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Abstract

Background: Assessment for mental health is performed by experts using interview techniques, questionnaires, and test batteries
and following standardized manuals; however, there would be myriad benefits if behavioral correlates could predict mental health
and be used for population screening or prevalence estimations. A variety of digital sources of data (eg, online search data and
social media posts) have been previously proposed as candidates for digital biomarkers in the context of mental health. Playing
games on computers, gaming consoles, or mobile devices (ie, digital gaming) has become a leading leisure activity of choice and
yields rich data from a variety of sources.

Objective: In this paper, we argue that game-based data from commercial off-the-shelf games have the potential to be used as
a digital biomarker to assess and model mental health and health decline. Although there is great potential in games developed
specifically for mental health assessment (eg, Sea Hero Quest), we focus on data gathered “in-the-wild” from playing commercial
off-the-shelf games designed primarily for entertainment.

Methods: We argue that the activity traces left behind by natural interactions with digital games can be modeled using
computational approaches for big data. To support our argument, we present an investigation of existing data sources, a
categorization of observable traits from game data, and examples of potentially useful game-based digital biomarkers derived
from activity traces.

Results: Our investigation reveals different types of data that are generated from play and the sources from which these data
can be accessed. Based on these insights, we describe five categories of digital biomarkers that can be derived from game-based
data, including behavior, cognitive performance, motor performance, social behavior, and affect. For each type of biomarker, we
describe the data type, the game-based sources from which it can be derived, its importance for mental health modeling, and any
existing statistical associations with mental health that have been demonstrated in prior work. We end with a discussion on the
limitations and potential of data from commercial off-the-shelf games for use as a digital biomarker of mental health.

Conclusions: When people play commercial digital games, they produce significant volumes of high-resolution data that are
not only related to play frequency, but also include performance data reflecting low-level cognitive and motor processing;
text-based data that are indicative of the affective state; social data that reveal networks of relationships; content choice data that
imply preferred genres; and contextual data that divulge where, when, and with whom the players are playing. These data provide
a source for digital biomarkers that may indicate mental health. Produced by engaged human behavior, game data have the
potential to be leveraged for population screening or prevalence estimations, leading to at-scale, nonintrusive assessment of mental
health.
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Introduction

Playing games on computers, gaming consoles, or mobile
devices (ie, playing digital games) has become a leading leisure
activity of choice, with consumer spending on digital games
exceeding US $134 billion [1] and outranking spending on
music and movie tickets combined [2-4]. There are
approximately 200 million gamers in North America, 354
million in Europe, 330 million in the Middle East and Africa,
234 million in Latin America, and 1.2 billion in Asia, which
represents between 55% (Latin America) and 67% (North
America) of the global online population [1].

When people play commercial digital games, they produce a
lot of data—data that are not only related to play frequency, but
also include performance data reflecting low-level cognitive
and motor processing; text-based data that are indicative of
affective state; social data that reveal networks of relationships;
content choice data that imply preferred genres; and contextual
data that divulge where, when, and with whom the player is
playing. The game-based data produced by players are a rich
source of information with the potential to be used for the
assessment and modelling of health and health decline. In this
paper, we argue that game-based data from commercial
off-the-shelf games can be used as a digital biomarker to assess
and model mental and cognitive health and health decline.

Assessment for mental health is performed by experts using
interview techniques, adjacent to questionnaires and test
batteries, and following standardized manuals [5]. However,
there is interest in finding behavioral correlates that are
predictive of mental and cognitive health and can be used for
population screening or prevalence estimations [6]. When
behavioral correlates are already known, researchers can develop
custom games that are intended to place a player in a situation
and monitor their response, response time, or performance.
There are several examples of custom assessment games that
have been developed to assess aspects of physical [7] and mental
[8] health. For example, Sea Hero Quest [9], an internet game
to track and assess dementia through navigational skills, can
assess a large number of people very quickly, providing huge
data sets with information on health decline over time for
demographic groups and individuals.

Although there is great potential in custom games for
assessment, we believe that the activity traces left behind by
natural interactions with digital games can be used as a digital
biomarker of health and health decline. As such, in this paper,
we focus on the less-studied topic of data that can be gathered
from “in-the-wild” gameplay of commercial off-the-shelf games
and how natural gameplay data can yield insights into a person’s
mental health.

Furthermore, although there are sources of data from games
that may inform physical health or health decline (eg, identifying
tremor development in patients with Parkinson disease from
mouse kinematic data in a targeting-based game), we focus on
the potential of game-based biomarkers in the context of mental
and cognitive health. We consider the scope of mental health
as defined by the Diagnostic and Statistical Manual of Mental
Disorders, 5th Edition [5], which includes assessment criteria
for mental disorders including developmental disorders (eg,
autism spectrum disorder), neurodevelopmental disorders (eg,
Parkinson disease), anxiety-related disorders, and depressive
and personality disorders.

We first present a primer on games, the types of data, and the
sources of data that are generated from natural digital gameplay.
We then provide a description of five categories of digital
biomarkers that can be derived from game-based data, including
behavior, cognitive performance, motor performance, social
behavior, and affect. We end with a discussion on the ethics,
limitations, and potential of data from commercial off-the-shelf
games for use as a digital biomarker of mental health.

Primer on Games and Game Data

Overview
Digital game play yields a variety of data that can be used to
create novel digital biomarkers for health. Commercial games,
as well as those created for research purposes, embed logging
software that tracks interaction with the game. Game
analytics—the tracking, analysis, and visualization of
game-related data—is an important tool used by game designers,
developers, and studios to inform about player experience
[10-12]. Used both when games are under development as well
as after release, game analytics leverage a variety of data types,
the most common of which are player-generated data from
interaction with the game [13].

To understand how data gathered from gameplay can be used
as a digital biomarker, we describe a standard machine learning
pipeline [14]—starting with observations (eg, game log data),
progressing to feature extraction based on the observed signals,
and ending with predictions (ie, digital biomarkers)—in the
context of gameplay. Figure 1 demonstrates this pipeline in the
context of gameplay data and biomarkers for mental health. In
the measurement layer, raw signals are gathered from various
sources. In the inference layer, features are extracted and
computational models are applied in an iterative process [14].
This computational modeling process results in final predictions,
which are shown in the indicator layer. In this section, we
briefly describe the measurement and inference layer; the next
section focuses on the indicator layer and the five categories of
game-based digital biomarkers that we propose.
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Figure 1. Machine learning pipeline for digital game-based biomarkers.

Measurement Layer
The first stage of generating digital biomarkers from game data
is measurement of the data. Game data are available from a
variety of sources, including the player, the player’s interaction
with the game, and the player’s interactions with others within
and around the game. Although the biggest source is derived
from the player interacting with the game, data from the players
themselves and from the players’ interactions with others can
also provide value by building on research advances in digital
biomarkers from nongame sources, for example, within the
fields of affective computing [15] and natural language
processing [16]. However, data from the interaction with the
game is a novel source of signal with great potential for
inference, but one that requires future research to interpret and
understand.

Player Data
Player data are gathered from the players themselves. Signals
such as heart rate, electrical activity of the brain, and galvanic
skin response have all been explored in game contexts to infer
player experience [17,18]. Although physiological data may
not be easily accessible at the resolution gathered by
medical-grade devices, novel methods of gathering physiological
data in situ continue to emerge; sensors are embedded into game
controllers for use in biofeedback games [19], to engage
spectators [20], or simply as an innovative game input [21].
Further, physiological signals such as heart rate [22], blink rate,
and facial expressions [23] can be derived from webcam-based
signals along with facial expressions.

Player Interaction Data
Data from a player’s interaction with the game is primarily
gathered from the game logs and includes high-level data (eg,
number of active daily players) and low-level data (eg, each

bullet fired in a shooting game, as was done in Gears of War 3
[Microsoft Studios, Redmond, WA; 2011]. Game developers
insert logging software that tracks interaction with the game,
and common metrics that derive from player interaction data
include usage data (eg, login frequency, play time, and role
choices), performance data (eg, win/loss data, death rate, kill
rate, and score), and social data (eg, teammate records).
Researchers can also use low-level input device data to infer
information about the player. For example, the motion
kinematics (eg, characteristics of the velocity or acceleration
of a movement [24]) of the mouse or thumbstick movements
could be used to infer information, or the pressure exerted on
a screen in a touch-based game [25] or on the buttons of a game
controller [26] could provide information on the experience
state of the player. Finally, researchers could leverage the audio
signals used in many online games to infer information; for
example, environmental noise sensed through the microphone
and coughing or respiration patterns of the player [27] could
provide a rich source of data.

Data from Players’ Interactions with Others
Data from a player’s interaction with other players, spectators,
or fans yield signals that are social in context, but can be used
in the development of individual digital biomarkers. For
example, text-based data from in-game chats could be analyzed
using a keystroke dynamics approach, which leverages the
timing and variability in typing rhythms (analyzing both time
spent dwelling on keys and moving between keys, known as
flight time) of common two-letter combinations (digraphs) and
three-letter combinations (trigraphs) to infer the emotional state
[28]. Further, sentiment analysis of social media posts for
detecting suicidal ideation [29] could be modified and applied
to text data generated in and around games. Text data are
available from various sources, including in-game chat logs,
game reviews, and texting about games on platforms such as
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Discord (Discord Inc, San Francisco, CA; 2015). Audio chat
between players also generates a valuable signal; building on
previous work that determines the emotional tone of the speech
signal [30] might prove useful in the context of mental health
modeling.

Gathering Game Data
Game data can be gathered from a single game; the majority of
mobile games, as well as console games and computer games,
record login and performance data as part of their game analytic
engines. Much of these data are accessible to researchers through
game application interfaces (APIs), including for the multiplayer
online battle arena League of Legends (Riot Games, West Los
Angeles, CA; 2009) [31], which boasts of 100 million active
players monthly, or for the massively multiplayer role-playing
games EVE online (CCP Games, Reykjavik, Iceland; 2003)
[32] and Guild Wars 2 (ArenaNet, Bellevue, WA; 2012) [33].
However, in the context of modeling mental health, the
aggregate play across game genres and titles may be more
relevant.

Although aggregate usage data can be difficult for health
researchers to gather (eg, PlayStation account data are not
publicly accessible), there are methods by which overall play
data can be gathered. Specifically, some game publishers
provide an API to their suite of games; for example, battle.net
features an API for a collection of games developed by Blizzard
Entertainment [34] that includes the massively multiplayer
role-playing game World of Warcraft, the role-playing game
Diablo III, and the real-time strategy game Starcraft II, which
is a popular title in the competitive electronic sports (e-sports)
domain. Steam is the largest online portal for game play on
computers (as opposed to dedicated gaming consoles), which
features thousands of games and 100 million members; Steam
has an API [35] that gives access to usage data and much more.
Further, some data are available through other game portals
such as Google Play [36] or Facebook Game Services [37], or
through APIs that interface with games servers, such as the
Sponge API [38] for the popular construction game Minecraft
(Microsoft Studios, 2014). Further game streaming platforms
(eg, twitch.tv) have recently been investigated as a potential
source of data for research [39]. APIs generally provide limited
access to the vast data available to the game publishers
themselves, and collaborating with game companies to access
richer datasets would be a valuable approach.

Inference Layer
Computational approaches used to make predictions in data
science derive inferences from features that are extracted from
signals, which are observed in the previously described
measurement layer. The quality of predictions derived from
machine learning approaches (including, for example, deep
learning [40] and clustering [41]) depends greatly on the quality
of the features that are extracted from the signal. Selecting
features and creating new ones [42] require expertise in the
signals, their meaning, and the mathematical and computational
approaches that are used in data science. Selecting and creating
meaningful features (known as feature engineering [42]) are
challenging and are the point in the pipeline where the expertise
of the researcher makes a difference between a black box

machine learning model (which blindly applies prediction
algorithms to extracted data) and an informed expert-driven
model that is built on theory, hypotheses, and iterative testing
[42].

Although feature selection for some types of data is already
well established in the literature (eg, sentiment analysis of text
excerpts using natural language processing [16]), there are still
open questions on how to best characterize signals derived from
novel data sources such as video games. Game-based signal
data require specific considerations, because players interact
with the games on several levels (eg, explicit interaction with
the game and implicit interaction around the game on third-party
channels). A full description of the inference layer (or the
machine learning approaches that are used within it) is beyond
the scope of this paper; however, there are many standard
resources to guide researchers who wish to leverage game-based
signals to derive digital biomarkers of mental and cognitive
health in the process of feature creation, feature selection, and
machine learning [40,42-44].

Game-Based Digital Biomarkers

Indicator Layer
The data generated by digital games for player experience
understanding can be used to extract features, from which
researchers can predict characteristics of a player that may
inform models of mental health. This prediction is part of the
Inference Layer in Figure 1. In this section, we describe five
categories of digital biomarkers for health that we feel can be
extracted from game-based data—behavior, cognitive
performance, motor performance, social behavior, and affect.
In each section, we describe why this source of data is important
for mental health modeling, the game-based sources from which
it can be derived, and relevant literature that associates it with
mental health.

Behavioral Biomarkers
Behavioral biomarkers refer to metrics that are derived from
the act of playing (eg, time spent playing and play frequency),
high-level behaviors of players within a game (eg, role choices
and play styles), and lower-level behaviors that reflect
interaction with the game (eg, gaze fixation and low-level
interface interactions).

Dosage as Behavior
In the context of health, frequency is often referred to as dosage
and reflects both the overall engagement of the player with the
game system and more complex patterns of engagement. For
example, researchers may wish to know simply how much time
is spent daily playing digital games (ie, quantity), but may also
be interested in when gaming sessions occur, how long gaming
sessions last, how much variability (ie, predictability) there is
in the overall patterns of play—referred to as entropy in research
on the computational analysis of human behavior [30]—or the
context in which play is occurring (eg, where, with whom, and
on which device).

Usage data, in terms of logins and play frequency, are available
through in-game logging. There has been some research on the
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relationship between game play dosage and mental health from
the perspective of addiction research. For example, research on
pathological gaming has used definitions of addictive behavior
to describe problematic or obsessive video game playing [45];
however, associations between excessive play and psychosocial
health have not been consistently evident, even among gamers
classified as “addicted” [46].

Although there may be meaning inferred from the overall dosage
of play, there is likely even more richness in the patterns of
play. For example, Lemola et al [47] showed that habitual
computer game playing at night (between 10 pm and 6 am) is
associated with increased depression scores, even after
controlling for the total time played, suggesting that the timing
of play could be predictive of mental health (eg, sleep-wake
disorders). Further, research suggests that the context of play
can moderate the associations of gaming behavior and
well-being [48]. In-depth analysis of the contextualized patterns
of play may indicate mental health; by considering variability
in the timing, device, or location of play, there is likely
predictive potential in behavioral data beyond dosage estimation.

Content and Preference Choices as Behavior
What we play and how we play tell us about who we are. Do
we prefer games with complex, visually stunning, narrative
heavy, open-world play (eg, Skyrim); games that gain their
depth from complex interdependent choices (eg, SimCity); or
games built around challenging puzzles (eg, The Witness)?
When we play a specific genre, how do we play: Do we prefer
to investigate every aspect of an environment or move through
in-game quests quickly? When playing with others, do we play
a supportive role (eg, healer) or do we prefer to play characters
that drive progress (eg, damage dealer)? Do we play multiplayer
games at all or do we prefer single-player games? Do we prefer
to play games that are easy to progress through or do we choose
ultra-hard modes to challenge our own abilities? There are
several ways in which we can differentiate between different
types of players [49], and the consideration of individual
preferences that are observed through behavior may prove useful
for identifying patterns related to mental health.

Research on predominantly male players who display
problematic online play behavior (for example, play for long
hours, aggressive behavior when forced to stop playing, and
financial struggles as a result of play) shows that social anxiety
is most prevalent among massively multiplayer role-playing
game players and lowest for first-person shooter players [50],
suggesting that genre preference could be an indicator of mental
health. Further, self-discrepancy (ie, how well who we are aligns
with who we want to be) research has shown that people with
low mental well-being ascribe more desirable attributes (eg,
kindness and creativeness) to a self-created character than to
themselves [51]. Finally, content or preference choices that
deviate from predictable patterns may indicate changes in life
circumstances (eg, change in relationships or work status) that
could contextualize other observed differences, which may help
better predict and assess mental health.

Low-Level Game Interaction as Behavior
Play behavior is the composite of myriad low-level interactions,
such as selecting a menu item or checking the health bar [52].
Low-level interactions that create events, such as firing a bullet,
can be measured by including the logging code in the game
software. Although low-level interactions such as clicking a
button to fire a shot carry a signal, there is additional information
in the interactions with the system itself (eg, moving the mouse)
that precede the final event (ie, shooting). For example, we can
learn about the visual cues a person responds to by analyzing
eye gaze patterns or investigating mouse movement patterns
during inventory search behavior. There is reason to believe
that gaze patterns might help indicate mental health; for
example, saccadic gaze behavior has been used extensively in
the study of schizophrenia and bipolar affective disorder [53-55].

Measuring low-level interactions such as mouse movements or
eye gaze requires either special equipment (ie, eye tracker) or
needs to be implemented during development (ie, cursor logging
software). Assessing low-level interactions during play of
off-the-shelf games is challenging, because the game code
cannot be modified to measure input (eg, click behavior), and
bringing third-party equipment (eg, gaze tracking) to the user
is logistically challenging and would influence play behavior.
To overcome these challenges, researchers must determine ways
to measure the signals unobtrusively. For example, research on
older adults has leveraged image processing to investigate
measuring cognitive performance through the card game
Klondike Solitaire [8]. Although measuring low-level
interactions is challenging outside of the laboratory context,
there are many open questions about which player characteristics
can be inferred. Does frequent non-goal–directed click behavior
indicate nervousness? Can looking up the same in-game hint
(eg, a password on a note in the inventory) multiple times
indicate forgetfulness? Are quick changes in gaze fixation
indicative of cognitive performance and information processing?
The behavior that we show unconsciously might be hardest to
access, but because implicit behaviors are difficult for players
to influence, they have huge potential for inferring mental health.

Cognitive Performance Biomarkers
Many games incorporate cognitive challenges such as
memorizing sequences that rely on short-term memory (eg,
Shadowrun), making decisions under certain conditions (eg,
first-person shooter games), recognizing patterns (eg,
Bejeweled), or analyzing complex information (eg, SimCity).
Game difficulty can generally be adjusted (or adjusted
dynamically), so that the cognitive performance required to
succeed is well matched to the player’s abilities [56]. When
players tackle cognitive challenges in games, they generate
performance data such as the number of attempts, time spent
to overcome a challenge, reaction times to stimuli, or the highest
level they were able to complete without failure. There are a
variety of game sources from which one can identify and
measure cognitive performance in games. Leaderboards and
achievements are aggregated indicators of game performance
[57]: Leaderboards provide a high score in comparison with
other players or personal bests, whereas achievements represent
specific challenges a player has overcome, such as a challenging
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attack sequence, collecting a specific set of items, or taking out
a certain number of enemies. Other performance indicators are
ranks or titles of a player (eg, Platinum or Diamond rank in
League of Legends), the rarity of owned items (eg, Stunted
Direhorn in World of Warcraft), or a player’s player-vs-player
statistic; however, these performance indicators may be more
related to time investment than to the underlying cognitive
ability.

To access cognitive performance biomarkers through games,
we can look to specific game mechanics that map well to
cognitive abilities. For example, the number of dodged hits in
a fighting game is indicative of a player’s ability to anticipate
and react, a difficult skill prevalent in elite athletes [58] and
reduced in people with depression [59]. The turn-based
role-playing game Shadowrun: Hong Kong (Harebrained
Schemes, Seattle, WA; 2015) features a two-staged hacking
challenge that requires players first to repeat an increasingly
difficult sequence of numbers—a common task for assessing
short-term memory [60]. The puzzle game The Witness
(Johnathan Blow, 2016) presents challenges that require spatial
rotation and abstract thinking (eg, one puzzle requires players
to first identify the path through a three-dimensional maze and
to then redraw the pathway on a two-dimensional input device).

Cognitive performance is an indicator of many mental health
issues such as depression, anxiety, Alzheimer disease, Parkinson
disease, or attention-deficit disorders [5]. People experiencing
symptoms of depression, for example, show differences in
executive functioning, sustained attention, and memory [61,62],
which debilitates a player’s ability to play games that rely on
these cognitive systems. Digital assessment software such as
Cambridge Neuropsychological Test Automated Battery [63]
have shown that many of the resulting divergences in cognitive
performance related to mental health can be detected through
simple tasks that are likely mirrored in digital games. Further,
performance in games can be used to naturally assess cognitive
abilities such as attentional [64] or visuospatial [39] biases.

Motor Performance Biomarkers
Most games require motor input to interact with them. The input
device used in games varies, but is generally comprised of touch
input (ie, in mobile games); mouse and keystroke input (ie, in
desktop games); and controller input, which consists of buttons
to press and thumbsticks or mini joysticks to control (ie, in
console games). Gaming consoles additionally sometimes have
cameras that capture the user’s movements (eg, Microsoft Kinect
and Sony PlayStation Camera). The level of motor interaction
needed to play a game varies widely: Many games require
complex sequences of input (eg, Street Fighter), whereas others
take a very simple motor action, but require it to be completed
quickly and repeatedly (eg, clicking in Cookie Clicker) or in
combination with cognitive choices (eg, keystrokes in Starcraft).

Motor data in games can be gathered through the types of
sources listed in the Measurement Layer section; however,
researchers interested in millisecond accuracy of motor input
can also write third-party logging software that captures
interaction with the device [28]. Leveraging research in
human-computer interaction, the kinematics of mouse
movements (eg, velocity, acceleration, and percentage of time

spent decelerating [24]) or the variability in mouse kinematics
could be indicative of mental or cognitive health. Further,
keystroke dynamics (ie, the low-level timing of typing actions)
have been used to predict the stress of the typist [28,65], which
could potentially inform stress-related mental health disorders.
Game console cameras could be used to detect players’
movements, which has been associated with various emotional
states [66] that might be indicative of mental health or health
decline. In addition, the pressure exerted on gaming controls
has been linked to frustration for both button presses [26] and
touch input [25], which provides relevance in terms of players’
resilience to stressful stimuli. Leveraging an entire touch gesture
can also provide interesting signals; for example, in Fruit Ninja
gestures, timing and pressure features were used to discriminate
low and high arousal and valence, both of which are relevant
in the context of mental health [67].

Motor performance data have particular potential as a digital
biomarker for neurodegenerative diseases such as Alzheimer,
Parkinson, and Huntington diseases, which are characterized,
in part, by psychomotor decline [5]; monitoring patients’motor
performance in games over time could reveal valuable
information about the rate of disease progression.

Social Biomarkers
Social rather than individual play is quickly becoming the
dominant form of digital game play: Gamers spend an average
of 6 hours/week playing with others online and 5 hours/week
playing with others in person [68]. When people play digital
games with others, they generate social behavioral data (for
example, with whom are they playing and what role did they
take in that interaction) as well as social communication data
(for example, what words were exchanged and in which
channels).

In terms of social behavior, some multiplayer game APIs (eg,
League of Legends) provide information on who people were
playing with; more subtle cues of social interaction, such as
being part of a guild (eg, in World of Warcraft), the number of
social contacts as compared to population averages, choices of
predefined texts (eg, “good game”) sent (eg, Hearthstone), or
the ratio of the type of games played (eg, single-player games
vs team-based games) could be indicative of mental health.
Communication-based game data can be drawn from primary
sources such as in-game chats, forum posts, or
voice-over-internet protocol applications (eg, Discord or Team
Speak) and secondary channels such as social media (eg, Reddit,
Twitter, and Facebook) or video commentary (eg, Twitch and
YouTube). Natural language processing approaches allow
researchers to identify word categories used and gives insights
into the way we use language, for example, the ratio of
self-references to social references in written texts [69]. Further,
sentiment analysis allows us to gauge the valence of an attitude
(ie, positive, neutral, or negative) toward a specific topic.
Applied to written text or spoken words from game-based
sources, these techniques provide insights into how users present
themselves when interacting with others.

Social behavior is an important indicator in many mental health
disorders and therefore important for health modelling. People
suffering from depression, for example, show higher use of
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negatively valenced phrasing [70], a tendency to use more
self-referencing words such as “I” or “me” [70,71], and use of
fewer emoticons [72]. It also matters with whom they have
contact; research on game play suggests that playing socially
may be linked to well-being [73-75]. In game play, this might
be reflected in the consistency with which we play with other
specific players.

Although online communication has been found to negatively
affect one’s well-being despite its social nature [76], the issue
is more complex and requires nuanced consideration of the
usage purpose, context, and individual differences [77,78]. A
large proportion of research on digital biomarkers to predict
mental well-being has focused on depression and anxiety;
however, psychiatric research [6] suggests that the range of
mental illnesses reflected in digital traces also applies to mental
illnesses such as borderline disorder or bipolar disorder. Bipolar
disorders might, for example, be reflected in increased parallel
conversations, high levels of text output, and fluctuation of
social relationships during up swings, while down swings would
be characterized by disengagement and negatively valenced
communication patterns.

Affective and Emotional Biomarkers
Quantifying the emotional state of the player has been of interest
to affective computing researchers and game designers who
wish to understand or improve player experience [79].
Researchers detect affect using physiological signals [80],
behavioral signals (eg, posture [81]), speech signals [30], eye
gaze and fixation data [82], and sentiment analysis of text data
[69].

Within game play, sources of measurement for affective
biomarkers include in-game chat (text data), in-game audio for
communication during online play, audio during streaming (eg,
on twitch.tv), and the input data discussed in relation to motor
performance biomarkers. In the game, there are also game-based
text data that can be gathered from forums and chat platforms
(eg, Discord) as well as game-related posts on social media.
Physiological data are not necessarily straightforward to gather
in the context of commercial off-the-shelf computer game play;
however, recent advances in sensing over a distance, such as
heart rate [83] or facial expression [84], gathered via webcam
and increased prevalence of physiological input devices in
commercial games [21] suggest that third-party logging could
be used to link physiological sources with game APIs.

Understanding the emotional experience of players is of
particular interest in the context of mental health, as many
prevalent mental health issues (eg, depression and generalized
anxiety) are closely tied to emotional wellness or can be
predicted by aberrant responses to specific stimuli (eg,
posttraumatic stress disorder) or in-game self-representations
(eg, anorexia nervosa). For example, eye gaze patterns have
been used to characterize individuals with various depression
and anxiety disorders [85]. Impulse control and conduct
disorders are characterized by difficulty in the self-regulation
of emotions and behaviors [5], whereas emotional self-regulation
difficulties are also characteristic in some developmental
disorders (eg, autism spectrum disorder [5]).

Discussion

Overview
Digital biomarkers are increasingly being used to indicate
potential mental health issues [86-89]. Computational
phenotyping—the digital quantification of disease
phenotypes—extracts the observable traits (eg, morphology,
development, and behavior) of an entity from data sources that
can be complex and heterogenous. In this paper, we propose
using data generated from natural play of off-the-shelf digital
games (ie, digital biomarkers) as one such complex data source.
Five categories of game-based digital biomarkers—behavior,
cognitive performance, motor performance, social behavior,
and affect—were argued to include observable traits that could
be indicative of mental health or health decline.

Multiple Data Sources and Sensor Fusion
Each of the five described digital biomarkers mentioned has
the potential to indicate mental health or illness; however, it
may be in their combination that the true power of game data
as a digital biomarker of mental health can be seen. Further,
combining game data with other observable traits derived from
smartphone data (eg, geolocation, accelerometer, and Bluetooth
devices), sentiment from social media (eg, Google search,
Reddit, Twitter, and Facebook), or physiology from integrated
trackers (eg, Fitbit) may allow for rich and predictive models
of mental health that leverage sensor fusion (ie, the use of
multiple sources of data in combination [42]) for accurate
modeling. We do not suggest that game-based data can be the
sole biomarker for mental health in isolation, but that
considering its inclusion in a suite of behavioral indicators may
improve modeling in the context of mental and cognitive health.

To interpret data generated by different sources, data collected
from a large sample with the intention to create a norm has
several advantages. Sea Hero Quest [90], for example, generates
insights into humans’ general capability to navigate and then
identify behavior that deviates from norms as an indicator for
early onset dementia. Establishing norms in game-based
biomarkers is a complex undertaking but may have value when
looking for deviations from norms as an indicator of mental
health decline.

Limitations
There are various factors that may compromise the predictive
potential of game-based digital biomarkers. For example,
pharmaceutical treatment or remission through therapy can
interfere with accurate prediction: In terms of impulsivity,
depressed people in remission are often grouped with control
subjects rather than depressed participants [91], whereas in
terms of visual acuity, depressed participants, regardless of the
pharmaceutical treatment, are differentiated from the control
group, but not each other [92]. As use of game-based biomarkers
is a novel approach, researchers must carefully establish whether
and how treatment or remission affects the behavior underlying
the biomarker. Further, as with all digital biomarkers derived
from in-the-wild data sets, events unrelated to the characteristic
being predicted can greatly interfere; for example, a player who
is on holiday, has a cold, has an upcoming deadline, or is
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experiencing harsh weather can exhibit behaviors that appear
to be erratic, but which are driven by circumstance and not
mental health.

Another limitation is that game-based biomarkers will only be
relevant for assessment of populations who play games. People
of all ages play games; however, preferences for various genres
and platforms change with age [93]. A greater proportion of
people of color in America play games, identify as gamers [94],
own a gaming system, and form a faster-growing market than
their white non-Hispanic counterparts [95]. In addition, almost
half of all gamers self-identify as female; however, social
gaming and mobile gaming are more important to female gamers
than male gamers [96]. Demographic factors will need to be
accounted for in any model of mental health built on game-based
biomarkers. Finally, research on game-based biomarkers is in
its early infancy: In this paper, we hypothesize that the potential
biomarkers are based on existing scientific literature; however,
significant research is needed to demonstrate the efficacy of
game-based biomarkers and to identify specific game-based
biomarkers for specific groups of mental health disorders.

Ethics, Privacy, and Legal Use of Game Data
The use of data derived from digital sources is part of a larger
discussion [97-99]; as with all digital data, game-based
biomarkers require consideration for topics such as inferring
identity, communicating mental health assessment, privacy of
in-game conversations, and legality of gathering data
unobtrusively.

Rare events in game-based data (eg, a difficult-to-unlock
achievement) allows for the identification of individual players.
As a result, researchers need to consider information reported
on their players. When working with public players such as
e-sports athletes or streamers, the in-game identity can be
publicly linked to the actual identity of a player, which therefore
requires considerations for privacy.

Technologies such as Mindstrong Health Services [100] or
Facebook’s Suicide detection [101] show how data gathered
from digital sources can be used to infer mental health and reach
out to individuals who are at risk. Game-based biomarkers could
result in similar services. However, communicating detected
potential mental health issues might have negative consequences
for users; for example, it is unclear what the consequences are
of false positives (ie, a player being urged to seek help when
there is actually no issue at all). Researchers need to consider
the potential consequences of reporting mental health to players
and the methods by which they communicate with players about
the detected mental health issues.

Forums, in-game chats, and game streams require extra attention
when analyzed, because users do not intend to have their
information stored and may use phrasing and communication

patterns that misrepresent conversations out of context. Consent
to allow researchers to monitor conversations needs to be given
explicitly, and player-initiated removal of unwanted data from
further storage (eg, the use of a derogative term) requires
consideration.

In addition to standard ethical considerations of data-driven
inference, game-based data have characteristics that require
special attention. First, the expectation that mental health could
be inferred from a player’s pressure profile of a button press
during game play is lower than that from explicitly posted texts
about suicidal ideation on social media platforms [101,102].
Players should be clearly notified of the implications of implicit
assessment from natural in-game behaviors that are, in the
player’s view, unrelated to mental health. Further, extensive
play for the purposes of assessment should not be a “slippery
slope” into pathological play behaviors. Second, players often
behave differently in games by enacting fantasies [103], trying
out different personalities [104], or behaving in ways congruent
with gameplay, which are incongruent with out-of-game
expectations, such as acting violently or ultra competitively.
Applying value judgements from models of behavior generated
out of games may not apply within games and could increase
the risks of false positives if not properly considered.

Conclusions
Mental illness has become a major disease burden globally:
Depression is currently the leading cause of disability worldwide
[105]. Untreated mental illness has serious consequences; the
estimated US $2.5-8.5 trillion globally in lost output attributed
to mental, neurological, and substance use disorders is expected
to almost double by 2030 [106]. In addition to these financial
costs, people experience costs to their well-being that range
from a lower quality of life [107] to a loss of life [108]. The
emergence of smartphone and wearable devices has begun to
show promise for the assessment of mental health, for example,
for real-time assessment of suicidal thoughts [109] or acute
phases of psychosis among people with schizophrenia [110];
however, there is additional work to be done before researchers
can reliably use game-based biomarkers to predict a decline in
a person’s mental health, such as the onset of a depressive
episode, the progression of dementia, or behavioral changes
that are related to social anxiety.

In this paper, we argued that owing to the prevalence of digital
game play, there are several untapped sources of data, including
behavior, cognitive performance, motor performance, social
behavior, and affect. Further, we proposed that due to existing
statistical associations between these five game-based digital
biomarkers and mental health, there is untapped potential in
game data for computational modeling that predicts mental
health and mental health decline.
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