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Abstract

A major problem in mental health clinical trials, such as depression, is low assay sensitivity in primary outcome measures. This
has contributed to clinical trial failures, resulting in the exodus of the pharmaceutical industry from the Central Nervous System
space. This reduced assay sensitivity in psychiatry outcome measures stems from inappropriately broad measures, recall bias,
and poor interrater reliability. Limitations in the ability of traditional measures to differentiate between the trait versus state-like
nature of individual depressive symptoms also contributes to measurement error in clinical trials. In this viewpoint, we argue that
ecological momentary assessment (EMA)—frequent, real time, in-the-moment assessments of outcomes, delivered via
smartphone—can both overcome these psychometric challenges and reduce clinical trial failures by increasing assay sensitivity
and minimizing recall and rater bias. Used in this manner, EMA has the potential to further our understanding of treatment
response by allowing for the assessment of dynamic interactions between treatment and distinct symptom response.

(JMIR Ment Health 2019;6(5):e11845) doi: 10.2196/11845
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Introduction

Background
Mental health treatment development and testing has been at
an impasse for the past several decades; our clinical trials
increasingly fail more often than in other fields [1]. Although
the global burden of psychiatric illness continues to be one of
the largest contributors to disability worldwide, investment in
the discovery of novel pharmacologic agents flows instead
toward disease states with identifiable biological targets. These
targets remain elusive in psychiatric disorders [2,3]. The central
nervous system (CNS) drug development pipeline has become
increasingly burdened with late-phase failures [4], contributing
to a well-publicized exodus of the pharmaceutical industry from

the CNS space. This has resulted in decreased investment in
drug discovery [5].

Treatment Failures: Bad Medicine or Bad Measures?
The randomized, placebo-controlled trial is still considered the
gold standard test of treatment efficacy. However, over the past
60 years of treatment research in psychiatry, we have observed
that treatment effect sizes remain stable, whereas placebo
responses rise [6]. Modern clinical trials are difficult to conduct
and are fraught with numerous challenges related to cost,
regulatory requirements, recruitment difficulties, and other
inefficiencies [7,8]. Added to these challenges is the use of
imprecise outcome measures, which hinders the ability to detect
true separation of active treatment from placebo response [9].
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The contribution of poor measures to treatment failures is
particularly well-illustrated in antidepressant trials [10-12]. For
example, lanicemine, an N-methyl-D-aspartate receptor
antagonist differing from ketamine that produces lower
psychotomimetic side effects, was thought to show promise in
treating depression [13]. Early phase clinical trials showed
promising results in rapidly reversing symptoms of treatment
resistant depression, but investigators failed to replicate the
results in a late phase study [14]. Similarly, basimglurant, a
postsynaptic metabotropic glutamate subtype 5 receptor
antagonist, showed promise in early phase trials but failed to
separate from placebo on the primary outcome measure in a
larger phase 2b trial [15]. In both cases, the primary end point
was change from baseline to 6 weeks in the Montgomery Asberg
Depression Scale (MADRS), which is considered an industry
standard in depression treatment research. The authors identified
flaws in study design, conduct, and even underlying scientific
rationale as possible causes of these late stage failures.

It seems unlikely, given the financial and intellectual resources
brought to bear in the early phases of discovery, that
investigators could have gotten the scientific rationale so wrong.
A more probable explanation for the failed studies might lie in
how the primary outcome was determined and measured.
Although the MADRS is considered a standard assessment tool
in depression research, poor interrater reliability (ie, imprecision
of measurement) is one of many limitations to this measure’s
assay sensitivity.

The Culprit: Faulty Signal Detection
Measurement assay sensitivity, as it applies to clinical research,
refers to the ability of a symptom assessment measure to detect
whether a difference exists between treatment groups [16].
Issues of assay sensitivity are well known in psychiatric
treatment research and have been observed with older self-report
scales such as the Hamilton Rating Scale for Depression
(HAM-D) as well as in newer clinician-administered instruments
such as the MADRS. Both measures include several symptom
domains but offer only a final summed score. This offers little
insight into the specific symptoms underlying the clinical
presentation.

Self-report measures may incorporate reporter bias, whereas
clinician-administered assessments incorporate bias on the part
of the clinician. For example, there may be bias in recruitment
or sample ascertainment, such as career patients who serially
enroll in research studies for financial reasons and are thus
motivated to answer questions in such a way as to increase
likelihood of enrollment. Investigators may unconsciously inflate
baseline measures of psychiatric symptoms to meet recruitment
goals [17-19].

Nonetheless, these arguments fail to explain why academic
studies, in which less financial gain accrues to the patient and
investigator, also see a high placebo response and failure rate
[20]. Regardless, reduced assay sensitivity in clinical trials has
the potential to sabotage treatment development at any stage.
We submit that these and other depression symptom measures
reduce assay sensitivity in 3 primary ways: unnecessary
complexity, human error (ie, clinician judgment), and infrequent
sampling.

Getting to Precision Assessment
The idea of using technology to increase the accuracy and
precision of symptom assessment in clinical trials is gaining
momentum. For example, the National Institutes of Health
toolbox was designed specifically for this purpose [21]. The
Patient-Reported Outcomes Measurement Information System
also offers researchers standardized patient-reported outcome
(PRO) measurement tools with transparent performance metrics
[22]. Self-report measures delivered via mobile technology
certainly offer ecological validity and may also prove superior
to clinician-administered instruments in large, industry-funded
clinical trials. Improved measurement would likely translate
into more useful clinical trials. It may even go a long way toward
surmounting our present impasse in developing new mental
health treatments.

Clearly, we are not the first to contemplate the problem of assay
sensitivity in our field. However, public discussion as to why
progress in the field of psychometrics has stalled has not
extended to industry trials. Open scientific discourse has also
been limited on the subject of developing novel, effective, Food
and Drug Administration (FDA)–sanctioned instruments, which
could be used to track mental health disorder outcomes with
greater assay sensitivity. As the success or failure of
antidepressant treatment trials often rests solely on the presumed
validity and reliability of symptom measures, it should follow
that these assessments deserve the same degree of scrutiny
regarding assay sensitivity as any laboratory test.

In this viewpoint, we will examine 3 major problem areas we
believe the field needs to address in getting to precision
assessment: overly complex assessment tools, contributions of
human error, and limitations of infrequent sampling. First, we
will review the 2 gold standard depression instruments used at
present to track psychiatric symptoms in industry-funded drug
trials. Next, we will examine the role of clinician assessment
and how human involvement in measurement contributes to
error. We will then discuss challenges to adequate measurement
frequency in obtaining valid self-report data. Finally, we propose
a solution to the measurement problem in depression clinical
trials. We will explore contributions from the fields of
mathematics, human psychology, and computer science to the
development of mobile technology–based measures, which we
believe may offer significant improvements over traditional
symptom assessment.

Problem 1: Needless Complexity
Undermines Utility

Key point:

• Overly broad measures that attempt to cover multiple
symptoms or symptom domains compromise signal
detection. To meaningfully reduce error, consensus on what
to measure is needed.

The Problem of Excessive Description
Psychiatric rating scales frequently use diagnostic criteria or
descriptive psychopathology to track a patient’s progress
throughout a clinical trial. The descriptive psychopathology for
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a given psychiatric disorder is by nature more expansive than
the diagnostic criteria alone, which can be helpful for identifying
clinically significant features for treatment targets. This problem
is not restricted to mental health research; trials in cardiology
have also been compromised by failing to adequately confine
outcome measures for meaningful signal detection [23]. In major
depression, patients often have irritability, anxiety, and other
symptoms in addition to the 9 cardinal symptoms of the disorder.
A content analysis by Eiko Fried found 52 symptoms of
depression across 7 commonly used depression scales, with a
content overlap among all scales of only 32 percent [24].

Take for example the MADRS discussed above [25]. The
clinician in using this scale administers a 10-item assessment
to a study participant. The change in the total score over time
is then used to determine whether the treatment under
investigation is effective. The 17-item HAM-D (HAM-D-17)
determines efficacy similarly [26]. However, both items assess
multiple symptom domains, all considered diagnostic aspects
of depression. A recent study by Checkroud et al [27] of over
7000 patients with major depression demonstrates why this
approach, as well as any other that relies on indiscriminate use
all of the items in a scale to assess primary efficacy outcomes
(eg, the HAM-D), may be a problem. In their study, they
illustrate how this indiscriminate approach to measurement can
jeopardize a potential treatment in late-phase clinical trials.
Specifically, they found that consistent antidepressant treatment
response was found only for the core emotional symptoms
(anergia, dysphoria, anhedonia, feelings of worthlessness, and
difficulty concentrating). The detectable signal for treatments
shown to be effective is thus obscured by the total score, which
is the only score considered when designing trials to determine
efficacy. This example highlights how standard rating scales
have contributed to treatment failures by introducing
unnecessary complexity, which reduces measurement specificity.

To further complicate matters, measuring multiple constructs
inflates the chance that items tied to each construct will shift
unpredictably over time (eg, due to lack of longitudinal factorial
invariance) [28]. In this way, depression rating scales are often
a mix of sensitive and specific items (dysphoria, anhedonia),
nonspecific items (anxiety), and symptoms that may be derived
from an unrelated illness (eg, fatigue). Side effects of the
treatment itself are also frequently conflated with the items in
the primary outcome measure. Moreover, individual items within
a scale are often not weighted for relevance. As the success or
failure of a treatment rests on a scale’s summative score, it
follows that some of the score’s equally weighed items might
be totally irrelevant to the trajectory of the disorder in question
[29]. The 24-item HAM-D (HAM-D-24) is more comprehensive
than the 17-item version [30]. It was designed to more
comprehensively capture relevant symptoms. However, using
the HAM-D-24 may conceal treatment effects by introducing
items that assess uncommon or diagnostically nonspecific
symptoms, such as hypochondriasis or depersonalization. Again,
as the total score is used to determine whether or not a treatment
is effective, there is a further risk of magnifying irrelevant
changes and obscuring important ones.

Less is More
The shortened 6-item HAM-D and MADRS scales, which favor
core items such as low mood, anhedonia, and guilt, have both
been shown to be more sensitive than HAM-D-17 and the
10-item MADRS, respectively [31]. The shorter 6-item version
of the HAM-D [32] was superior to the longer HAM-D-17, 21
and 24 in detecting treatment response to the newer
antidepressant vortioxetine versus placebo [33]. Similarly, the
buprenorphine/samidorphan combination treatment, which failed
to separate from placebo on the primary outcome measure of
change from baseline on the MADRS-10 item scale, fared better
in separating from placebo using the MADRS-6 item scale [34].
These examples suggest a data reduction approach to symptom
assessment focusing on core symptoms is more likely to
accurately detect meaningful clinical response. Unfortunately,
there is, as of yet, little agreement on which symptoms are most
relevant.

Consensus on the most clinically, functionally, or personally
relevant features of treatment response or remission is needed
to improve signal detection. If we simply wish to use our
existing scales more pragmatically, we would take a treatment
we know to be effective and choose the individual items from
a selected scale that reveal the greatest amount of separation in
favor of the proven treatment. We would then use the items
from that same scale to determine whether or not an unproven
treatment is effective. Alternatively, the field could adopt a
universal consensus around measuring the core emotional
symptoms of the illness to determine treatment success or
failure. This is a difficult and unlikely scenario as we do not
have the evidence base at present necessary to establish what
exactly these core symptoms might be. In either case,
improvement from a functional or pharmacoeconomic
perspective may not map well onto any of the items in the
measures we currently use. This may force the field to revisit
some of its a priori assumptions about clinical relevance. In
short, although we can confidently say that our current approach
is suboptimal, fixing it will not be so easy.

Problem 2: Human Error Magnifies
Measurement Error

Key points:

• Clinician-administered scales compound response bias
• Self-report alone is imperfect but minimizes rater

contribution to measurement error

Not All That Glitters is Gold
Psychiatric treatment research has traditionally considered
clinician-administered assessments to be the gold standard over
PRO measures. This stems in part from an inherent belief that
the clinician objectively corrects for whatever error (eg, errors
of omission, exaggeration, expectancy effect, and Hawthorne
effect), intentional or otherwise, introduced by the patient.
Perhaps somewhat counterintuitively, clinicians may magnify
the patient’s error. A large study evaluating self-report and
clinician-administered instruments from the Sequenced
Treatment Alternatives to Relieve Depression trial found that
self-report measures contributed more to the prediction of
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outcomes of clinician-administered instruments than vice versa
[35]. The authors of the study also recommended that, in the
event that only 1 form of assessment could be used, self-reported
outcome measures would be preferable.

Error or bias on the part of the clinician is routine, rather than
idiosyncratic. It would be unfair to presume it to be the result
of malice or laziness. It may happen unconsciously and even
in good faith because clinical judgment is not completely
objective. Interviewers are also susceptible to either a positive
or negative rater bias depending on whether research participant
attributes, often irrelevant to the assessment at hand, are
perceived as positive or negative. This can result in sometimes
pronounced unconscious alterations of judgment [36] that
significantly impact clinical decision making. This has been
illustrated in studies finding poor interrater and test-retest
reliability in standard clinician-administered assessment
measures for depression [3]. The reason for such results may
be that clinicians, even when given rules governing the scoring
of the assessment at hand, will tend to drift from standard
calibrated practice [37]. Whether or not a clinician reliably
follows an assessment-related rule depends on the amount of
inertia that must be overcome to adopt it, the format in which
the rule was originally presented, the number of demands that
compete with the rule, and the institutional pressures involved
in maintaining compliance with the rule [38].

When all Else Fails, Listen to the Patient
Although the evidence is still far from conclusive, a decent body
of literature has elevated the stature of PROs vis-a-vis
traditional, clinician-administered rating scales. Self-report
assessments represent an improvement over
clinician-administered assessments insofar as they eliminate
rater bias and reduce the likelihood that participants will feel
compelled to give socially desirable responses (a type of
response bias) or affirmative answers when interviewed
face-to-face [39]. For example, a large meta-analysis of placebo
response in 96 antidepressant trials by Mora et al found that
clinician-administered instruments were associated with a higher
placebo response than PRO measures [40]. Such evidence
further supports the idea that clinician-administered scales add
error rather than removing or mitigating patient error. In
summary, although we place a high value on
clinician-administered assessments, clinician objectivity may
be more of an appealing myth than reality.

Problem 3: Infrequent Sampling Hurts
Sensitivity

Key points:

• Retrospective patient symptom report in the context of a
clinical trial may be inaccurate

• Ecologically valid symptom reports collected in real time
are needed to interpret treatment effects

(Not So) Total Recall
Self-report also has inherent limitations. This was recognized
by Arthur Schopenhauer in the 19th century [41], who observed
that one cannot be both the subject and object of accurate

perception. Thus, reporting on one’s own mood even in the
present poses significant challenges and represents an
irremediable layer of error. Mehl and Conner have also
comprehensively discussed the problem of recall bias in
psychological research [42]. In short, asking a participant to
provide a retrospective symptom report merely compounds this
error by introducing recall bias. In other words, emotional recall
bias (unlike the subject-object problem) is a controllable source
of error. Neuroscientists have found memory to be frequently
unreliable, particularly when the encoding and retrieval of
memories occurs during periods of emotional arousal [43].
Memory has many odd biases, not all of which are evident in
daily life. For instance, it has been shown that people have a
tendency to remember events that ought to be enjoyable, such
as a vacation or spending time with one’s children, as being
more pleasant than they actually were [42]. Thus, asking a
respondent to recall something requires filtration through
whatever emotional state the subject happens to be in at the
time of the assessment, which only compounds this error [44].
Furthermore, respondents are unlikely to accurately create a
coherent summary of their emotional states over time.

What is the (Right) Frequency?
Infrequent measurement or sampling in clinical trials tacitly
makes the assumption that we know enough about how an illness
behaves over time to ask questions with a time frame modifier
(eg, “In the last week...”) and is associated with measurement
error in clinical trials. This has been illustrated in disciplines
outside of psychiatry. For example, the Heart Outcomes
Prevention Evaluation trial evaluated the effect of the
angiotensin-converting enzyme inhibitor ramipril in patients at
high risk for adverse cardiovascular events [45]. The study
found that ramipril lowered blood pressure assessed via 24-hour
ambulatory measurement, whereas office-based blood pressure
measurements did not detect the treatment response.
Investigators attributed this to a diurnal variation in blood
pressure or white coat hypertension —phenomena that could
not be captured with the limited number of measures obtained
during office hours or that were affected by the office visit itself.
For this reason, blood pressure assessment in clinical trials has
moved to using frequent ambulatory blood pressure sampling
to assess treatment efficacy, which has essentially eliminated
the placebo response in antihypertensive treatment trials [46,47].

Similar to blood pressure, depressive symptoms also appear to
fluctuate throughout the day or in response to specific situations
[48]. Mobile technology offers a feasible way to increase
sampling frequency, as evidenced by the already rich scientific
literature on ambulatory assessment [42]. However, this
approach has yet to be fully embraced by industry sponsored
studies, where it could be of prime utility. To date, only 1
industry-sponsored study currently underway has attempted to
compare daily, ambulatory self-report with a
clinician-administered measure [49]. Frequent, in-the-moment
self-report also has its limitations. There is no doubt some
theoretical limit on high-frequency sampling to the extent that
it may, if administered often enough, conflate mood and
emotions or succeed in becoming itself a source of negative
mood, affect, or emotions [50,51]. However, this issue calls for
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careful experimentation with frequency to assess acceptability
rather than avoiding frequent sampling altogether.

The State Versus Trait Problem
Symptoms of many psychiatric illnesses are characterized as
trait-like in advance of any evidence to support this assumption.
However, variation is routinely observed in behaviors studied
over time, irrespective of how trait-like they seemed to be (eg,
personality traits such as sociability) [52]. For this reason, it is
highly probable that important variation is the rule rather than
the exception in psychiatric illness. For example, in an individual
with major depression, mood might be very depressed at a
certain point in the morning and near-normal later that same
day [48].

Despite this, we continue to measure mood as a stable trait-like
symptom (eg, “in the last 7 days, how has your mood been?”).
This is the case for most psychiatric symptom assessments,
where dynamic versus stable or trait-like nature of symptoms
are poorly described. The only way to ascertain variation or
lack thereof is to sample the illness frequently before finalizing
the measure (eg, for use in a treatment study). In other words,
frequent sampling would ideally be used to inform the creation
of a scale before using it to track efficacy [52]. Without this
approach, scale selection becomes thoughtlessly reflexive [50].
Limited sampling likely further compromises psychiatric
research because trait measures require respondents to attempt
a summation of states via recall of past experiences, which has
been shown to introduce error [53].

Even if the symptoms of psychiatric illness are predominantly
trait-like, we would continue to favor frequent sampling, even
if this requires us to use a smaller number of items. This is in
contrast to classical test theory, from which we take the maxim
that adding equally good items to a measure leads to greater
reliability and therefore, a better shot at validity [54]. This is
based on the ideal circumstance where it is possible to ask a
respondent the same question repeatedly, which we cannot do
at a single time point without expecting the respondent to
become reactive to the question [54,55]. Furthermore, a measure
using high-signal items repeatedly over time would better
capture any given quality than would a measure with a mix of
items with lower signal detection at a single time point [56]. In
psychiatric treatment research, we have historically chosen to
use a greater number of inferior items at a single time point,
even though the maxim we are following was based on equations
that are arguably better suited to repeated measurement of a
single quality.

Solution: Ecological Momentary
Assessment

Overview
Ecological momentary assessment (EMA) is frequent, real time,
patient-reported assessment delivered via surveys (eg, “right
now, my mood is...”) and completed by the patient typically via
mobile device to collect information about the patient in a
real-world setting [57]. Participants are prompted at prespecified
intervals to complete symptom assessments rather than having
a prompt dependent upon a passive event (eg, actigraphy and

patterns of speech). EMA may overcome the deficiencies
inherent in traditional clinician-administered instruments.
Evidence from pain studies examining EMA alongside
retrospective recall show a consistent discrepancy between the
2 forms of report [58]. A similar discrepancy between real time
and retrospective self-report of affect has also been demonstrated
[59]. A single item scale measuring mood delivered via EMA
outperformed the HAM-D-17 in its ability to predict “current
relapse status” in patients with major depressive disorder [60].

Increasing Accuracy in Early Phase Trials
Frequent, real-time EMA sampling has been shown in the same
study to both qualify positive findings in clinical trials and detect
treatment effects that the HAM-D was unable to detect between
groups after 18 weeks of treatment [61]. Frequent real-time
sampling has also been shown to unmask differences between
treatment responders and nonresponders and to detect treatment
effects earlier than clinician-administered assessments [62,63].
Finally, frequent, real-time sampling compared with
retrospective assessment has been shown to increase the
precision of measurement over time.

An example of how infrequent sampling adversely affects assay
sensitivity in clinical trials was recently provided by Moore et
al [64]. In this study, the researchers assessed the effects of
mindfulness-based stress reduction (MBSR), compared with an
attention placebo. For outcome assessments, they measured
depressive symptoms, anxiety symptoms, and mindfulness
self-ratings in 2 ways: EMA tools delivered to participants
electronically via a smartphone 3 times daily for 14 days and
traditional paper- and pencil-based measurement tools asking
about last week’s symptoms (comparable with most outcome
measures). The EMA-based outcome assessment resulted in a
much lower number needed to treat (NNT) for MBSR than the
same outcomes measured using the traditional technique: the
NNT for treating depression was 8 using EMA versus 31 using
traditional measurement. In other words, EMA captured a
treatment effect that was missed by standard self-report
assessments. This was also reflected in the smaller SDs for
outcomes measured via EMA when averaged over time. In short,
frequent ambulatory assessment improves precision.

Increased Understanding of Core Symptom Constructs
EMA may also increase measurement precision by tracking
how symptoms of an illness behave and interact over time [65].
This allows investigators to characterize state versus trait-like
symptoms and establish the nature of the relationships between
symptoms over time. This approach may also be useful because
it offers the ability to evaluate interactions between symptoms
without first assuming that they are symptoms of the disorder
in question. This “pragmatic nihilism” [66] or “symptomic”
[67] approach differs from how we currently assess psychiatric
disorders. Clinician-administered instruments are rated with the
built-in assumption that any number of symptoms are all tied
to 1 underlying, latent variable (eg, depression). With enough
patient-reported EMAs carried out over time, investigators may
be able to observe how symptoms interact with one another.

It may also be possible to discern which symptoms are central
to the disorder under study and how certain upstream symptoms
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may influence a cascade of symptoms downstream. How many
EMAs are enough depends on the exact questions being asked
and the assumptions made in the analysis; however, it is likely
that as little as 25 measurements from hundreds of participants
or a hundred measurements in even a small number of
participants would be a reasonable starting place [68]. Such
findings may eventually afford researchers the unique
opportunity to stratify clinical trial participants based on how
they do or do not get better rather than simply whether or not
they get better. The approach becomes highly descriptive at the
level of the individual, thereby allowing one to answer a host
of previously unanswerable questions.

Deconstructing Treatment Response
Another question that might be asked is whether patients
responding to an intervention or placebo get better in the same
way. In other words, do the temporal dynamics of placebo
response differ from that observed in drug response? Temporal
dynamics here refer to certain discernable patterns in the EMA
data that allow a researcher to broadly classify a patient as
displaying, for instance, affective inertia (symptoms strongly
relate to themselves over time, resulting in less change over
time), affective instability (symptoms vary a great deal over
time), or inability to differentiate between symptoms (as 1
symptom gets better or worse the rest tend to follow) [69]. This
is by no means an exhaustive list of questions that may be asked
of the data derived from EMA. It is safe to say EMA has the
potential to offer a renaissance of sorts in descriptive
psychopathology and may even allow for veritable personalized
medicine given the types of patterns and points of intervention
it is able to reveal.

EMA may also help us detect the phenomenon of regression to
the mean. This phenomenon occurs when a baseline assessment
of symptoms in a clinical research study is inflated at the initial
visit before regressing to where those symptoms normally live.
This is thought to significantly impact the ability to detect
separation whenever it occurs in the placebo group. Using EMA,
patients may be monitored in the outpatient setting not simply
for clinical research purposes but rather to give the clinician a
better idea of whether or not a patient is getting better. This
approach appreciates EMA as an instrument that may be used
to conduct field research, which is thought to have better
“ecological validity” than assessments delivered within the
artificial environment of the clinical trial site [42]. Such
real-world information could be used to find out where that
patient “lives” if a patient is being screened for a clinical
research study. Similarly, it is not difficult to envision tailoring
inclusion/exclusion criteria to this end. If and when this does
take place, CNS research will be indebted to data provided
directly by the patient.

Developing Better Interventions
Once individual symptom characteristics are known, targeted
interventions can be developed. For instance, if insomnia leads
to anergia the following day, which in turn leads to anhedonia,
one might examine whether applying an intervention at the
onset of insomnia changes the observed course of
symptomatology downstream. This sort of intervention is called
an ecological momentary intervention (EMI) because it relies

on EMA or a just-in-time adaptive intervention. An EMI is an
intervention informed by data gathered by EMA. We can already
find examples of researchers using EMA data to provide an
EMI. For example, EMI has already been shown to be very
successful in providing patients with substance use disorders
relapse prevention tools precisely when they need it the most
[70]. It is conceivable that EMA scales, in addition to providing
efficacy outcomes with increased assay sensitivity, may also
reveal novel points of intervention in clinical trials.

Multiple methods, including multilevel vector autoregression
and multilevel dynamic structural equation modeling, can help
researchers examine how individuals may vary from group
trends over time [71,72]. This might allow clinicians to tailor
a personalized EMI based on a patient’s own unique pattern of
EMA data. To take this idea further still, EMA may eventually
be able to offer the unique ability to evaluate whether a target
is being addressed by an intervention via real-time lagged
mediation rather than post hoc analyses. In other words, we
would be able to use real-time lagged mediation to see whether
or not we are actually engaging a chosen target precisely when
we are attempting to target it.

The use of EMA to gather the data needed to deliver a
just-in-time EMI is also consistent with the concept of target
engagement raised by the National Institute of Mental Health
in an effort to address the declining success of clinical trials in
mental health. A target is defined as something “molecular,
cellular, circuit, behavioral or interpersonal, commensurate with
the intervention,” which is expected to be changed in some way
by the intervention being studied [73]. The concept of target
engagement is closely related to a recent call for a research
focus on symptomics or the examination of “symptom-specific
effects” [70]. Such a focus, as represented in the example above,
may allow us to identify those key symptoms that tend to
precede or perhaps even cause other symptoms. Investigating
patterns of interaction between symptoms in this way may help
us to understand some of the underlying causes of complex
psychiatric illnesses.

How Do We Get to Widespread Use of
Ecological Momentary Assessment in
Clinical Trials?

Understanding and Getting Past Limitations
Although smartphone ownership is not universal, it is increasing,
particularly among individuals with psychiatric conditions. John
Torous found in a recent survey of 457 individuals with
schizophrenia or schizoaffective disorder that greater than half
(54%) of such individuals owned a smartphone [74]. Perhaps
a greater question then is whether a participant with a
smartphone would want to use it to regularly quantify his or her
depressive symptoms. User privacy is also becoming an
increasingly important issue as faith in big tech to safeguard
users’ privacy has waned in the wake of the numerous scandals.
Getting around these limitations may require sponsors to invest
in low-cost devices participants can use while enrolled in trials.

Use of EMA in the real world often leads to missing data that
have historically made analysis problematic. Users may not be
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compliant with the number of surveys they are required to
complete in a timely manner, and, as described above, frequency
of assessments increase precision only up to a point. Beyond
this point, with too frequent assessment, the risk increases of
either introducing noise by sampling irrelevant aspects of the
human condition or of the assessment itself becoming a negative
part of the intervention. Investigators will have to consider an
assay sensitivity assessment as part of the startup process to
determine how the target population will best respond to EMA.

Although the FDA has made its expectations for PRO measures
clear [75], it is not at all clear whether every aspect of FDA
guidance will neatly translate to electronic PROs. For example,
to what extent, if any, would necessary software updates for an
accepted EMA app involve the FDA? FDA guidance for
evaluating antidepressant drugs has not been updated since 1977
and explicitly favors selecting scales that have been previously
used in drug trials over ones that are novel [76]. This effectively
prioritizes tradition over innovation and creates a catch-22 for
researchers who might otherwise break with the status quo.
Clinician-administered instruments need to be evaluated
alongside commensurate EMA-delivered items. This will help
us to determine parameters such as the optimal sampling
frequency but will likely also be necessary as the FDA typically
reports correlation coefficients for established measurement
tools [77].

The conceptualization of disorders based on Diagnostic and
Statistical Manual of Mental Disorders/International
Classification of Diseases criteria has been called into question
and may eventually be replaced altogether by Research Domain
Criteria [78]. Although EMA is in many ways conducive to a
dimensional approach to mental illness, this migration would
obviously require a new approach to EMA scale creation and
validation. In this case, the role of EMA may be to supplement
observable behaviors with self-report.

EMA may not be ideal for detecting rare events, especially if
they occur infrequently relative to the sampling frequency (ie,
as the sampling frequency decreases so too does the probability
of capturing rare events). Thus, when and how to apply EMA
in clinical trials remains an area requiring additional study and
consensus development.

EMA should not be mistaken for a panacea so long as p-hacking,
publication bias, and alpha inflation continue to affect the
integrity of clinical research. Any scale used to evaluate the
efficacy of an intervention in large industry-sponsored clinical
trials must be uniform and well-validated. Thus, to create a
standard efficacy measure for a given psychiatric disorder, we
first must form a consensus about the types of items that should
be included in the EMA scales, the frequency and duration of
assessments, and the types of analytical approaches that will be

used to interpret the data. The FDA would be unlikely to accept
an EMA-based primary outcome measure over existing efficacy
end point measures without standardization across multiple field
trials in different populations. These data should then clearly
establish test-retest reliability, external validity, and other
parameters necessary to validate an EMA scale.

Conclusions
Moving from clinician-administered rating scales toward
real-time patient-reported measures such as EMA offers
significant advantages across medical settings. In clinical
research studies, EMA may reduce placebo response and
increase intervention-placebo separation. EMA also offers an
obvious advantage over clinician-administered rating scales in
inpatient and community settings given that time, cost, and staff
pressures make use of the latter measure impractical. In
community and inpatient settings, EMA can be used to identify
individual factors leading to relapse, provide a more accurate
picture of how a patient has been doing between clinical visits,
and link real-world functional outcome measures over time (eg,
rates of rehospitalization, days lost because of disability, and
likelihood of self-harm) to scores on EMA scales. Finally,
interventions are rapidly being introduced and delivered via
smartphone. EMA may offer the best way to assess intervention
acceptability and efficacy, creating the opportunity to
personalize treatments with real-time adaptation. For these
reasons, EMA is poised not only to replace
clinician-administered rating scales in research settings but also
to increase accessibility of EMA measures to the patients and
health care providers in clinical settings, ultimately allowing
real-world clinical settings to contribute meaningful data to
research and development of new interventions.

Overall, we believe that the continued use of
clinician-administered retrospective self-report assessments in
clinical trials contributes significantly to observed treatment
failures and squanders innovative potential. As we have
described, the instruments currently being used are too broad
to adequately assess outcomes, suffer from poor interrater
reliability, make inappropriate assumptions about how the illness
being studied behaves, and rely on patient recall despite a
sizeable body of research, which cautions against this. EMA
instruments may play an increasingly important role in
addressing the disparity between the need for and investment
in novel mental health treatments. Self-report assessment via
EMA addresses the limitations of traditional assessment methods
but has not yet made its way into large multisite clinical trials
sponsored by the industry. Although the FDA’s recent efforts
to advance mobile technology in clinical trials [79] represents
an important first step, iterative testing of standardized
EMA-delivered instruments to assess primary outcomes in
clinical research is still needed.
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