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Abstract

Due to the COVID-19 pandemic, many clinical addiction treatment programs have been required to transition to telephonic or
virtual visits. Novel solutions are needed to enhance substance use treatment during a time when many patients are disconnected
from clinical care and social support. Digital phenotyping, which leverages the unique functionality of smartphone sensors (GPS,
social behavior, and typing patterns), can buttress clinical treatment in a remote, scalable fashion. Specifically, digital phenotyping
has the potential to improve relapse prediction and intervention, relapse detection, and overdose intervention. Digital phenotyping
may enhance relapse prediction through coupling machine learning algorithms with the enormous amount of collected behavioral
data. Activity-based analysis in real time can potentially be used to prevent relapse by warning substance users when they approach
locational triggers such as bars or liquor stores. Wearable devices detect when a person has relapsed to substances through
measuring physiological changes such as electrodermal activity and locomotion. Despite the initial promise of this approach,
privacy, security, and barriers to access are important issues to address.
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Introduction

The COVID-19 pandemic has presented unprecedented
challenges to the addiction community. First, drug-seeking
behaviors can increase exposure to COVID-19. The converse
is also true in that pulmonary sequelae from methamphetamine
or tetrahydrocannabinol (THC) use may confer higher risk for
contracting COVID-19 and may lead to more severe
comorbidities for those infected with the virus [1]. Secondly,
the COVID-19 pandemic is likely heightening the risk of
substance use relapse [2]. Many substance users now live in
greater isolation with fewer social supports, diminished access
to substance use treatment, and fewer distractions from
substance use [3]. Quarantine and social distancing are
associated with fear, anxiety, and boredom, which are known

risk factors for relapse [4]. Finally, the COVID-19 pandemic
has limited our ability to monitor patients’ progress and deliver
adequate care. In our outpatient addiction center, we have
suspended toxicology testing, which was critical in monitoring
adherence to treatments such as buprenorphine. Whereas we
previously relied heavily on in-person group treatment, most
visits are now conducted on the internet and on an individual
basis.

To address the clinical gap engendered by the pandemic, we
recommended that our patients pursue web- or audio-based
Alcoholics Anonymous and Narcotics Anonymous groups,
which are largely unvetted substitutes, as well as
evidence-supported web-based therapies such as cognitive
behavioral therapy [5,6]. The Substance Abuse and Mental
Health Services Administration (SAMHSA) and Drug

JMIR Ment Health 2020 | vol. 7 | iss. 10 | e21814 | p. 1http://mental.jmir.org/2020/10/e21814/
(page number not for citation purposes)

Hsu et alJMIR MENTAL HEALTH

XSL•FO
RenderX

mailto:mhsu7@partners.org
http://dx.doi.org/10.2196/21814
http://www.w3.org/Style/XSL
http://www.renderx.com/


Enforcement Administration (DEA) have administered policies
enabling virtually supported, take-home buprenorphine induction
and have created opportunities for patients to access a
buprenorphine hotline [7] and virtual bridge clinic (currently
implemented at our institution). Whether these efforts can serve
as adequate substitutes for in-person addiction treatment remains
to be seen; meanwhile, we need additional, scalable strategies
to assist in substance use monitoring and treatment in ways that
are practical and acceptable.

Digital phenotyping or behavioral sensing [8] uses passively
collected, real-time data (eg, GPS tracking, social patterns,
typing patterns) from patients’ smartphones to inform clinical
assessment, predict changes in clinical status, and deliver
on-demand interventions in a scalable, cost-effective manner
(Figure 1). Smartphone ownership is nearly ubiquitous in the
United States, even among individuals with substance use
disorders, and possesses a vast array of functionality that can
be leveraged for clinical purposes [9,10].

Figure 1. Digital phenotyping implements smartphone sensors to collect passive data that can then inform clinical diagnosis, risk prediction, treatment,
and symptom monitoring [11].

Digital phenotyping is an especially attractive clinical tool for
substance use treatment during the COVID-19 pandemic, as it
not only operates remotely but is also convenient for patients
(no active input required), is not administratively burdensome,
and may be an effective way to address historic challenges in
detecting problematic substance use behaviors and delivering
timely clinical interventions. Digital phenotyping has shown
initial success in relapse prediction for schizophrenia [12],
bipolar disorder [13,14], and mood disorder detection [14]. We
describe three broad applications of digital phenotyping for
addiction treatment, highlighting their potential clinical use,
state of evidence, and next steps for implementation.

Application 1: Relapse Prediction and
Intervention

Digital phenotyping has significant potential to enhance relapse
prediction. Even before the COVID-19 pandemic, relapse was
common, with prevalence rates ranging from 40% to 75%
depending on the substance and the definition used in the study
[15-17]. Machine learning tools based on survey responses of
demographics, alcohol use, and psychological factors have 77%
predictive accuracy for alcohol relapse [18]. Activity-based
analysis, also known as location-based activity, analyzes how

individuals’ locational or GPS data correlate with their affect,
thoughts, and behavior. Dr David Epstein’s group combined
passive geographical input with machine learning tools to predict
opioid drug craving or stress 90 minutes into the future among
patients with opioid use disorder on maintenance buprenorphine
or methadone; they achieved a positive predictive value of 0.93
[19]. Another ongoing study by Curtin et al [20] implements
digital phenotyping based on machine learning tools and
contextualized static and dynamic risk signals to predict lapse
in opioid use disorder. Activity-based analysis can theoretically
be personalized based on regions of risk that are specific to the
individual.

Automated messages can be sent to patients who are flagged as
being at high risk of relapse, including warning messages,
motivational messages, or recommendations to schedule
follow-up appointments. A-CHESS (Addiction-Comprehensive
Health Enhancement Support System), a multifeature
randomized controlled trial–backed mobile app suite that
supports alcohol recovery, delivers an alert to patients when
their GPS indicates they are approaching a liquor store or bar
[21]. Clinicians can also use this data to triage limited
administrative resources by prioritizing follow-up to higher-risk
patients.
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While digital phenotyping shows initial promise in enhancing
relapse prediction, nearly all studies to date have been pilot
studies conducted in selected patient populations. Further studies
highlighting population-level outcomes such as hospitalization
and prediction accuracy, especially when coupled with clinical
interventions, are needed. Prior to clinical implementation,
patient acceptability and feasibility of use in the clinical setting
should be further explored. Other dynamic factors for substance
use relapse, such as one’s social environment, can be
incorporated to fine-tune the predictive power of these
interventions [22].

Application 2: Relapse Detection

Digital phenotyping can potentially be used to detect when a
patient has relapsed. One pilot study of 30 emergency room
patients demonstrated that a biosensor that collects electrodermal
activity, locomotion data, and skin temperature was able to
detect opioid use and distinguish between heavy and nonheavy
opioid users [23]. Another study describes a wearable biosensor
that can monitor alcohol consumption through detection of ethyl
glucuronide in human sweat, although further population-based
studies are needed to establish its acceptability and efficacy
[24]. Heart-rate variability (HRV) has also been shown to be
linked to alcohol use and smoking; however, specificity is an
issue, as HRV is also impacted by affective disorders and trauma
[25].

Once the system has detected potential relapse, an automated
message can then be relayed to accountability partners (eg,
family or friends), front-line staff, or clinicians. Third parties
can reach out to patients who have a strong signal of relapse or
repeated signals of relapse to confirm and ascertain the nature
of the relapse, provide counsel over the phone, set up follow-up
appointments, or offer appropriate addiction services. Wearable
biosensors could potentially be used as a proxy for urine
toxicology screening when monitoring for substance use,
especially for patients at high risk for contracting COVID-19.
Importantly, clinicians should empower patients to decide how
their data will be used and obtain appropriate consent before it
can be shared with third parties.

Application 3: Early Overdose Detection

Physical distancing during the COVID-19 pandemic can be
life-threatening for individuals who use opioids due to increased
overdose deaths from using in isolation, supply chain
disruptions, and increased relapse [7,26]. Nandakumar et al [27]
developed a potentially lifesaving contactless mobile phone app
to detect opioid overdose by measuring respiratory rate using
a short-range active sonar through a mobile phone. Their
algorithm was able to detect 19/20 (95%) of simulated overdoses
in the operating room. Although this proof-of-concept app is
promising, further population-based studies are needed to
optimize and demonstrate its efficacy.

In theory, a device could automatically alert emergency medical
services (EMS), authorized friends, and clinicians of a potential
opioid overdose. Providers should empower patients to decide
who is notified of the overdose, as patients may not want EMS

or police to be automatically informed. Instead, they may prefer
friends, neighbors, providers, or other public health professionals
to be alerted first. In this case, third parties can check in with
the patient, and if there is no response within a certain time
frame and appropriate concern for overdose, they can administer
naloxone (if they are trained to do so and are in the vicinity)
and consider whether to bring the patient to the emergency room
or involve first responders.

Limitations to Digital Phenotyping

There are several notable limitations to digital phenotyping and
barriers to implementation that should be addressed. First,
security and privacy are critically important concerns. Data
stored on a mobile phone or cloud service may be vulnerable
to security threats such as password compromise, while data
uploaded to an electronic medical record system may be
accessed by third parties [11,28]. Although call log, GPS, and
accelerometer data are often anonymized by application
developers, a theoretical risk remains that third parties can
identify individuals based on raw data [29]. Clinicians should
thoroughly vet digital phenotyping applications based on the
App Evaluation Model developed by the American Psychiatric
Association to ensure the safety and privacy of identifiable
patient data [30,31]. Providers should protect patient data and
counsel patients regarding privacy risks, especially for
vulnerable individuals such as those with mental illness or
substance use disorders.

Second, further studies are needed to assess the acceptability
and feasibility of digital phenotyping among patients with
substance use disorders. As is the case with all digital health
technologies, the clinical efficacy of an app does not always
translate to user adoption. Lowering barriers to entry such as
improving user friendliness and addressing technology illiteracy
are important.

Third, inequality of access to smartphone technology is
problematic, especially among individuals who are of lower
socioeconomic status, aged 85 years or older, widowed,
Medicaid recipients, Black or Hispanic, and have disabilities
[32]. However, many state Medicaid programs now offer free
mobile phones to eligible recipients, and federal programs such
as the Federal Communications Commission’s Lifeline Program
offer a subsidy for cellular and data service plans to low-income
individuals [33,34]. Lack of broadband access may be a barrier,
especially for rural and underserved communities [35]. Further
research on these barriers to access is needed to devise apt
solutions to equip even the most marginalized and vulnerable
populations with digital technology.

Finally, there are salient administrative and financial barriers
to clinical implementation. While there may be long-term cost
savings in the reduction of health care use and less
labor-intensive means of substance use monitoring, introducing
any new health technology requires an initial resource
investment. Patients and staff need to be trained on the
technology and the clinical integration of the data streams
generated by digital phenotyping applications. To move beyond
resource-rich academic and research settings, clinician time and
use of digital phenotyping will need reimbursement by payors,
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which requires demonstrating the clinical and financial value
of the technology to insurance companies. This supports the
call for methodologically rigorous studies to determine how the
initially promising experimental outcomes of digital phenotyping
translate to real-world clinical value.

Conclusions

Digital phenotyping has tremendous potential to augment
substance use treatment, especially during the COVID-19
pandemic. Specifically, this technology can help address

significant challenges in improving care for substance use
disorders in the areas of relapse prediction and intervention,
relapse detection, and overdose detection. Despite the promise
and potential of digital phenotyping, many studies thus far have
been proof-of-concept or pilot studies in siloed patient
populations; more robust, generalizable experiments are needed
to demonstrate clinical efficacy, acceptability, and feasibility.
Iterative observation and experimentation can allow for further
refinement of the underlying technology and how it will be
clinically integrated. Concerns of privacy, security, equity, and
sustainability need to be addressed.
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