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Abstract

Background: Autism spectrum disorder (ASD) is a developmental disorder characterized by deficits in social communication
and interaction, and restricted and repetitive behaviors and interests. The incidence of ASD has increased in recent years; it is
now estimated that approximately 1 in 40 children in the United States are affected. Due in part to increasing prevalence, access
to treatment has become constrained. Hope lies in mobile solutions that provide therapy through artificial intelligence (AI)
approaches, including facial and emotion detection AI models developed by mainstream cloud providers, available directly to
consumers. However, these solutions may not be sufficiently trained for use in pediatric populations.

Objective: Emotion classifiers available off-the-shelf to the general public through Microsoft, Amazon, Google, and Sighthound
are well-suited to the pediatric population, and could be used for developing mobile therapies targeting aspects of social
communication and interaction, perhaps accelerating innovation in this space. This study aimed to test these classifiers directly
with image data from children with parent-reported ASD recruited through crowdsourcing.

Methods: We used a mobile game called Guess What? that challenges a child to act out a series of prompts displayed on the
screen of the smartphone held on the forehead of his or her care provider. The game is intended to be a fun and engaging way
for the child and parent to interact socially, for example, the parent attempting to guess what emotion the child is acting out (eg,
surprised, scared, or disgusted). During a 90-second game session, as many as 50 prompts are shown while the child acts, and
the video records the actions and expressions of the child. Due in part to the fun nature of the game, it is a viable way to remotely
engage pediatric populations, including the autism population through crowdsourcing. We recruited 21 children with ASD to
play the game and gathered 2602 emotive frames following their game sessions. These data were used to evaluate the accuracy
and performance of four state-of-the-art facial emotion classifiers to develop an understanding of the feasibility of these platforms
for pediatric research.

Results: All classifiers performed poorly for every evaluated emotion except happy. None of the classifiers correctly labeled
over 60.18% (1566/2602) of the evaluated frames. Moreover, none of the classifiers correctly identified more than 11% (6/51)
of the angry frames and 14% (10/69) of the disgust frames.

Conclusions: The findings suggest that commercial emotion classifiers may be insufficiently trained for use in digital approaches
to autism treatment and treatment tracking. Secure, privacy-preserving methods to increase labeled training data are needed to
boost the models’ performance before they can be used in AI-enabled approaches to social therapy of the kind that is common
in autism treatments.
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Introduction

Background
Autism spectrum disorder (ASD) is a neurodevelopmental
disorder characterized by stereotyped and repetitive behaviors
and interests as well as deficits in social interaction and
communication [1]. In addition, autistic children struggle with
facial affect and may express themselves in ways that do not
closely resemble those of their peers [2-4]. The incidence of
ASD has increased in recent years; it is now estimated that
approximately 1 in 40 children in the United States is affected
by this condition [5]. Although autism has no cure, there is
strong evidence that suggests early intervention can improve
speech and communication skills [6].

Common approaches to autism therapy include applied behavior
analysis (ABA) and the early start Denver model (ESDM). In
ABA therapy, the intervention is customized by a trained
behavioral analyst to specifically suit the learner’s skills and
deficits [7]. The basis of this program is a series of structured
activities that emphasize the development of transferable skills
to the real world. Similarly, naturalistic developmental
behavioral interventions such as ESDM support the development
of core social skills through interactions with a licensed
behavioral therapist while emphasizing joint activities and
interpersonal exchange [8]. Both treatment types have been
shown to be safe and effective, with their greatest impact
potential occurring during early intervention at younger ages
[9-11].

Despite significant progress in understanding this condition in
recent years, imbalances in coverage and barriers to diagnosis
and treatment remain. In developing countries, studies have
noted a lack of trained health professionals, inconsistent
treatments, and an unclear pathway from diagnosis to
intervention [12-14]. Within the United States, research has
shown that children in rural areas receive diagnoses
approximately 5 months later than children living in cities [15].
Moreover, it has been observed that children from families near
the poverty line receive diagnoses almost a full year later than
those from higher-income families. Data-driven approaches
have estimated that over 80% of US counties contain no
diagnostic autism resources [16]. Even months of delayed access
to therapy can limit the effectiveness of subsequent behavioral
interventions [15]. Alternative solutions that can ameliorate

some of these challenges could be derived from digital and
mobile tools. For example, we developed a wearable system
using Google Glass that leverages emotion classification
algorithms to recognize the facial emotion of a child’s
conversation partner for real-time feedback and social support
and showed treatment efficacy in a randomized clinical trial
[17-25].

Various cloud-based emotion classifiers may help the value and
reach of mobile tools and solutions. These include four
commercially available systems: Microsoft Azure Emotion
application programming interface (API) [26], Amazon
Rekognition [27], Google Cloud Vision [28], and Sighthound
[29]. Whereas most implementations of these emotion
recognition APIs are proprietary, these algorithms are typically
trained using large facial emotion datasets such as the
Cohn-Kanade database [30] and Belfast-Induced Natural
Emotion Database [31], which have few examples of children.
Due to this bias in labeled examples, it is possible that these
models do not generalize well to the pediatric population,
including children with developmental delays such as autism,
which is evaluated in this study. This study puts the disparity
to test. To do so, we use our mobile game Guess What? [32-35].
This game (native to Android [36] and iOS [37] platforms)
fosters engagement between the child and their social partner,
such as a parent, through charades-like games while building a
database of facial image data enriched for a range of emotions
exhibited by the child during the game sessions.

The primary contributions of this study are as follows:

1. We present a mobile charades game, Guess What?, to
crowdsource emotive video from its players. This
framework has utility both as a mechanism for the
evaluation of existing emotion classifiers and for the
development of novel systems that appropriately generalize
to the population of interest.

2. We present a study in which 2602 emotive frames are
derived from 21 children with a parent-reported diagnosis
of autism using data from the Guess What mobile game
collected in a variety of heterogeneous environments.

3. The data were used to evaluate the accuracy and
performance of several state-of-the-art classifiers using the
workflow shown in Figure 1, to develop an understanding
of the feasibility of using these APIs in future mobile
therapy approaches.
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Figure 1. A mobile charades game played between caregiver and child is used to crowdsource emotive video, subsampled and categorized by both
manual raters and automatic classifiers. Frames from these videos form the basis of our dataset to evaluate several emotion classifiers.

Related Work
To the best of our knowledge, this is the first work to date that
benchmarks public emotion recognition APIs on children with
developmental delays. However, a number of interesting apps
have been proposed in recent years, which employ vision-based
tools or affective computing solutions as an aid for children
with autism. The emergence of these approaches motivates a
careful investigation of the feasibility of commercial emotion
classification algorithms for the pediatric population.

Motivated by the fact that children with autism can experience
cognitive or emotional overload, which may compromise their
communication skills and learning experience, Picard et al [38]
provided an overview of technological advances for sensing
autonomic nervous system activation in real-time, including
wearable electrodermal activity sensors. A more general
overview of the role of affective computing in autism is provided
by Kalioby et al [39], with the motivating examples of using
technology to help individuals better navigate the socioemotional
landscape of their daily lives. Among the enumerated devices
include those developed at the Massachusetts Institute of
Technology media laboratory, such as expression glasses that
discriminate between several emotions, skin
conductance-sensing gloves for stress detection, and a
pressure-sensitive mouse to infer affective state from how
individuals interact with the device. Devices made by industry
include the SenseWear Pro2 armband, which includes a variety
of wearable sensors that can be repurposed for stress and
productivity detection, smart gloves that can detect breathing
rate and blood pressure, and wireless heart-rate monitors that
can be analyzed in the context of environmental stressors [40].

Prior research conducted by us has demonstrated the efficacy
of mobile video phenotyping approaches for children with ASD
in general [41-47] and via the use of emotion classifiers
integrated with the Google Glass platform to provide real-time
behavioral support to children with ASD [17-25]. In addition,
other studies have confirmed the usability, acceptance, and
overall positive impact on families of Google Glass–based
systems that use emotion recognition technology to aid
social-emotional communication and interaction for autistic
children [48,49]. In addition to these efforts, a variety of other
smart-glass devices have been proposed. For example, the
SenseGlass [50] is among the earliest works that propose
leveraging the Google Glass platform to capture and process
real-time affective information using a variety of sensors. The
authors proposed apps, including the development of
affect-based user interfaces, and empowering wearers toward
behavioral change through emotion management interventions.

Glass-based affect recognition that predates the Google Glass
platform has also been proposed. Scheirer et al [51] used
piezoelectric sensors to detect expressions such as confusion
and interest, which were detected with an accuracy of 74%. A
more recent work proposes a device called Empathy Glasses
[52] in which users can see, hear, and feel from the perspective
of another individual. The system consists of wearable hardware
to transmit the wearers’gaze and facial expression and a remote
interface where visual feedback is provided, and data are viewed.

The research for smart-glass–based interventions is further
supported by other technological systems that have been
developed and examined within the context of developmental
delays, including the use of augmented reality for object
discrimination training [53], assistive robotics for therapy
[54-56], and mobile assistive technologies for real-time social
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skill learning [57]. Furthermore, the use of computer vision and
gamified systems to both detect and teach emotions continues
to progress. A computational approach to detect facial
expressions optimized for mobile platforms was proposed [58],
which demonstrated an accuracy of 95% from a 6-class set of
expressions. Leo et al [59] proposed a computational approach
to assess the ability of children with ASD to produce facial
expressions using computer vision, validated by three expert
raters. Their findings demonstrated the feasibility of a
human-in-the-loop computer vision system for analyzing facial
data from children with ASD. Similar to this study, which
utilizes Guess What?, a charades-style mobile game to collect
emotional face data, Park and colleagues proposed six game
design methods for the development of game-driven frameworks
in teaching emotions to children with ASD, of which include:
observation, understanding, mimicking, and generalization, and
supports the use of game play to produce data of value to
computer vision approaches for children with autism [60].

Although not all of the aforementioned research studies employ
emotion recognition models directly, they are indicative of a
general transition from traditional health care practices to
modern mobile and digital solutions that leverage recent
advances in computer vision, augmented reality, robotics, and
artificial intelligence [61]. Thus, the trend motivates our
investigation of the efficacy of state-of-the-art vision models
on populations with developmental delay.

Methods

Overview
In this section, we describe the architecture of Guess What?
followed by a description of the methods employed to obtain
test data and processing the frames therein to evaluate the
performance of several major emotion classifiers. Although
dozens of APIs are available, we limit our analysis to some of
the most popular systems from major providers of cloud services
as a fair representation of the state-of-the-art in publicly
available emotion recognition APIs. The systems evaluated in

this work were Microsoft Azure Emotion API (Azure) [26],
Amazon AWS Rekognition (AWS) [27], Google Cloud Vision
API (Google) [28], and Sighthound (SH) [29].

System Architecture
The evaluation of the state-of-the-art in public emotion
classification APIs on children with ASD requires a dataset
derived from subjects from the relevant population group with
a fair amount of consistency in its format and structure.
Moreover, as data are limited, it is critical that the video contains
a high density of emotive frames to simplify the manual
annotation process when establishing a ground truth. Therefore,
we have developed and launched an educational mobile game
on the Google Play Store [34] and iOS App Store [35], Guess
What?, from which we derive emotive video.

In this game, parents hold the phone such that the front camera
and screen are facing outward toward the child. When the game
session begins, the child is shown a prompt that the caregiver
must guess based on the child’s gestures and facial expressions.
After a correct guess is acknowledged, the parent tilts the phone
forward, indicating that a point should be awarded. At this time,
another prompt is shown. If the one holding the phone cannot
make a guess, he/she will tilt the phone backward to skip the
frame and automatically proceed to the next. This process
repeats until the 90-second game session has elapsed. Meta
information is generated for each game session that indicates
the times at which various prompts are shown and when the
correct guesses occur.

Although a number of varied prompts are available, the two
that are most germane to facial affect recognition and emotion
recognition are emojis and faces, as shown in Figures 2 and 3,
respectively. After the game session is complete, caregivers can
elect to share their files and associated metadata to an institution
review board-approved secure Amazon S3 bucket that is fully
compliant with the Stanford University’s high-risk application
security standards. A more detailed discussion of the mechanics
and applications of Guess What? is described in [29-32].

Figure 2. Prompts from the emoji category are caricatures, but many are still associated with the classic Ekman universal emotions.
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Figure 3. Prompts from the faces category are derived from real photos of children over a solid background.

The structure of a video is shown in Figure 4. Each uploaded
video yields n video frames, delineated by k boundary points,
B1-Bk, where each boundary point represents the time at which
a new prompt is shown to the user. To obtain frames associated
with a particular emotion, one should first identify the boundary
point associated with that emotion through the game meta
information, i. Having identified this boundary point, frames
between Bi and Bi+1 can be associated with this prompt.

However, two additional factors remain. It typically takes some
time, α, for the child to react after the prompt is shown.
Moreover, there is often a time period, β, between the child’s
acknowledgment of the parents’ guess and phone tilt by the
parent, during which time the child may adopt a neutral facial
expression. Therefore, the frames of interest are those that lie
between Bi+α and Bi+1−β.

Figure 4. The structure of a single video is characterized by its boundary points, which identify the times at which various prompts were shown to the
child.

The proposed system is centered on two key aims. First, this
mechanism facilitates the acquisition of structured emotive
videos from children in a manner that challenges their ability
to express facial emotion. Whereas other forms of video capture
could be employed, a gamified system encourages repeated use
and has the potential to contain a much higher density of emotive
frames than a typical home video structured around nongaming
activities. As manual annotation is employed as a ground truth
for evaluating emotion classification, a high concentration of
emotive frames within a short time period is essential to the
simplification and reduction of the burden associated with this
process. A second aim is to potentially facilitate the aggregation
of labeled emotive videos from children using a crowdsourcing
mechanism. This can be used to augment existing datasets with
labeled images or create new ones for the development of novel
deep-learning-based emotion classifiers that can potentially
overcome the limitations of existing methods.

Data Acquisition
A total of 46 videos from 21 subjects were analyzed in this
study. These data were collected over 1 year. Ten videos were

collected in a laboratory environment from six subjects with
ASD who played several games in a single session administered
by a member of the research staff. An additional 36 videos were
acquired through crowdsourcing from 15 remote participants.
Diagnosis of any form of developmental disorder was provided
by the caregiver through self-report during the registration
process, along with demographic information (gender, age,
ethnicity). The collected information included diagnoses of
autistic disorder (autism), ASD, Asperger's syndrome, pervasive
developmental disorder (not otherwise specified), childhood
disintegrative disorder, no diagnosis, no diagnosis but
suspicious, and social communication (pragmatic) disorder.
Additionally, a free-text field was available for parents to specify
additional conditions. The videos were evaluated by a clinical
professional using the Diagnostic and Statistical Manual of
Mental Disorders-V criteria before inclusion [1]. Caregivers of
all children who participated in the study selected the autism
spectrum disorder option.

The format of a Guess What? gameplay session generally
enforces a structure on the derived video: the device is held in
landscape mode, the child’s face is contained within the frame,
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and the distance between the child and camera is typically
between 2 and 10 feet. Nevertheless, these videos were carefully
screened by members of the research staff to ensure the
reliability and quality of the data therein; videos that did not
include children, were corrupt, filmed under poor lighting
conditions, or did not include plausible demographic information
were excluded from the analysis. The average age of the
participating children was 7.3 (1.76) years. Due to the small
sample size and nonuniform incidence of autism between
genders [62], 18 of the 21 participants were male. Although
participants explored a variety of game mechanics, all analyzed
videos were derived from the two categories most useful for
the study of facial affect: faces and emojis. After each game
session, the videos were automatically uploaded to an Amazon
S3 bucket through an Android background process.

Data Processing
Most emotion classification APIs charge users per an http
request, rendering the processing of every frame in a video
prohibitive in terms of both time and cost. To simplify our
evaluation, we subsampled each video at a rate of two frames
per second. These frames formed the basis of our experiments.
To obtain ground truth, two raters manually assigned an emotion
label to each frame based on the seven Ekman universal
emotions [63], with the addition of a neutral label. Some frames

were discarded when there was no face, or the quality was too
poor to make an assessment. A classifier’s performance on a
frame was evaluated only under the conditions that the frame
was valid (of sufficient quality), and the two manual raters
agreed on the emotion label associated with the frame. Frames
were considered of insufficient quality if: (1) the frame was too
blurry to discern, (2) the child was not in the frame, (3) the
image or video was corrupt, or (4) there were multiple
individuals within the frame.

From a total of 5418 reviewed frames, 718 were discarded due
to a lack of agreement between the manual raters. An additional
2123 frames were discarded because at least one rater assigned
the not applicable (N/A) label, indicating that the frame was of
insufficient quality. This was due to a variety of factors but
generally caused by motion artifacts or the child leaving the
frame due to the phone being tilted in acknowledgment of a
correct guess. The total number of analyzed frames was 2602
divided between the categories shown in Table 1.

As shown, most frames were neutral, with a preponderance of
happy frames in the nonneutral category. Owing to the limited
number of scared and confused frames, this emotion was omitted
from our analysis. We also merged the contempt and anger
categories due to their similarity of affect and streamline
analysis.

Table 1. The distribution of frames per category (N=2602).

Frames, nEmotion

1393Neutral

1209Emotive

864Happy

60Sad

165Surprised

69Disgusted

51Angry

As not all emotion classifiers represented their outputs in a
consistent format, some further simplifications were made in
our analysis. First, it was necessary to make minor corrections
to the format of the outputted data. For example, happy and
happiness were considered identical. In the case of AWS, the
confused class was ignored, as many other classifiers did not
support it. Moreover, calm was renamed neutral. As AWS,
Azure, and Sighthound returned probabilities rather than a single
label, a frame in which no emotion class was associated with a
probability of over 70% was considered a failure. For Google
Vision, classification confidence was associated with a
categorical label rather than a percentage. In this case, frames
did not receive an emotion classification as likely or very likely
were considered failures. It is also worth noting that this
platform, unlike all the others, does not contain disgust or
neutral classes. The final emotions evaluated in this study were
happy, sad, surprise, anger, disgust, and neutral, with the latter
two omitted for Google Cloud Vision.

As real-time use is an important aspect of mobile therapies and
aids, we evaluated the performance of each classifier by
calculating the number of seconds required to process each
90-second video subsampled to one frame per second. This
evaluation was performed on a Wi-Fi network tested with an
average download speed of 51 Mbps and an average upload
speed of 62.5 Mbps. For each classifier, this experiment was
repeated 10 times to obtain the average amount of time required
to process the subsampled video.

Results

Overview
In this section, we present the results of our evaluation of Guess
What? as well as the performance of the evaluated classifiers:
Microsoft Azure Emotion API (Azure) [26], AWS [27], Google
Cloud Vision API (Google) [28], and SH [29]. Abbreviations
for emotions described within this section can be found in
Textbox 1.
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Textbox 1. Abbreviations for emotions.

HP: Happy

CF: Confused

N/A: Not applicable

SC: Scared

SP: Surprised

DG: Disgusted

AG: Angry

Classifier Accuracy

Comparison With Ground Truth (Classifiers)
Table 2 shows the performance of each classifier calculated by
the percentage of correctly identified frames compared with the
ground truth for categories neutral, emotive, and all. A neutral

frame is one in which the face is recognized, and the neutral
label is assigned high confidence. Any other frame within the
categories of happy, sad, surprised, disgusted, and angry, are
considered emotive frames. A more detailed breakdown of
performance by emotion is shown in Table 3. Note that as
before, Google’s API does not support the neutral and disgust
categories.

Table 2. Percentage of frames correctly identified by classifier: Azure (Azure Cognitive Services), AWS (Amazon Web Services), SH (Sighthound),
and Google (Google Cloud Vision). These results only include frames in which there was a face, and the two manual raters agreed on the class. Google
Vision API does not support the neutral label.

Frame typeClassifier

All (n=2602), n (%)Neutral (n=1393), n (%)Emotive (n=1209), n (%)

1542 (59.26)744 (53.40)798 (66.00)Azure

1508 (57.95)679 (48.74)829 (68.56)AWSa

N/AN/Ab785 (64.92)Google

1566 (60.18)902 (64.75)664 (54.92)Sighthound

aAWS: Amazon AWS Rekognition.
bN/A: not applicable.

Table 3. Percentage of frames correctly identified by emotion type by each classifier: Azure (Azure Cognitive Services), AWS (Amazon Web Services),
SH (Sighthound), and Google (Google Cloud Vision). These results only include frames in which there was a face, and the two manual raters agreed
on the class. Note: Google Vision API does not support the neutral or disgust labels.

Frame typeClassifier

Angry (n=51), n (%)Disgusted (n=69),
n (%)

Surprised (n=165),
n (%)

Sad (n=60), n (%)Happy (n=864), n (%)Neutral (n=1394), n (%)

3 (5)4 (5)94 (56.9)19 (31)709 (82.0)679 (48.74)AWS

6 (11)10 (14)90 (54.5)13 (21)545 (63.0)902 (64.75)Sighthound

3 (5)0 (0)80 (48.4)20 (33)695 (80.4)744 (53.41)Azure

6 (11)N/A93 (56.3)10 (16)676 (78.2)N/AaGoogle

aN/A: not applicable.

Interrater Reliability (Classifiers)
The Cohen kappa statistic is a measure of interrater reliability
that factors in the percentage of agreement due to chance; an
important consideration when the possible classes are few in
number. Figure 5 shows the agreement between every pair of
classifiers based on their Cohen kappa score calculated based
on every evaluated frame, in which a score of 1 indicates perfect

agreement. The results reflect low agreement between most
combinations of classifiers. This is particularly true for the lack
of agreement between Google and Sighthound, with a Cohen
kappa score of 0.2. This is likely because of differences in how
the classifiers are tuned for precision and recall; Sighthound
correctly identified more neutral frames than the others, but
performance was lower for the most predominant emotive label:
happy.
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Figure 5. The Cohen’s Kappa Score is a measure of agreement between two raters, and was calculated for all four evaluated classifiers: Azure (Azure
Cognitive Services), AWS (Amazon Web Services), SH (Sighthound), and Google (Google Cloud Vision). Results indicate weak agreement between
all pairs of classifiers.

Interrater Reliability (Human Raters)
The Cohen kappa coefficient for agreement between the two
manual raters was 0.74, which was higher than any combination
of automatic classifiers evaluated in this study. Although this
indicates substantial agreement, it is worth exploring the
characteristics of frames in which there was disagreement

between the two raters. The full confusion matrix can be seen
in Figure 6, which shows the distribution of all frames evaluated
by the raters. The results indicate that most discrepancies were
between happy and neutral. These discrepancies were likely
subtle differences in how the raters perceived a happy face due
to the inherent subjectivity of this process. A lack of agreement
can also be seen between the disgust-anger categories.

Figure 6. The distribution of frames between the two human raters for each emotion: HP (Happy), SD (Sad), AG (Angry), DG (Disgust), NT (Neutral),
and SC (Scared).

Classifier Speed
Wearable and mobile solutions for autism generally require
efficient classification performance to provide real-time

feedback to users. In some cases, this may be environmental
feedback, as in the Autism Glass [17-25], which uses the
outward-facing camera of Google Glass to read the emotions
of those around the child and provide real-time social queues.
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In the case of Guess What? the phone’s front camera is used to
read the expression of the child, which can be analyzed to
determine if the facial expression matches the prompt displayed
at that time.

To determine if real-time classification performance is feasible
with computation offloaded implementations of emotion
classifiers, we measured the amount of time required to process
a 90-second video recorded at 30 frames per second and

subsampled to one frame per second, yielding a total of 90
frames. For each classifier, this experiment was repeated 10
times to obtain the average number of seconds required to
process the subsampled video. Table 4 shows the speed of the
API-based classifiers used in this study. The values shown in
this table represent the amount of time necessary to send each
frame to the Web service via an http post request and receive
an http response with the emotion label. These frames were
processed sequentially, with no overlap between http requests.

Table 4. Speed of the evaluated classifiers.

Time (seconds)Classifier

28.6Azure

90.6AWS

55.9Google

41.1Sighthound

The findings indicated that the fastest classifier was Azure,
processing all 90 frames in a total of 28.6 seconds. Using Azure
with a fast internet connection, it may be possible to obtain semi
real-time emotion classification performance, a time of 28.6
seconds corresponds to 3.14 frames per second, which is within
the bounds of what could be considered real time. The slowest
classifier was AWS, which processed these 90 frames in 90.6
seconds. This corresponds to a frame rate of 0.99 frames per
second. In summary, real-time or semi–real-time performance
is possible with Web-based emotion classifiers on fast Wi-Fi
internet connections. For cellular connections or apps that
require frame rates beyond three frames per second, these
approaches may be insufficient.

Discussion

Classifier Performance
Results indicate that Google and AWS produced the highest
percentage of correctly classified emotive frames, whereas
Sighthound produced the highest percentage of correctly
identified neutral frames. Google’s API did not provide a neutral
label and, therefore, could not be evaluated. The best system in
terms of overall classification accuracy was Sighthound by a
small margin, with 60.18% (1566/2602) of the frames correctly
identified. Further results indicate that none of the classifiers
performed well for any category besides happy, which was the
emotion most represented in the dataset, as shown in Table 1.
In addition, there appears to be a systematic bias toward high
recall and low precision for the happy category: those classifiers
that identified most of the happy frames performed worse for
those in the neutral category.

In summary, the data suggest that although a frame with a smile
will be correctly identified in most cases, the ability of the
evaluated classifiers to identify other expressions for children
with ASD is dubious and presents an obstacle in the design of
emotion-based mobile and wearable outcome measures,
screening tools, and therapies.

Analysis of Frames
Figure 7 shows six frames from one study participant,
reproduced with permission from the child’s parents. The top
of each frame lists the gold-standard annotation in which both
raters agreed on a suitable label for the frame. The bottom of
each frame enumerates the labels assigned from each classifier
in order: Amazon Rekognition, Sighthound, Azure Cognitive
Services, and Google Cloud Vision AI. It should be noted that,
as before, these labels are normalized for comparison because
each classifier outputs data in a particular format. For example,
N/A from one classifier could be compared with a blank field
in another, whereas some such as Google Cloud explicitly state
Not Sure; for our purposes, all three of these scenarios were
labeled as N/A during analysis.

Frame A shows a frame that was labeled as neutral by the raters,
although each classifier provided a different label: confused,
disgusted, happy, and N/A. This is an example of a
false-positive, detecting an emotion in a neutral frame. A similar
example is shown in frame F; most classifiers failed to identify
the neutral label. Such false positives are particularly
problematic as the neutral label is the most prevalent, as shown
in Table 1.

In contrast, frames B and C are examples in which the labels
assigned by each classifier matched the labels assigned by the
manual raters; all classifiers correctly identified the happy label.
As shown in Table 1, happy was the most common nonneutral
emotion by a considerable margin, and most classifiers
performed quite well in this category; AWS, Azure, and
Sighthound all correctly identified between 78.2% (676/864)
and 82.0% (709/864) of these frames, although at the expense
of increased false-positives such as those shown in frames A
and F. An example of a happy frame that was identified as such
by the human raters but incorrectly by most classifiers is frame
D. It is possible that the child’s hands covering part of her face
contribute to this error, as the frame is otherwise quite similar
to frame B. Finally, frame E is an example of a frame that was
processed by the classifiers but not included in our experimental
results because the human raters flagged the frame as insufficient
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due to motion artifacts. In this case, all four classifiers correctly determined that the frame could not be processed.

Figure 7. A comparison of the performance of each classifier on a set of frames highlights scenarios that may lead to discrepancies in the classifier
outputs for various emotions: HP (Happy), CF (Confused), DG (Disgust), N/A (Not Applicable), AG (Angry), SC (Scared). Ground truth manual labels
are shown on top, with labels derived from each classifier on the bottom.

Limitations
There are several limitations associated with this study, which
will be addressed in future work. First, we analyzed only a
subset of existing emotion classifiers, emphasizing those from
providers of major cloud services. Future efforts will extend
this evaluation to include those that are less prolific and require
paid licenses. A second limitation is the use of parent-reported
diagnoses, which may not always be factual. A third limitation
is that although we ruled out some comorbid conditions, we did
not rule out all comorbid conditions, including
Attention-Deficit/Hyperactivity Disorder, which has been shown
to impact emotional processing and function in children [64].
A fourth limitation stems from the lack of neurotypical children.
Finally, the dataset we used included an unequal distribution
of frames across emotion categories. In the future, we will
investigate ways to gather equal numbers of frames, and if this
distribution may be related to social deficits associated with
autism, or increased prevalence of happy and neutral due to the
inherent nature of gameplay. Although our results support the
conclusion that the commercial emotion classifiers tested here

are not yet at a level needed for use with autistic children, it
remains unclear how these models will perform with a larger,
more diverse, and stratified sample.

Conclusions
In this feasibility study, we evaluated the performance of four
emotion recognition classifiers on children with ASD: Google
Cloud Vision, Amazon Rekognition, Microsoft Azure Emotion
API, and Sighthound. The average percentage of correctly
identified emotive and neutral frames for all classifiers combined
was 63.60% (769/1209) and 55.63% (775/1393), respectively,
varying greatly between classifiers based on how their sensitivity
and specificity were tuned. The results also demonstrated that
while most classifiers were able to consistently identify happy
frames, the performance for sad, disgust, and anger was poor:
no classifier identified more than one-third of the frames from
either of these categories. We conclude that the performance of
the evaluated classifiers is not yet at the level for use in mobile
and/or wearable therapy solutions for autistic children,
necessitating the development of larger training datasets from
these populations to develop more domain-specific models.
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