1998 Jun;55(6):553-559.
[doi: 10.1001/archpsyc.55.6.553] [Medline: 9633675]

47. Pole N, Cumberbatch E, Taylor WM, Metzler TJ, Marmar CR, Neylan TC. Comparisons between high and low peritraumatic
dissociators in cardiovascular and emotional activity while remembering trauma. J Trauma Dissociation 2005;6(4):51-67.
[doi: 10.1300/j229v06n04_04] [Medline: 16537323]

48. Bryant RA, Creamer M, O'Donnell M, Silove D, McFarlane AC. A multisite study of initial respiration rate and heart rate
as predictors of posttraumatic stress disorder. J Clin Psychiatry 2008 Nov;69(11):1694-1701. [doi: 10.4088/jcp.v69n1104]
[Medline: 19014750]

49. Beckham JC, Feldman ME, Barefoot JC, Fairbank JA, Helms MJ, Haney TL, et al. Ambulatory cardiovascular activity in
Vietnam combat veterans with and without posttraumatic stress disorder. J Consult Clin Psychol 2000 Apr;68(2):269-276.
[doi: 10.1037//0022-006x.68.2.269] [Medline: 10780127]

50. Kannel WB, Kannel C, Paffenbarger RS, Cupples L. Heart rate and cardiovascular mortality: the Framingham study. Am
Heart J 1987 Jun;113(6):1489-1494. [doi: 10.1016/0002-8703(87)90666-1] [Medline: 3591616]

51. Woodward SH, Arsenault NJ, Voelker K, Nguyen T, Lynch J, Skultety K, et al. Autonomic activation during sleep in
posttraumatic stress disorder and panic: a mattress actigraphic study. Biol Psychiatry 2009 Jul 1;66(1):41-46 [FREE Full
text] [doi: 10.1016/j.biopsych.2009.01.005] [Medline: 19232575]

52. Buckley TC, Holohan D, Greif JL, Bedard M, Suvak M. Twenty-four-hour ambulatory assessment of heart rate and blood
pressure in chronic PTSD and non-PTSD veterans. J Trauma Stress 2004 Apr;17(2):163-171. [doi:
10.1023/B:JOTS.0000022623.01190.f0] [Medline: 15141790]

53. Orr SP, Pitman RK, Lasko NB, Herz LR. Psychophysiological assessment of posttraumatic stress disorder imagery in world
war II and Korean combat veterans. J Abnorm Psychol 1993 Feb;102(1):152-159. [doi: 10.1037//0021-843x.102.1.152]
[Medline: 8436691]

54. Roy M, Costanzo M, Jovanovic T, Leaman S, Taylor P, Norrholm S, et al. Heart rate response to fear conditioning and
virtual reality in subthreshold PTSD. Stud Health Technol Inform 2013;191:115-119. [Medline: 23792855]

55. Halligan SL, Michael T, Wilhelm FH, Clark DM, Ehlers A. Reduced heart rate responding to trauma reliving in trauma
survivors with PTSD: correlates and consequences. J Trauma Stress 2006 Oct;19(5):721-734. [doi: 10.1002/jts.20167]
[Medline: 17075909]

56. Tabachnick BG, Fidell LS. Experimental Designs Using ANOVA. California, USA: Brooks/Cole; 2011.
57. Shalev AY, Freedman S, Peri T, Brandes D, Sahar T, Orr SP, et al. Prospective study of posttraumatic stress disorder and

depression following trauma. Am J Psychiatry 1998 May;155(5):630-637. [doi: 10.1176/ajp.155.5.630] [Medline: 9585714]
58. Foa EB, Rothbaum BO, Riggs DS, Murdock TB. Treatment of posttraumatic stress disorder in rape victims: a comparison

between cognitive-behavioral procedures and counseling. J Consult Clin Psychol 1991 Oct;59(5):715-723. [doi:
10.1037//0022-006x.59.5.715] [Medline: 1955605]

59. Gelpin E, Bonne O, Peri T, Brandes D, Shalev A. Treatment of recent trauma survivors with benzodiazepines: a prospective
study. J Clin Psychiatry 1996 Sep;57(9):390-394. [Medline: 9746445]

60. Cacioppo J, Tassinary L, Berntson G. Handbook of Psychophysiology. Cambridge, USA: Cambridge University Press;
2007.

61. Hardy GH. Properties of logarithmico-exponential functions. Proc Lond Math Soc 2016 Dec 23;s2-10(1):54-90. [doi:
10.1112/plms/s2-10.1.54]

62. Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 1963
Jun;11(2):431-441. [doi: 10.1137/0111030]

63. Bartels-Ferreira R, de Sousa ED, Trevizani GA, Silva LP, Nakamura FY, Forjaz CL, et al. Can a first-order exponential
decay model fit heart rate recovery after resistance exercise? Clin Physiol Funct Imaging 2015 Mar;35(2):98-103. [doi:
10.1111/cpf.12132] [Medline: 24494748]

64. Lipov E. Post traumatic stress disorder (PTSD) as an over activation of sympathetic nervous system: an alternative view.
J Trauma Treat 2013;3(1):1222. [doi: 10.4172/2167-1222.1000181]

65. Strath SJ, Swartz AM, Bassett DR, O'Brien WL, King GA, Ainsworth BE. Evaluation of heart rate as a method for assessing
moderate intensity physical activity. Med Sci Sports Exerc 2000 Sep;32(9 Suppl):S465-S470. [doi:
10.1097/00005768-200009001-00005] [Medline: 10993416]

JMIR Ment Health 2020 | vol. 7 | iss. 7 | e16654 | p. 15https://mental.jmir.org/2020/7/e16654
(page number not for citation purposes)

Sadeghi et alJMIR MENTAL HEALTH

XSL•FO
RenderX

http://dx.doi.org/10.17987/icfj.v6i0.242
https://linkinghub.elsevier.com/retrieve/pii/S0735-1097(97)00554-8
http://dx.doi.org/10.1016/s0735-1097(97)00554-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9502641&dopt=Abstract
http://dx.doi.org/10.1016/s0092-8674(00)00251-8
http://dx.doi.org/10.1001/archpsyc.55.6.553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9633675&dopt=Abstract
http://dx.doi.org/10.1300/j229v06n04_04
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16537323&dopt=Abstract
http://dx.doi.org/10.4088/jcp.v69n1104
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19014750&dopt=Abstract
http://dx.doi.org/10.1037//0022-006x.68.2.269
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10780127&dopt=Abstract
http://dx.doi.org/10.1016/0002-8703(87)90666-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=3591616&dopt=Abstract
http://europepmc.org/abstract/MED/19232575
http://europepmc.org/abstract/MED/19232575
http://dx.doi.org/10.1016/j.biopsych.2009.01.005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19232575&dopt=Abstract
http://dx.doi.org/10.1023/B:JOTS.0000022623.01190.f0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15141790&dopt=Abstract
http://dx.doi.org/10.1037//0021-843x.102.1.152
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8436691&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23792855&dopt=Abstract
http://dx.doi.org/10.1002/jts.20167
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17075909&dopt=Abstract
http://dx.doi.org/10.1176/ajp.155.5.630
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9585714&dopt=Abstract
http://dx.doi.org/10.1037//0022-006x.59.5.715
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=1955605&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9746445&dopt=Abstract
http://dx.doi.org/10.1112/plms/s2-10.1.54
http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.1111/cpf.12132
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24494748&dopt=Abstract
http://dx.doi.org/10.4172/2167-1222.1000181
http://dx.doi.org/10.1097/00005768-200009001-00005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10993416&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


66. Romero-Ugalde HM, Garnotel M, Doron M, Jallon P, Charpentier G, Franc S, et al. An original piecewise model for
computing energy expenditure from accelerometer and heart rate signals. Physiol Meas 2017 Jul 28;38(8):1599-1615. [doi:
10.1088/1361-6579/aa7cdf] [Medline: 28665293]

67. Khoueiry Z, Roubille C, Nagot N, Lattuca B, Piot C, Leclercq F, et al. Could heart rate play a role in pericardial inflammation?
Med Hypotheses 2012 Oct;79(4):512-515. [doi: 10.1016/j.mehy.2012.07.006] [Medline: 22858356]

68. Tonhajzerova I, Ondrejka I, Chladekova L, Farsky I, Visnovcova Z, Calkovska A, et al. Heart rate time irreversibility is
impaired in adolescent major depression. Prog Neuropsychopharmacol Biol Psychiatry 2012 Oct 1;39(1):212-217. [doi:
10.1016/j.pnpbp.2012.06.023] [Medline: 22771778]

69. Chen H, Erol Y, Shen E, Russell S. Probabilistic model-based approach for heart beat detection. Physiol Meas 2016
Sep;37(9):1404-1421. [doi: 10.1088/0967-3334/37/9/1404] [Medline: 27480267]

70. Peng C, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstationary
heartbeat time series. Chaos 1995;5(1):82-87. [doi: 10.1063/1.166141] [Medline: 11538314]

71. Cohen H, Kotler M, Matar MA, Kaplan Z, Loewenthal U, Miodownik H, et al. Analysis of heart rate variability in
posttraumatic stress disorder patients in response to a trauma-related reminder. Biol Psychiatry 1998 Nov
15;44(10):1054-1059. [doi: 10.1016/s0006-3223(97)00475-7] [Medline: 9821570]

72. Kantz H, Schreiber T. Nonlinear Time Series Analysis. Cambridge, USA: Cambridge University Press; 2004.
73. Montgomery DC, Johnson LA, Gardiner JS. Forecasting And Time Series Analysis. New York, USA: Mcgraw-Hill; 1990.
74. Galwey NW. Introduction to Mixed Modelling: Beyond Regression and Analysis of Variance. New York, USA: Wiley;

2014.
75. Gee A, Barbieri R, Paydarfar D, Indic P. Improving heart rate estimation in preterm infants with bivariate point process

analysis of heart rate and respiration. Conf Proc IEEE Eng Med Biol Soc 2016 Aug;2016:920-923. [doi:
10.1109/EMBC.2016.7590851] [Medline: 28268474]

76. Boscarino JA. A prospective study of PTSD and early-age heart disease mortality among Vietnam veterans: implications
for surveillance and prevention. Psychosom Med 2008 Jul;70(6):668-676 [FREE Full text] [doi:
10.1097/PSY.0b013e31817bccaf] [Medline: 18596248]

77. Kassam-Adams N, Garcia-España JF, Fein JA, Winston FK. Heart rate and posttraumatic stress in injured children. Arch
Gen Psychiatry 2005 Mar;62(3):335-340. [doi: 10.1001/archpsyc.62.3.335] [Medline: 15753247]

78. Darlington RB. Regression and Linear Models. New York, USA: Mcgraw-Hill; 1990.
79. Greenacre M. Correspondence Analysis in Practice. Milton Park, Canada: Chapman & Hall/CRC; 2017.
80. Zakeri I, Adolph A, Puyau M, Vohra F, Butte N. Cross-sectional time series and multivariate adaptive regression splines

models using accelerometry and heart rate predict energy expenditure of preschoolers. J Nutr 2013 Jan;143(1):114-122
[FREE Full text] [doi: 10.3945/jn.112.168542] [Medline: 23190760]

81. Bonomi A, Goldenberg S, Papini G, Kraal J, Stut W, Sartor F, et al. Predicting Energy Expenditure From
Photo-Plethysmographic Measurements of Heart Rate Under Beta Blocker Therapy: Data Driven Personalization Strategies
Based on Mixed Models. In: Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society. 2015 Presented at: EMBC'15; August 25-29, 2015; Milan, Italy. [doi: 10.1109/embc.2015.7320162]

82. Xu Z, Zong C, Jafari R. Constructing energy expenditure regression model using heart rate with reduced training time.
Conf Proc IEEE Eng Med Biol Soc 2015;2015:6566-6569. [doi: 10.1109/EMBC.2015.7319897] [Medline: 26737797]

83. James G, Witten D, Hastie T, Tibshirani R. An Introduction to Statistical Learning: with Applications in R. New York,
USA: Springer; 2013.

84. Sano A, Picard R. Stress Recognition Using Wearable Sensors and Mobile Phones. In: Proceedings of the Humaine
Association Conference on Affective Computing and Intelligent Interaction. 2013 Presented at: ACII'13; September 2-5,
2013; Geneva, Switzerland. [doi: 10.1109/acii.2013.117]

85. Thayer JF, Ahs F, Fredrikson M, Sollers JJ, Wager TD. A meta-analysis of heart rate variability and neuroimaging studies:
implications for heart rate variability as a marker of stress and health. Neurosci Biobehav Rev 2012 Feb;36(2):747-756.
[doi: 10.1016/j.neubiorev.2011.11.009] [Medline: 22178086]

86. Healey J, Picard R. Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans Intell Transport
Syst 2005 Jun;6(2):156-166. [doi: 10.1109/tits.2005.848368]

87. Kolus A, Dubé PA, Imbeau D, Labib R, Dubeau D. Estimating oxygen consumption from heart rate using adaptive
neuro-fuzzy inference system and analytical approaches. Appl Ergon 2014 Nov;45(6):1475-1483. [doi:
10.1016/j.apergo.2014.04.003] [Medline: 24793823]

88. Kolus A, Imbeau D, Dubé PA, Dubeau D. Classifying work rate from heart rate measurements using an adaptive neuro-fuzzy
inference system. Appl Ergon 2016 May;54:158-168. [doi: 10.1016/j.apergo.2015.12.006] [Medline: 26851475]

89. Michie D, Spiegelhalter D, Taylor C. Machine Learning, Neural and Statistical Classification. Upper Saddle River, NJ:
Prentice Hall; 1994.

90. Kubo R. The fluctuation-dissipation theorem. Rep Prog Phys 2002 Aug 5;29(1):255-284. [doi: 10.1088/0034-4885/29/1/306]
91. Chen M, Niestemski LR, Prevost R, McRae M, Cholleti S, Najarro G, et al. Prediction of heart rate response to conclusion

of the spontaneous breathing trial by fluctuation dissipation theory. Phys Biol 2013 Feb;10(1):016006 [FREE Full text]
[doi: 10.1088/1478-3975/10/1/016006] [Medline: 23361135]

JMIR Ment Health 2020 | vol. 7 | iss. 7 | e16654 | p. 16https://mental.jmir.org/2020/7/e16654
(page number not for citation purposes)

Sadeghi et alJMIR MENTAL HEALTH

XSL•FO
RenderX

http://dx.doi.org/10.1088/1361-6579/aa7cdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28665293&dopt=Abstract
http://dx.doi.org/10.1016/j.mehy.2012.07.006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22858356&dopt=Abstract
http://dx.doi.org/10.1016/j.pnpbp.2012.06.023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22771778&dopt=Abstract
http://dx.doi.org/10.1088/0967-3334/37/9/1404
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27480267&dopt=Abstract
http://dx.doi.org/10.1063/1.166141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11538314&dopt=Abstract
http://dx.doi.org/10.1016/s0006-3223(97)00475-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9821570&dopt=Abstract
http://dx.doi.org/10.1109/EMBC.2016.7590851
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28268474&dopt=Abstract
http://europepmc.org/abstract/MED/18596248
http://dx.doi.org/10.1097/PSY.0b013e31817bccaf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18596248&dopt=Abstract
http://dx.doi.org/10.1001/archpsyc.62.3.335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15753247&dopt=Abstract
http://europepmc.org/abstract/MED/23190760
http://dx.doi.org/10.3945/jn.112.168542
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23190760&dopt=Abstract
http://dx.doi.org/10.1109/embc.2015.7320162
http://dx.doi.org/10.1109/EMBC.2015.7319897
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26737797&dopt=Abstract
http://dx.doi.org/10.1109/acii.2013.117
http://dx.doi.org/10.1016/j.neubiorev.2011.11.009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22178086&dopt=Abstract
http://dx.doi.org/10.1109/tits.2005.848368
http://dx.doi.org/10.1016/j.apergo.2014.04.003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24793823&dopt=Abstract
http://dx.doi.org/10.1016/j.apergo.2015.12.006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26851475&dopt=Abstract
http://dx.doi.org/10.1088/0034-4885/29/1/306
http://europepmc.org/abstract/MED/23361135
http://dx.doi.org/10.1088/1478-3975/10/1/016006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23361135&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


92. Zhang Y, Chen W, Su SW, Celler B. Nonlinear modelling and control for heart rate response to exercise. Int J Bioinform
Res Appl 2012;8(5-6):397-416. [doi: 10.1504/IJBRA.2012.049624] [Medline: 23060418]

93. Roger D, Jamieson J. Individual differences in delayed heart-rate recovery following stress: the role of extraversion,
neuroticism and emotional control. Personal Individ Differ 1988 Jan;9(4):721-726. [doi: 10.1016/0191-8869(88)90061-x]

94. Lefever J, Berckmans D, Aerts J. Time-variant modelling of heart rate responses to exercise intensity during road cycling.
Eur J Sport Sci 2014;14(Suppl 1):S406-S412. [doi: 10.1080/17461391.2012.708791] [Medline: 24444235]

95. Haber R, Unbehauen H. Structure identification of nonlinear dynamic systems—a survey on input/output approaches.
Automatica 1990 Jul;26(4):651-677. [doi: 10.1016/0005-1098(90)90044-i]

96. Valenza G, Lanata A, Scilingo EP. The role of nonlinear dynamics in affective valence and arousal recognition. IEEE Trans
Affective Comput 2012 Apr;3(2):237-249. [doi: 10.1109/t-affc.2011.30]

97. Langford J, Salakhutdinov R, Zhang T. Learning Nonlinear Dynamic Models. In: Proceedings of the 26th Annual International
Conference on Machine Learning. 2009 Presented at: ICML'09; June 14-18, 2009; Montreal, Canada. [doi:
10.1145/1553374.1553451]

98. Olufsen MS, Ottesen JT. A practical approach to parameter estimation applied to model predicting heart rate regulation. J
Math Biol 2013 Jul;67(1):39-68 [FREE Full text] [doi: 10.1007/s00285-012-0535-8] [Medline: 22588357]

99. Boulay MR, Simoneau JA, Lortie G, Bouchard C. Monitoring high-intensity endurance exercise with heart rate and
thresholds. Med Sci Sports Exerc 1997 Jan;29(1):125-132. [doi: 10.1097/00005768-199701000-00018] [Medline: 9000165]

100. Vrijkotte TG, van Doornen LJ, de Geus EJ. Effects of work stress on ambulatory blood pressure, heart rate, and heart rate
variability. Hypertension 2000 Apr;35(4):880-886. [doi: 10.1161/01.hyp.35.4.880] [Medline: 10775555]

101. Feng J, Huang Z, Zhou C, Ye X. Study of continuous blood pressure estimation based on pulse transit time, heart rate and
photoplethysmography-derived hemodynamic covariates. Australas Phys Eng Sci Med 2018 Jun;41(2):403-413. [doi:
10.1007/s13246-018-0637-8] [Medline: 29633173]

102. Champéroux P, Fesler P, Judé S, Richard S, le Guennec JY, Thireau J. High-frequency autonomic modulation: a new model
for analysis of autonomic cardiac control. Br J Pharmacol 2018 Aug;175(15):3131-3143 [FREE Full text] [doi:
10.1111/bph.14354] [Medline: 29723392]

103. Diderichsen PM, Cox E, Martin SW, Cleton A, Ribbing J. Predicted heart rate effect of inhaled PF-00610355, a long acting
β-adrenoceptor agonist, in volunteers and patients with chronic obstructive pulmonary disease. Br J Clin Pharmacol 2013
Nov;76(5):752-762 [FREE Full text] [doi: 10.1111/bcp.12080] [Medline: 23323609]

104. Hoyer D, Nowack S, Bauer S, Tetschke F, Rudolph A, Wallwitz U, et al. Fetal development of complex autonomic control
evaluated from multiscale heart rate patterns. Am J Physiol Regul Integr Comp Physiol 2013 Mar 1;304(5):R383-R392
[FREE Full text] [doi: 10.1152/ajpregu.00120.2012] [Medline: 23269479]

105. Alrefaie M, Summerskill S, Jackon T. In a heart beat: using driver's physiological changes to determine the quality of a
takeover in highly automated vehicles. Accid Anal Prev 2019 Oct;131:180-190. [doi: 10.1016/j.aap.2019.06.011] [Medline:
31302486]

106. Oliveira M, Marçôa R, Moutinho J, Oliveira P, Ladeira I, Lima R, et al. Reference equations for the 6-minute walk distance
in healthy Portuguese subjects 18-70 years old. Pulmonology 2019;25(2):83-89 [FREE Full text] [doi:
10.1016/j.pulmoe.2018.04.003] [Medline: 29980459]

107. Sartipy U, Savarese G, Dahlström U, Fu M, Lund LH. Association of heart rate with mortality in sinus rhythm and atrial
fibrillation in heart failure with preserved ejection fraction. Eur J Heart Fail 2019 Apr;21(4):471-479 [FREE Full text] [doi:
10.1002/ejhf.1389] [Medline: 30698317]

108. Ni J, Muhlstein L, McAuley J. Modeling Heart Rate and Activity Data for Personalized Fitness Recommendation. In:
Proceedings of the The World Wide Web Conference. 2019 Presented at: WWW'19; May 13-17, 2019; San Francisco,
USA. [doi: 10.1145/3308558.3313643]

109. Signorini MG, Pini N, Malovini A, Bellazzi R, Magenes G. Integrating machine learning techniques and physiology based
heart rate features for antepartum fetal monitoring. Comput Methods Programs Biomed 2020 Mar;185:105015. [doi:
10.1016/j.cmpb.2019.105015] [Medline: 31678794]

110. Chaudhuri T, Soh YC, Li H, Xie L. Machine learning driven personal comfort prediction by wearable sensing of pulse rate
and skin temperature. Build Environ Elsevier 2020 Mar;170:106615. [doi: 10.1016/j.buildenv.2019.106615]

111. Lu Y, Burykin A, Deem MW, Buchman TG. Predicting clinical physiology: a Markov chain model of heart rate recovery
after spontaneous breathing trials in mechanically ventilated patients. J Crit Care 2009 Sep;24(3):347-361. [doi:
10.1016/j.jcrc.2009.01.014] [Medline: 19664524]

112. Valenza G, Citi L, Barbieri R. Estimation of instantaneous complex dynamics through Lyapunov exponents: a study on
heartbeat dynamics. PLoS One 2014;9(8):e105622 [FREE Full text] [doi: 10.1371/journal.pone.0105622] [Medline:
25170911]

113. Ferrer E, Helm JL. Dynamical systems modeling of physiological coregulation in dyadic interactions. Int J Psychophysiol
2013 Jun;88(3):296-308. [doi: 10.1016/j.ijpsycho.2012.10.013] [Medline: 23107993]

114. Valenza G, Lanatà A, Scilingo EP. Oscillations of heart rate and respiration synchronize during affective visual stimulation.
IEEE Trans Inf Technol Biomed 2012 Jul;16(4):683-690. [doi: 10.1109/TITB.2012.2197632] [Medline: 22575693]

JMIR Ment Health 2020 | vol. 7 | iss. 7 | e16654 | p. 17https://mental.jmir.org/2020/7/e16654
(page number not for citation purposes)

Sadeghi et alJMIR MENTAL HEALTH

XSL•FO
RenderX

http://dx.doi.org/10.1504/IJBRA.2012.049624
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23060418&dopt=Abstract
http://dx.doi.org/10.1016/0191-8869(88)90061-x
http://dx.doi.org/10.1080/17461391.2012.708791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24444235&dopt=Abstract
http://dx.doi.org/10.1016/0005-1098(90)90044-i
http://dx.doi.org/10.1109/t-affc.2011.30
http://dx.doi.org/10.1145/1553374.1553451
http://europepmc.org/abstract/MED/22588357
http://dx.doi.org/10.1007/s00285-012-0535-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22588357&dopt=Abstract
http://dx.doi.org/10.1097/00005768-199701000-00018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9000165&dopt=Abstract
http://dx.doi.org/10.1161/01.hyp.35.4.880
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10775555&dopt=Abstract
http://dx.doi.org/10.1007/s13246-018-0637-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29633173&dopt=Abstract
https://doi.org/10.1111/bph.14354
http://dx.doi.org/10.1111/bph.14354
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29723392&dopt=Abstract
https://doi.org/10.1111/bcp.12080
http://dx.doi.org/10.1111/bcp.12080
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23323609&dopt=Abstract
http://journals.physiology.org/doi/full/10.1152/ajpregu.00120.2012?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed
http://dx.doi.org/10.1152/ajpregu.00120.2012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23269479&dopt=Abstract
http://dx.doi.org/10.1016/j.aap.2019.06.011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31302486&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S2531-0437(18)30072-2
http://dx.doi.org/10.1016/j.pulmoe.2018.04.003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29980459&dopt=Abstract
https://doi.org/10.1002/ejhf.1389
http://dx.doi.org/10.1002/ejhf.1389
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30698317&dopt=Abstract
http://dx.doi.org/10.1145/3308558.3313643
http://dx.doi.org/10.1016/j.cmpb.2019.105015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31678794&dopt=Abstract
http://dx.doi.org/10.1016/j.buildenv.2019.106615
http://dx.doi.org/10.1016/j.jcrc.2009.01.014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19664524&dopt=Abstract
http://dx.plos.org/10.1371/journal.pone.0105622
http://dx.doi.org/10.1371/journal.pone.0105622
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25170911&dopt=Abstract
http://dx.doi.org/10.1016/j.ijpsycho.2012.10.013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23107993&dopt=Abstract
http://dx.doi.org/10.1109/TITB.2012.2197632
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22575693&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


115. Zazula D. Optimization of Heartbeat Detection Based on Clustering and Multimethod Approach. In: Proceedings of the
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2012 Presented at: EMBC'12;
August 28-September 1, 2012; San Diego, CA, USA. [doi: 10.1109/embc.2012.6345857]

116. Echeverría JC, Álvarez-Ramírez J, Peña MA, Rodríguez E, Gaitán MJ, González-Camarena R. Fractal and nonlinear
changes in the long-term baseline fluctuations of fetal heart rate. Med Eng Phys 2012 May;34(4):466-471. [doi:
10.1016/j.medengphy.2011.08.006] [Medline: 21889389]

117. Park Y, Ryu K, Shim S, Hoh J, Park M. Comparison of fetal heart rate patterns using nonlinear dynamics in breech versus
cephalic presentation at term. Early Hum Dev 2013 Feb;89(2):101-106. [doi: 10.1016/j.earlhumdev.2012.08.006] [Medline:
22959071]

118. Scalzi S, Tomei P, Verrelli CM. Nonlinear control techniques for the heart rate regulation in treadmill exercises. IEEE
Trans Biomed Eng 2012 Mar;59(3):599-603. [doi: 10.1109/TBME.2011.2179300] [Medline: 22167561]

119. Cheng T, Savkin A, Celler B, Su S, Wang L. Nonlinear modeling and control of human heart rate response during exercise
with various work load intensities. IEEE Trans Biomed Eng 2008 Nov;55(11):2499-2508. [doi:
10.1109/TBME.2008.2001131] [Medline: 18990619]

120. Mazzoleni MJ, Battaglini CL, Martin KJ, Coffman EM, Mann BP. Modeling and predicting heart rate dynamics across a
broad range of transient exercise intensities during cycling. Sports Eng 2016 Jan 19;19(2):117-127. [doi:
10.1007/s12283-015-0193-3]

121. Zakynthinaki MS. Modelling heart rate kinetics. PLoS One 2015;10(4):e0118263 [FREE Full text] [doi:
10.1371/journal.pone.0118263] [Medline: 25876164]

122. Gelman A, Hill J. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge, USA: Cambridge
University Press; 2006.

123. Harrington P. Machine Learning In Action. Shelter Island, USA: Manning Publications; 2012.
124. D'Agostino RB. Goodness-of-Fit-Techniques. New York, USA: CRC Press; 1986.
125. Shalev AY, Peri T, Canetti L, Schreiber S. Predictors of PTSD in injured trauma survivors: a prospective study. Am J

Psychiatry 1996 Feb;153(2):219-225. [doi: 10.1176/ajp.153.2.219] [Medline: 8561202]
126. Magder SA. The ups and downs of heart rate. Crit Care Med 2012 Jan;40(1):239-245. [doi: 10.1097/CCM.0b013e318232e50c]

[Medline: 22179340]
127. Lester M, Sheffield L, Trammell P, Reeves T. The effect of age and athletic training on the maximal heart rate during

muscular exercise. Am Heart J 1968 Sep;76(3):370-376. [doi: 10.1016/0002-8703(68)90233-0] [Medline: 4951335]
128. Sacknoff DM, Gleim GW, Stachenfeld N, Coplan NL. Effect of athletic training on heart rate variability. Am Heart J 1994

May;127(5):1275-1278. [doi: 10.1016/0002-8703(94)90046-9] [Medline: 8172056]
129. Dietrich DF, Schwartz J, Schindler C, Gaspoz J, Barthélémy JC, Tschopp J, SAPALDIA-Team. Effects of passive smoking

on heart rate variability, heart rate and blood pressure: an observational study. Int J Epidemiol 2007 Aug;36(4):834-840.
[doi: 10.1093/ije/dym031] [Medline: 17440032]

130. Freedson PS, Miller K. Objective monitoring of physical activity using motion sensors and heart rate. Res Q Exerc Sport
2000 Jun;71(Suppl 2):21-29. [doi: 10.1080/02701367.2000.11082782] [Medline: 25680009]

131. Green JA, Halsey LG, Wilson RP, Frappell PB. Estimating energy expenditure of animals using the accelerometry technique:
activity, inactivity and comparison with the heart-rate technique. J Exp Biol 2009 Feb;212(Pt 4):471-482 [FREE Full text]
[doi: 10.1242/jeb.026377] [Medline: 19181894]

132. Taelman J, Vandeput S, Spaepen A, Van HS. Influence of Mental Stress on Heart Rate and Heart Rate Variability. In:
Proceedings of the 4th European Conference of the International Federation for Medical and Biological Engineering. 2008
Presented at: ECIFMBE'18; November 23-27, 2008; Antwerp, Belgium. [doi: 10.1007/978-3-540-89208-3_324]

133. Pagani M, Somers V, Furlan R, Dell'Orto S, Conway J, Baselli G, et al. Changes in autonomic regulation induced by
physical training in mild hypertension. Hypertension 1988 Dec;12(6):600-610. [doi: 10.1161/01.hyp.12.6.600] [Medline:
3203964]

134. McCarty R, Horwatt K, Konarska M. Chronic stress and sympathetic-adrenal medullary responsiveness. Soc Sci Med
1988;26(3):333-341. [doi: 10.1016/0277-9536(88)90398-x] [Medline: 3279522]

135. Chen H, Simpson D, Ying Z. Infill asymptotics for a stochastic process model with measurement error. Stat Sin
2000;10(1):141-156 [FREE Full text]

Abbreviations
ANFIS: adaptive neuro-fuzzy inference system
ANOVA: analysis of variance
ANS: autonomic nervous system
AUC-ROC: area under the receiver operating characteristics curve
COH: coherence score
FDT: fluctuation-dissipation theory
HF: high frequency power

JMIR Ment Health 2020 | vol. 7 | iss. 7 | e16654 | p. 18https://mental.jmir.org/2020/7/e16654
(page number not for citation purposes)

Sadeghi et alJMIR MENTAL HEALTH

XSL•FO
RenderX

http://dx.doi.org/10.1109/embc.2012.6345857
http://dx.doi.org/10.1016/j.medengphy.2011.08.006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21889389&dopt=Abstract
http://dx.doi.org/10.1016/j.earlhumdev.2012.08.006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22959071&dopt=Abstract
http://dx.doi.org/10.1109/TBME.2011.2179300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22167561&dopt=Abstract
http://dx.doi.org/10.1109/TBME.2008.2001131
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18990619&dopt=Abstract
http://dx.doi.org/10.1007/s12283-015-0193-3
http://dx.plos.org/10.1371/journal.pone.0118263
http://dx.doi.org/10.1371/journal.pone.0118263
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25876164&dopt=Abstract
http://dx.doi.org/10.1176/ajp.153.2.219
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8561202&dopt=Abstract
http://dx.doi.org/10.1097/CCM.0b013e318232e50c
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22179340&dopt=Abstract
http://dx.doi.org/10.1016/0002-8703(68)90233-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=4951335&dopt=Abstract
http://dx.doi.org/10.1016/0002-8703(94)90046-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8172056&dopt=Abstract
http://dx.doi.org/10.1093/ije/dym031
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17440032&dopt=Abstract
http://dx.doi.org/10.1080/02701367.2000.11082782
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25680009&dopt=Abstract
http://jeb.biologists.org/cgi/pmidlookup?view=long&pmid=19181894
http://dx.doi.org/10.1242/jeb.026377
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19181894&dopt=Abstract
http://dx.doi.org/10.1007/978-3-540-89208-3_324
http://dx.doi.org/10.1161/01.hyp.12.6.600
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=3203964&dopt=Abstract
http://dx.doi.org/10.1016/0277-9536(88)90398-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=3279522&dopt=Abstract
https://www.jstor.org/stable/24306709
http://www.w3.org/Style/XSL
http://www.renderx.com/


HR: heart rate
HRR: heart rate response
HRV: heart rate variability
LF: low frequency power
mHealth: mobile health
PNS: parasympathetic nervous system
PRISMA: preferred reporting items for systematic reviews and meta-analyses
PTSD: posttraumatic stress disorder
RMSSD: root mean square of successive differences between normal heart beats
SDNN: SD of the interbeat interval of normal sinus beats
SNS: sympathetic nervous system

Edited by J Torous; submitted 10.10.19; peer-reviewed by D Neyens, J Pyne; comments to author 01.11.19; revised version received
11.03.20; accepted 03.04.20; published 22.07.20

Please cite as:
Sadeghi M, Sasangohar F, McDonald AD
Toward a Taxonomy for Analyzing the Heart Rate as a Physiological Indicator of Posttraumatic Stress Disorder: Systematic Review
and Development of a Framework
JMIR Ment Health 2020;7(7):e16654
URL: https://mental.jmir.org/2020/7/e16654
doi: 10.2196/16654
PMID: 32706710

©Mahnoosh Sadeghi, Farzan Sasangohar, Anthony D McDonald. Originally published in JMIR Mental Health
(http://mental.jmir.org), 22.07.2020. This is an open-access article distributed under the terms of the Creative Commons Attribution
License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work, first published in JMIR Mental Health, is properly cited. The complete bibliographic
information, a link to the original publication on http://mental.jmir.org/, as well as this copyright and license information must
be included.

JMIR Ment Health 2020 | vol. 7 | iss. 7 | e16654 | p. 19https://mental.jmir.org/2020/7/e16654
(page number not for citation purposes)

Sadeghi et alJMIR MENTAL HEALTH

XSL•FO
RenderX

https://mental.jmir.org/2020/7/e16654
http://dx.doi.org/10.2196/16654
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32706710&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

