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Abstract

Background: A smartphone is a promising tool for daily cardiovascular measurement and mental stress monitoring. A smartphone
camera–based photoplethysmography (PPG) and a low-cost thermal camera can be used to create cheap, convenient, and mobile
monitoring systems. However, to ensure reliable monitoring results, a person must remain still for several minutes while a
measurement is being taken. This is cumbersome and makes its use in real-life situations impractical.

Objective: We proposed a system that combines PPG and thermography with the aim of improving cardiovascular signal quality
and detecting stress responses quickly.

Methods: Using a smartphone camera with a low-cost thermal camera added on, we built a novel system that continuously and
reliably measures 2 different types of cardiovascular events: (1) blood volume pulse and (2) vasoconstriction/dilation-induced
temperature changes of the nose tip. 17 participants, involved in stress-inducing mental workload tasks, measured their physiological
responses to stressors over a short time period (20 seconds) immediately after each task. Participants reported their perceived
stress levels on a 10-cm visual analog scale. For the instant stress inference task, we built novel low-level feature sets representing
cardiovascular variability. We then used the automatic feature learning capability of artificial neural networks to improve the
mapping between the extracted features and the self-reported ratings. We compared our proposed method with existing
hand-engineered features-based machine learning methods.

Results: First, we found that the measured PPG signals presented high quality cardiac cyclic information (mean pSQI: 0.755;
SD 0.068). We also found that the measured thermal changes of the nose tip presented high-quality breathing cyclic information
and filtering helped extract vasoconstriction/dilation-induced patterns with fewer respiratory effects (mean pSQI: from 0.714 to
0.157). Second, we found low correlations between the self-reported stress scores and the existing metrics of the cardiovascular
signals (ie, heart rate variability and thermal directionality) from short measurements, suggesting they were not very dependent
upon one another. Third, we tested the performance of the instant perceived stress inference method. The proposed method
achieved significantly higher accuracies than existing precrafted features-based methods. In addition, the 17-fold
leave-one-subject-out cross-validation results showed that combining both modalities produced higher accuracy than using PPG
or thermal imaging only (PPG+Thermal: 78.33%; PPG: 68.53%; Thermal: 58.82%). The multimodal results are comparable to
the state-of-the-art stress recognition methods that require long-term measurements. Finally, we explored effects of different data
labeling strategies on the sensitivity of our inference methods. Our results showed the need for separation of and normalization
between individual data.

Conclusions: The results demonstrate the feasibility of using smartphone-based imaging for instant stress detection. Given that
this approach does not need long-term measurements requiring attention and reduced mobility, we believe it is more suitable for
mobile mental health care solutions in the wild.

(JMIR Ment Health 2019;6(4):e10140) doi: 10.2196/10140

JMIR Ment Health 2019 | vol. 6 | iss. 4 | e10140 | p. 1https://mental.jmir.org/2019/4/e10140/
(page number not for citation purposes)

Cho et alJMIR MENTAL HEALTH

XSL•FO
RenderX

mailto:youngjun.cho@ucl.ac.uk
http://dx.doi.org/10.2196/10140
http://www.w3.org/Style/XSL
http://www.renderx.com/


KEYWORDS

stress detection; mobile applications; photoplethysmography; thermography; psychophysiology; heart rate variability; physiological
computing; affective computing; machine learning

Introduction

Human physiological events are controlled by the actions of
the sympathetic nervous system (SNS) and the parasympathetic
nervous system (PSNS). Of the many different types,
cardiovascular and respiratory events have been shown to be
important for monitoring a person’s mental health and stress
[1-5]. Recent studies have demonstrated that it is possible to
use smartphone cameras (ie, Red Green Blue vision) to measure
blood volume pulse (BVP) [6-10] and mobile thermal cameras
attached to a smartphone (or integrated into it, for example, Cat
S60) to measure respiratory cycles [11]. These encouraging
results suggest that smartphones could become a powerful
apparatus for monitoring and supporting mental stress
management on a daily basis through biofeedback [12]. Indeed,
the combination of RGB and thermal cameras in one device has
the potential to provide a very large set of physiological
measurements for stress monitoring in our daily life. Smartphone
apps with such capabilities are increasingly desired as possible
tools for facilitating stress self-management [13-15] as people
are often unaware of their level of stress and of being
stress-sensitive to particular situations, for example, chronic
pain can cause a fear of movement [16]. There is also a strong
interest within the industry in complementing typically used
questionnaires in order to enable improved assessment of
well-being with personnel as well as revisiting work plans and
work environments [17]. Given their size and mobility, such
sensors could be embedded into employees’ aids for ease of
use. Although these low-cost sensors are still not perfect, the
literature shows that their reliability is increasing, and we are
contributing to this body of work. At the same time, we hope
that our work contributes to the literature in general using these
signals as stress measures [18-20]. In this paper, we aim to focus
on 2 important cardiovascular events that can be captured by
low-cost, low-resolution sensors: cardiac cyclic events with
smartphone photoplethysmography (PPG) and
vasoconstriction/dilation-induced nose tip temperature dynamics
with a low-cost thermal camera. In particular, we investigate
how to instantly capture stress-induced variability of such
physiological patterns.

Heart rate variability (HRV) is the time series of variation in
heartbeats. It has been used to measure a person’s mental stress
[4,18,20-25]. HRV’s popularity arises from the fact that it has
been shown to abstract information about the sympathovagal
balance between the SNS and PSNS. When confronted with a
stressor, the autonomic nervous system can produce a sequence
of fight-or-flight responses [1]. These manifest themselves as
alternations of accelerated and decelerated cardiovascular
patterns [1,26]. To characterize the HRV, various authors
[4,21,22,27] have proposed a variety of hand-crafted HRV
metrics that are computed over time intervals between
heartbeats. Although most of the HRV metrics were originally
built based on the RR intervals from electrocardiogram (ECG)
measurements [28], the metrics have been applied to the PP

intervals from PPG measuring BVP [18,20,25,29]. In the case
of PPG, the term pulse rate variability (PRV) or PPG HRV is
often used to clarify the different type (even if related) of event
measured [26,29-31] with respect to ECG. Among the most
commonly used are statistical metrics (such as the standard
deviation of RR or PP intervals) and frequency-band metrics
(eg, the normalized power in a frequency band of interest). In
particular, various studies have found that the Low Frequency
(LF; 0.04 Hz-0.15 Hz) and High Frequency (HF; 0.15 Hz-0.4
Hz) bands of the time intervals in heart rates appear to reflect
the SNS and PSNS activities [21]. Based on this observation,
many studies have proposed to use the LF/HF ratio as a stress
indicator [4,22,24,32]. However, the use of such metrics has
remained controversial in that they tend to oversimplify
physiological phenomenon [33-35]. In particular, a single
physiological metric itself does not strongly contribute to
automatically detecting a person’s stress levels (ie, machine
learning tasks) [33,36]. Hence, multiple HRV metrics–derived
features have been used together with those from other
physiological activities such as perspiration and respiratory
activities for automatically inferring mental stress, for example,
during driving tasks [37] and desk activities [25]. To ensure
reliable measurements with such features, a relatively long-term
window of data (several minutes to a few hours) must also be
used [25,36]. Although this is acceptable in specialist settings
or with medical devices, it is highly inconvenient in the real
world with unstructured settings using low-cost devices (in
particular, the PPG). For example, if smartphone-based finger
PPG was to be used, a user would have to continuously make
sure their finger is held stably in front of the camera. Another
issue is that changes in ambient light levels, as a user moves
around, can corrupt long-term measurements.

Another documented cardiovascular event that happens as a
reaction to mental stressors is vasoconstriction of blood vessels
in a person’s nasal peripheral tissues [38,39]. This causes blood
flow to drop, resulting in a decrease in temperature, which can
be detected by monitoring the temperature of the nose tip. This
study [40] found that a contact-based multi-channel thermistor
was able to detect a significant decrease in temperature of the
nasal area as relative to the forehead in mentally stressful
conditions. The same result has been repeatedly reported from
the use of thermal imaging in mental stress induction studies
[38,41], indicating that the thermal directionality (ie, temperature
drop) can be a potential barometer of mental stress. However,
studies show similar limitations as they require keeping the
head still (often authors use a chinrest). In addition, they also
require measuring baseline temperatures to compute the thermal
direction, which may limit its use in real-life applications
[42,43]. In this work, we address the former issue by using a
state-of-the-art tracking method [11]. Furthermore, we rely only
on the instant measurement with the area of interest (nose tip)
to address the latter.

The reason for proposing the use of 2 sensors in this study rather
than just 1 is that despite the potential of thermal imaging in
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measuring BVP [44], its accuracy is low and its ability in
measuring PP intervals has not been yet validated. Instead,
camera-based PPG has been shown to be more reliable [9,45]
and can be used simultaneously with thermal imaging, possibly
compensating each unimodal performance in inference tasks.
In addition, the use of finger PPG and thermal camera raises
much less privacy concerns than RGB-based facial analysis,
that is, remote PPG [8]. Furthermore, the use of multiple
measurements increases reliability of stress monitoring. Finally,
even if not investigated in this paper, low-cost thermal imaging
could provide further measurements of stress-related
phenomena—respiration rate [11,36] has already shown to be
possible with a mobile thermal camera and possibly sweat
[46]—to provide a wide battery of cues for reliable assessment.

Rather than focusing on all possible physiological signals that
could be later added, this paper investigates the possibility to
build a fast stress recognition system that only requires a very
short time window of PPG and thermal measurements. This is
to ensure the possible use in real-life ubiquitous situations. In
particular, we contribute to the literature on 4 fronts. First, we
propose new preprocessing techniques to enhance the quality
of the signals that are extracted from both the smartphone-based
PPG and thermal camera and to reliably produce PP intervals
and thermal variability data as low-level features. This is
particularly important when working with ultrashort
measurements [47]. Second, we explore correlations between
currently used metrics from thermal and PPG signals over a
short period of time and self-reported stress scores. Third,
instead of using the existing metrics as high-level features, we
propose to use the low-level features and let artificial neural
networks (NNs) learn informative high-level ones themselves.
We evaluate the approach on a multimodal dataset purposely
collected for this study. Finally, we further investigate
sensitivities of different labeling strategies from self-reported
stress scores within the perceived stress recognition
performance.

Methods

Overview
This section presents a method that enables quick inference of
a person’s perceived stress level using smartphone-integrated
PPG and thermography. We call these measurements instant
measurements to differentiate them from the short measurements
(typically between 2 min and 5 min), which have been
previously defined in the literature [47].

First, we describe software we implemented. This includes a
recording setup and a set of techniques to produce reliable
PPG-derived HRV profiles and sequential nose tip thermal
variations (called hereafter the thermal variability sequence)
from the thermal imaging sensor. We then introduce our study
protocol to induce different levels of mental stress and collect

short sequences (20 seconds) of cardiac pulse–related and
thermal events together with self-reports of perceived mental
stress scores. Third, we extract low-level (1-dimensional PP
intervals and thermal variability sequences) and high-level
hand-engineered features, comparing the performance of our
system over the 2 sets of features and sensor modalities. We
conclude by comparing our approach to data labeling with
standard approaches to discuss the effect of intersubjective
variability in reporting stress scores.

Toward Smartphone as a Reliable Multiple
Cardiovascular Measure
The main cardiovascular sensing channels of this work are the
rear RGB camera of a mobile phone (LG Nexus 5) and a
low-cost thermal camera (FLIR One 2G) attached to the phone.
Figure 1 shows the smartphone with the attached thermal
camera, the required finger placement and light emission for
PPG, and the physiological measurement interface.

Although the smartphone imaging–based PPG measurement
can be performed in either a contact [6,7] or a contactless
manner [8], in our work, we only focus on a contact-based
imaging PPG. The reason is based upon previously repeated
investigations within clinical studies [6,10] reporting its high
accuracy. In addition, given that a normal RGB camera is only
sensitive to a narrow electromagnetic spectral range of visible
light in the so-called visible spectrum [48], adequate lighting
is required before it can be used as a PPG sensor. Hence, a light
emission from the rear flash light-emitting diode (LED) is used
and a user is required to hold the smartphone body and place
his/her finger over both the back camera and flash light (Figure
1). Unfortunately, the use of the back flash limits the duration
of the measurements in some devices since its heat can
potentially burn a person’s skin. As shown in Figure 2, a large
amount of heat is produced by the LED emission from the
chosen smartphone (LG Nexus 5) in just 25-30 seconds of
operation. A similar amount of heat was observed from another
mobile phone (Samsung Galaxy 6 in Figure 1). Since
temperatures above 50°C are potentially damaging to human
skin tissues, for example, skin erythema could occur from 25
seconds heating at 51.07°C [49], we limit the cardiovascular
measurement to a 20-second time period. This is also the
required minimum duration for obtaining valid HRV metrics
values, particularly LF/HF [47].

To capture a time series of apparent thermal sequences, we
developed bespoke recording software using the FLIR One
library (FLIR Systems). The interface is shown in Figure 1.
Considering the thermal properties of human skin, the emissivity
of the thermal imaging sensor was fixed at 0.98 [50]. As the
thermal imaging system does not guarantee a consistent frame
rate [48], the recording interface stores the time stamp with each
image frame.
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Figure 1. Smartphone RGB and thermal camera–based physiological measurement: (a) a smartphone with an add-on thermal camera, (b) flash
light-emitting diode emission and finger placement for photoplethysmography measurement, and (c) designed software interface to collect blood volume
pulse and 1D thermal signature from the nose. LED: light emitting diode.

Figure 2. Heat produced by the rear flash light-emitting diode of a smartphone (LG Nexus 5), measured by a thermal camera (FLIR One): (a) before
turning on the LED (36.3°C), (b) after 10 seconds-15 seconds (43°C), and (c) after 25 seconds-30 seconds (53.7°C). LED: light emitting diode.

Blood Volume Pulse and PP Interval Estimation
Through Photoplethysmography
Figure 3 summarizes the approach we use to extract BVP and
PP intervals through the smartphone imaging PPG. Following
previous studies [6,7,10], our method estimates the BVP signals
by capturing subtle color variations associated with light
absorptivity patterns of hemoglobin in the capillaries of a
person’s skin. However, rather than using average values of the
pixels of the red (or green) channel to estimate the BVP value,
which is the most widely used method [6,7,9], we propose to
use the negative temporal variations in spatial Shannon entropy
[51] of sequential R-channel images (–Ht(X)) as raw BVP
signals. This is because of averaging, which tends to ignore
fairly small but important variations in color distribution [11].
The estimated BVP value at a given time t can be expressed in
the following manner (equation 1):

where xi,j is the brightness of pixel (i,j) and p(xi,j) is the
probability distribution, which is generally estimated using a
grayscale histogram in image analysis [52] (here, for the R
channel).

As our interest is in measuring raw PP intervals from PPG
signals, we used a simple signal processing technique to create
similar amplitudes of each peak of BVP, which helps detect
peaks for measuring the time interval (ie, PP interval) between
the peaks. This was done by the subtraction of the k- sample
moving average signals from the raw entropy signal (Figure 3)
which can be expressed in the following manner (equation 2):
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Figure 3. Overall procedure of blood volume pulse and PP interval estimation from a person’s finger through the smartphone-imaging
photoplethysmography. See text for details. BVP: blood volume pulse.

Figure 4. Overall procedure of the extraction of 1-dimensional thermal variability signature from a person’s nose tip through smartphone thermal
imaging.

Since a high sampling rate produces a higher sensitivity of the
PP intervals [53], we upsampled the raw sequences to 256 Hz
with spline interpolation and used a 1 second moving average
to smooth heartbeat induced variations within the duration where
at least one heartbeat of a normal person is expected to appear
[54]. Finally, we used the simple local maxima detection [55]
with a 0.5 second sliding window to recover PP intervals (Figure
3).

Continuous Extraction of Nose Tip Thermal Variability
Sequence
To extract the 1D sequential nose tip thermal changes, our
approach uses the 3 computational steps shown in Figure 4.
These are (1) nose tip region-of-interest (ROI) tracking, (2)
breathing artifact reduction, and (3) postprocessing for extracting
low-level features representing thermal variability.

For ROI tracking, we can take advantage of recent advances in
thermal ROI-tracking techniques, which help minimize the
effects of motion artifacts and thermal environmental changes.
In particular, we used the Optimal Quantization and Thermal
Gradient Flow methods (Figure 4) introduced in a study by Cho
Y et al [11]. Through the use of these techniques, we can
continuously extract a spatial average temperature sequence
over the ROI. As breathing causes thermal changes in the area
close to the nose tip (see Figure 4), we need to remove such
effects from the ROI for reliable measurements. This is
necessary despite the fact that breathing dynamics are significant

indicators of mental stress [3,36]. For this, we propose to use a
low-pass filter with a cutoff frequency lower than the normal
range of breathing rates of healthy people, for example, 0.1
Hz-0.85 Hz [11]. As a thermal directional change is a relatively
slow physiological event [56], we set this to 0.08 Hz, which is
lower than the low boundary. For the implementation, we used
a zero-phase filtering (seventh-order, Butterworth) to avoid a
phase-shifted result. Finally, we computed the thermal variability
sequences of the nose tip (Figure 4) by downsampling with a
linear interpolation and feature scaling the signal. Here,
downsampling (1 Hz) is used to address the unsteady frame rate
of the thermal camera and compute successive temperature
differences sampled at regular temporal points. Feature scaling
(Figure 4) was applied to minimize the effect of different levels
of nasal temperatures across participants and sessions and to
explore the thermal temporal variability within short-term data.
As this new method helps extract nose tip thermal variability
sequences continuously, it can produce richer feature sets in
comparison with earlier methods [38,40,41]. In turn, this could
possibly provide useful information, even from an instant
measurement, contributing to the automatic inference of a
person’s stress.

Data Collection Protocol
A data collection study was carried out to gather physiological
data from participants during different tasks that induced
different levels of mental load. The data collection protocol is
described below.
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Participants
A total of 17 healthy adults (mean age 29.82 years, SD 12.02;
9 female) of varying ethnicities and different skin tones (pale
white to black) were recruited from the University College
London (UCL) and nonresearch community through the UCL
psychology subject pool system. Participants completed
prescreening through the system that was designed to exclude
participants with any history of psychiatric disorders or medicine
intakes, which may influence their physiological signatures.
Each participant was given the information sheet, asked to
provide a signed consent to take part in the study, and to fill in
the demographics form before the start of data acquisition. The
study was conducted in a quiet lab room with no distractions.
Participants were informed that they could stop the study at any
time if they felt uncomfortable. Only 1 experimenter was present
in the room during the data collection but kept his distance from
the participant (further than 1.5 m). We compensated each
participant with an £8 Amazon voucher after completion of the
study. The experimental protocol was approved by the Ethics
Committee of the University College London Interaction Centre
(ID Number: STAFF/1011/005).

Task Structure and Instant Measurements of Lasting
Stress-Induced Physiological Events
We designed a stress induction study protocol to collect
physiological data and subjective self-reports in association
with mental stress levels [1,57]. From the literature on mental
stress induction studies in psychology, neuroscience, and
affective computing [2,25,58,59], we chose 2 cognitive-load
induction tasks—the Stroop Color-Word test [60] and the
Mathematical Serial Subtraction test [61]. These tests were
selected as they have been shown in various studies to induce
mental stress by increasing cognitive load. They have also been
used in other thermal imaging studies [39,41]. Each task was
divided into 2 subtasks with varying difficulty levels to elicit
different stress levels (easy and hard: Se=Stroop easy, Sh=Stroop
hard, Me=Math easy, Mh=Math hard) and each subtask was
counterbalanced in a Latin squared design as done in a study
by Cho Y et al [36]. Between subtasks, we added a break period
encouraging participants to fully recover (without any
measurements, constraints) so as to avoid potential effects from
previous sessions.

Although it has been shown that the Stroop and Math tasks lead
to cognitive overload [2,59], they are limited in the amount of
stress they induce because of the lack of psychosocial stressors
or other stressors [2,62]. Hence, following previous studies
[2,40,59,62], we also introduce further stressors: (1) social
evaluative threats, that is, close observation and assessment of
a person’s performance [2,62], (2) time pressure, for example,
1.5 second limitation for each Stroop question [59], and (3) loud
sound feedback, particularly, an unpleasant sound for wrong
answers [40].

As described above, heat caused by the use of the smartphone
PPG limited our data gathering to a 20-second window
immediately after each task. The aim is to capture the
cardiovascular changes related to stress responses and their
dynamics immediately after the stressor has ended instead of
measuring the signals during each task (Figure 5). Textbox 1
shows the overall study protocol.

Measuring and Self-Report of Perceived Mental Stress
For the 20-second physiological measurements, the participants
were asked to hold their index finger on the smartphone RGB
camera while keeping the smartphone add-on thermal camera
facing their nose, as shown in Figure 5. After each 20-second
physiological measurement, all participants were asked to
answer a questionnaire about their perceived level of mental
stress. We used a 10-cm visual analog scale (VAS), which
allows participants to answer on an analog basis (continuous)
to avoid nonparametric properties [63,64]. The question asked
was “How much did you feel mentally stressed?” (ranging from
0, not at all, to 10, very much). Only 1 VAS straight line was
used for each participant to self-report his/her perceived stress
levels across all tasks and sessions. This is to help participants
easily compare stress scores they report with sessions as shown
in Figure 5. This approach combines a numerical approach to
self-reporting with a ranking one, as ranking is generally more
reliable than simple quantization of a subjective state [65-67].
The labels in Figure 5 have been added to the figure by the
researcher to clarify their reference to each of the tasks (R1, R2:
Rest from Session 1 and 2, Se: Stroop easy, Sh: Stroop hard,
Me: Math easy, Mh: Math hard).

Figure 5. Experimental setup and self-report question: (a) during each stress-induction task session, (b) 20-second physiology measurement after
sessions, and (c) 10 cm VAS-based questionnaire (R1, R2: Rest from Session 1 and 2, Se: Stroop easy, Sh: Stroop hard, Me: Math easy, Mh: Math
hard). The red marks (x) represent an example of self-reported score of 1 participant over the different tasks. The task labels have been added by the
researchers for the purpose of this figure.
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Textbox 1. Study protocol.

1. Introduction

• Waiting in the corridor, introduction and entering the study room (5 min-10 min)

• Information/consent/demographics forms filled in (5 min-10 min)

2. Session 1

• Rest 1: sitting, resting (5 min)

• 20-second measurement and self-reporting of perceived stress (1 min-2 min)

• Task 1: Stroop Test 1 (5 min)

• 20-second measurement and self-reporting of perceived stress (1 min-2 min)

• Break (5 min)

• Task 2: Stroop Test 2 (5 min)

• 20-second measurement and self-reporting of perceived stress (1 min-2 min)

• Break (3 min)

3. Session 2

• Rest 2: sitting, resting (5 min)

• 20-second measurement and self-reporting of perceived stress (1 min-2 min)

• Task 3: Math Test 1 (5 min)

• 20-second measurement and self-reporting of perceived stress (1 min-2 min)

• Break (5 min)

• Task 4: Math Test 2 (5 min)

• 20-second measurement and self-reporting of perceived stress (1 min-2 min)

• Break (5 min)

4. Closing

• Wrap-up and participant’s feedback (5 min-20 min)

Automatic Inference of Perceived Mental Stress From
Instant Measurement

Low-Level and High-Level Features From
Cardiovascular Events
The 20-second cardiovascular measurement with the developed
interface (Figures 1 and 5) simultaneously produces the
following signals: (1) 1-dimensional PP intervals and (2)
1-dimensional thermal variability sequence

We take the PP intervals (Figure 3) and thermal variability
sequence (Figure 4) as low-level features representing each
modality throughout this paper.

In order to evaluate the effectiveness of our approach against
standard approaches, we also extracted high-level engineered
features for both BVP and nose tip temperature variations as
the evaluation benchmark for our approach. We followed earlier
studies on stress inference using HRV metrics as the features
[25,37,68,69] (in our case, PPG-derived HRV; for readability,
hereafter simply called PRV), although we excluded features
directly from HR given its minor role repeatedly found in stress
inference studies [25]. After the preprocessing method described
above, we extracted the following PRV features:

1. PRV F1 (LF Power)
2. PRV F2 (HF Power)
3. PRV F3 (LF/HF ratio)
4. PRV F4 (SDPP: Standard Deviation of PP intervals)
5. PRV F5 (RMSSD: Root Mean Square of the Successive

Differences of PP intervals)
6. PRV F6 (pPP50: Proportion of the number of the successive

differences of PP intervals greater than 50 ms of the total
number of the intervals)
As for high-level features representing the nose tip thermal
signature, we used the most primarily used feature in the
literature [38,40-42]:

7. Nose temperature F1 (TD: Temperature Difference between
data from the start and the end).
In addition, we extracted basic statistical features from the
processed thermal variability sequence, similar to SDPP
from the PP intervals:

8. Nose temperature F2 (SDSTV: Standard Deviation of the
Successive differences of the Thermal Variability sequence)

9. Nose temperature F3 (SDTV: Standard Deviation of the
Thermal Variability sequence).

The sliding window was not used to extract these features given
the short period of time over which they were measured.
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Labeling Strategy and Machine Learning Classifiers
Given the focus on automated inference of a person’s perceived
stress level, the labeling of self-reported stress scores is an
important step. However, interpersonal variability has been
repeatedly found from self-reports of perceived mental stress
[24,36,70]. This is a key issue that must be addressed if we are
to create automatic stress recognition systems that can generalize
across people. Following our earlier work [36], we use the
normalized K-means clustering technique to label the measured
events, as the K-means has been shown to be effective in
handling self-reported data [71]. In detail, all perceived stress
scores collected from each participant are normalized through
feature scaling that identifies the minimum and maximum scores
for a participant and rescales all the scores so that the range is
the same across all participants. Then, the K-means algorithm
(k=3) is used to group the participants’ VAS scores into 3 levels
of perceived stress scores corresponding to “None or low stress,”
“Moderate,” and “Very high” on the VAS we used (see Figure
5). In this paper, we focus on discriminating between 2 levels
of stress, No-Stress and Stress, given the limited amount of data
for a more refined discrimination. Hence, a third step is required.
We split the labels into 2 groups: the No-Stress group referring
to the K-mean “None or low stress scores” cluster and the Stress
group containing both the K-mean “Moderate” and “Very high”
score clusters. A total of 2 obtained labelled groups are hence
used to label the related physiological signatures from each
20-second window (L1).

Furthermore, we explored the possible effect of different data
labeling strategies: (1) L2, combining the first and second
K-means clusters (from k=3) into No-Stress by contrast with
L1, (2) L3, K-means with k=2, and (3) L4, the original stress
scores divided by directly dividing the VAS scale into 3 equal
sections and then combining the “Moderate” and “Very high”
stress classes into 1, that is, “Not at all” and “Moderate+Very
high” (threshold at point 3.334 on the VAS scale in Figure 5).
The aim of L2 and L3 was to understand the sensitivity of our
approach in separating the moderate level of stress with the
other 2 classes. L4 was used as a way to compare with more
standard techniques used in the field [72].

A total of 2 machine learning algorithms were tested. First, we
used a single hidden-layer NN, which is suitable to work with
low-level features (ie, PP intervals and thermal variability
vectors), capturing their temporal dynamics. The use of artificial
NNs can empower automatic learning of informative
physiological features with backpropagation to repeatedly tune
internal parameters to let the features emerge from the data (this
is also called representation learning). Second, with the
high-level engineered features, we used the k-Nearest Neighbor
classifier (denoted as kNN, k=1) as a benchmark stress inference
model given that this is typically used in this area [69]. By
choosing this second algorithm, we aim to assess the limitations
of the use of handcrafted features, which may simplify a
person’s dynamic physiological events, and in turn possibly
miss out some fast, informative moments. In particular, in the
case of instant measurements (short period of time), this cannot
be compensated by the use of a sliding window producing
sequential feature values, for example, 120 seconds sliding

window used in a study by McDuff DJ et al [25] to continuously
produce PRV features during a 180-second task session.

For the implementation of NNs, we tested 2 sizes of hidden
layer nodes: (1) small (n=80, NN1) and (2) large (n=260,
NN2)—each node size was empirically chosen. The mean and
standard deviation of the training dataset were used to normalize
both the training and testing dataset. The sigmoid was used as
an activation function. In the training process, a fixed learning
rate of 0.5 was used for 100 epochs.

Results

In this section we evaluate our proposed approach. First, we
report the statistical analysis of the collected data. Second, we
discuss the recognition performance of our system over the
different modalities and types of features. Finally, we compare
the results for the different labeling approaches.

Reliability of Measured Physiological Patterns
First of all, we tested the reliability of the physiological
measurements. From the 17 participants, we collected 102 sets
of the estimated BVP signals, PP intervals, and thermal
variability sequences from 20-second instant measurements
taken after each Stroop and Math task and after each resting
session. However, 2 sets of data were not recorded because of
phone battery issues at the end of 1 experiment, and 1 set was
not recorded as 1 participant clicked the turn-off button on the
phone by mistake. A total of 6 further sets had to be discarded
because some participant’s nose was not visible on thermal
images (nose outside of the range of view because of sudden
severe coughing during the 20 seconds, or because of head
turned toward the experimenter, or the nose was covered by a
person’s hand). Although these disturbances were often
transient, they meant that data could not be collected within the
20 seconds immediately following the end of the stressor. An
analysis of the thermal data from Rest 1 also showed some
extreme patterns in the nose tip temperature (eg, sudden increase
in temperature). This may be explained by the fact that the
experiment was conducted during the winter and temperatures
outside of the experimental room were often significantly lower.
This included both outdoors and indoors, in the corridor where
the participants waited for the experiment. Despite the
temperature changes, the Rest 1 data were kept in the dataset.
A total of 93 sets were used for the study.

As the measurement capability of smartphone PPG has
previously been thoroughly investigated in earlier studies
[6,9,10], we only tested the reliability of the cardiac pulse signals
measured with our approach and compared it with the mean
brightness intensity–based method, which has been dominantly
used [6,7,9]. For this, we used the relative power Signal Quality
Index (pSQI), which is to assess the strength of physiological
signals in a frequency range of interest as a measure of quality
[11,53,73,74]. The pSQI for the BVP signals can be expressed
in the following manner (equation 3):
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where 0≤P ≤1, is the power spectral density of BVP signals

(in our case, in equation 2), and are the lower and
upper boundary of expected HRs, respectively. Here, we set the
expected HR range to 0.8 Hz (48 bpm) to 2.0 Hz (120 bpm)
given that HRs of healthy adults mostly fall into this range [54].
To minimize effects of the baseline wander and high-frequency
noise on this signal quality test [6,74], we used band-pass
filtered BVP signals (0.7 Hz-4.0 Hz) as in a study by Chan P-H
et al [6]. Figure 6 shows the better quality of the estimated BVP
signals B̂ from the proposed method—Equation (2)—than that
from the mean intensity method (Proposed: mean 0.755, SD
0.068; Traditional: mean 0.692, SD 0.075).

Figure 7 shows examples of thermal images taken from the
participants during the data collection study. From our
observations, we found that respiration influences the nasal tip
temperature measurement in some cases. For instance, in Figure
7, thermal images of a person’s nose tip surface, which were
sequentially captured, show that inhaled air changed the nose
tip temperature. Hence, we tested how much participants’
respiratory cycled events affected the nose tip temperature
measurements by using the pSQI in Equation (3) with the
expected respiratory rate of interest (from 0.1 Hz-0.85 Hz) as
used by Cho Y et al [11]. Figure 7 demonstrates how the
measured nose tip temperatures involved respiratory cyclic
patterns (respiratory pSQI: mean 0.714, SD 0.163), indicating
that such affected temperature patterns may lead to wrong
stress-level classification. On the other hand, the processing
technique we propose to use (Figure 4) instead led to reducing
respiratory artifacts on the measurement (respiratory pSQI:
mean 0.157, SD 0.091).

Self-Reported Stress Ratings and Hand-Engineered
Metrics
An important step was the analysis and possible normalization
of the self-reported stress scores. The boxplot in Figure 8 (top)
shows the distribution of the self-reported scores over the resting
periods and the different sessions and tasks. It is clear that the

stress elicitation procedures did overall produce the wanted
levels of stress with the hard sessions scoring higher than the
easy sessions and the latter scoring higher than the resting
periods (Rest from Session 1: mean 1.49, SD 1.94; Rest from
Session 2: mean 1.30, SD 1.26; Stroop Easy: mean 2.17, SD
1.46; Math Easy: mean 2.66, SD 1.80; Stroop Hard: mean 3.92,
SD 2.11; Math Hard: mean 5.17, SD 2.55) despite 2 outliers.
However, the wide boxplots also show intersubject variability
in self-reporting. In addition, the ranges (maximum-minimum)
in scores for each participant differ quite highly (Maximum
range: 8.75, Minimum range: 1.5; mean 4.7, SD 2.1), further
suggesting the need for normalization of the scores.

Therefore, we normalized the data for each participant with
respect to their range of scores over all the sessions. Figure 8
(middle) shows the original data and Figure 8 (bottom) shows
the normalized data. The normalization helps to identify 2 main
modes in the score distributions, suggesting the presence of 2
main clusters of stress levels. Given the subjectivity of stress
ratings and the limited amount of data sets to carry a multilevel
model, in this paper, we focused on binary classification of
perceived mental stress: no/low stress versus medium/high (or
very high) stress. The K-means separation between the 2 clusters
is represented by each different color in Figure 8 (bottom).

We tested the correlations among the original self-reported
scores, normalized self-reported scores, and the high-level
hand-crafted PRV and thermal metrics as summarized in Table
1 (using Pearson correlation coefficients). The normalized
self-scores maintained a high correlation with the original scores
(r=.752, P<.001). Although some metrics of each physiological
sensing channel were significantly correlated among themselves
(eg, PRV F2-F4: r=.838, P<.001; Thermal F1-F3: r=.803,
P<.001), the correlation values were lower across sensing
channels. In addition, only SDSTV shows approaching
significance but low correlation with the self-report scores
(r=.196, P=.059), indicating that each individual engineered
metric alone could not lead to high discrimination among
perceived levels of stress.

Figure 6. Signal extraction quality comparison of our spatial entropy-based method (equation 2) with the mean intensity approach by using power
Signal Quality Index (pSQI): (a) box plot, (b) histogram. BVP: blood volume pulse; pSQI: power Signal Quality Index.
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Figure 7. A person’s respiratory activity influences the nasal tip temperature: (a) examples of thermal images from participants (view angles were not
constrained), (b) the nasal temperature changes during inhalation (yellow: warmer, red: moderate, black: colder), and (c) respiratory signal quality test
using pSQI. pSQI: power Signal Quality Index.
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Figure 8. (a) Intersubject variability shown from the original self-reported stress scores of the 17 participants (box plot, 95% CI) across each section
(Rest1, Stroop Easy, Stroop Hard, Rest2, Math Easy, Math Hard). (b) Overall self-reported stress score distributions (from 17 participants over the
sessions including the resting periods), (c) normalized stress scores (normalization of scores from each participant) clustered into No-stress and Stress
groups along with outputs of K-means.
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Table 1. Pearson correlation coefficients across self-reports, PRV (PPG derived HRV) and thermal metrics (high-level features). HF: high frequency;
HRV: heart rate variability; LF: low frequency; PPG: photoplethysmography; pPP50: proportion of the number of the successive differences of PP
intervals greater than 50 ms of the total number of the intervals; PRV: pulse rate variability; RMSSD: root mean square of the successive differences
of PP intervals; SDSTV: standard deviation of the successive differences of the thermal variability; SDTV: standard deviation of the thermal variability
sequence; TD: temperature difference.

Nose TemperaturePRV (PPG derived HRV)Self-reports

Scores SDTV (F3)SDSTV (F2)TD (F1)pPP50 (F6)RMSSD (F5)SDPP (F4)LF/HF (F3)HF (F2)LF (F1)S2bS1a

Self-report

.02.196−.154.058.146.03-.044.011.007.7521CorrcS1

.85.059.14.57.15.77.66.91.94<.001PS1

.032.197−.153.097.083−.002−.082−.044−.0791CorrS2

.76.06.14.34.41.99.42.66.44PS2

PRV (PPG derived HRV)

.047.12.016.134.098.638.573.3941CorrF1

.66.25.88.19.34<.001<.001<.001PF1

.054.2.083.39.13.838−.2931CorrF2

.61.054.43<.001.20<.001.003PF2

.123.057.056−.178−.027.0071CorrF3

.24.59.60.08.79.95PF3

.084.198.1.571.1391CorrF4

.43.06.34<.001.17PF4

−.067.174−.059−.0671CorrF5

.52.095.57.51PF5

.127.212.1341CorrF6

.23.042.2PF6

Temperature

.803.2131CorrF1

<.001.039PF1

.4871CorrF2

<.001PF2

1CorrF3

PF3

aS1: normalized self-reported scores.
bS2: original self-reported scores.
cCorr: correlation coefficients.

Figure 9 shows values of each precrafted metric across the
sessions (rest and 3 stressful events, ie, Stroop: easy/hard and
Math: easy/hard) and across the labels produced by the labeling
technique. As shown in Figure 9, there was no common pattern
found between 2 easy or hard tasks, although they were designed
to induce similar levels of mental stress (eg, easy: low stress
level, hard: high stress level). For example, Thermal F1 appeared
to strongly decrease during the Math hard task but not during
the Stroop hard task, Thermal F2 increased with the Stroop hard

task but less during the Math hard task. PRV F5 was generally
high after both Math easy and hard task sessions than the Stroop
hard session. This can further indicate that each metric alone
from the instant measurement is less likely to contribute to the
inference of each session. On the other hand, when we applied
our labeling technique, Thermal F1 values grouped into Stress
were generally lower than No-Stress data as shown in Figure
9, consistent with findings from the literature [38,40,41].
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Figure 9. Box plots of 95% confidence intervals in values of each precrafted metric across (a) each session (R1: Rest 1, Se: Stroop easy, Sh: Stroop
hard, R2: Rest 2, Me: Math easy, Mh: Math hard) and (b) label produced by our labeling technique. The 3 features (having best correlations with
self-reports) are PRV F5: RMSSD, root mean square of the successive differences of PP intervals, Thermal F1:TD, temperature difference between
from the start and the end (a red line is drawn to show negative or positive thermal direction), F2: SDTV, standard deviation of the successive differences
of thermal variability sequence.

Instant Stress Inference Results
To evaluate the performance of instant stress recognition, we
used a 17-fold leave-one-subject (participant)-out (LOSO)
cross-validation. LOSO was chosen to test the ability to
generalize to unseen participants (one size fits all) [36,70].
Figure 10 summarizes the accuracy results of the 3 classifiers
(NN1, NN2, and kNN) using LOSO (N=17) for 3 different
cases: (1) multimodal approach by simply combining features
from both sensing channels (PRV, Thermal), (2) unimodal
approach using thermal features, and (3) unimodal approach
using PRV features. Both NN1 and NN2 used our proposed
low-level features only (ie, PP intervals and thermal variability
sequences). Overall, the NN2-based multimodal approach
produced the highest mean accuracy of 78.33% (SD 15.43),
mean F1 score of 77.92%, in discriminating between no-stress
and perceived stress (see confusion matrix in Figure 10 for
details). The NN1 (whose hidden layer is smaller than that for
NN2) produced a lower accuracy (mean 66.76%, SD 21.75).
From all cases of modality, the kNN with the high-level features
(ie, using the hand-engineered 6 PRV and 3 thermal metrics)
performed worst. A similar pattern can be seen for the PRV

unimodal channel (NN1: mean 65.78%, SD 20.55; NN2: mean
68.53%, SD 18.89; kNN: mean 50.20%, SD 19.63). For the
thermal channel, the NN1 appears to perform marginally better
(mean 58.82%, SD 21.11) than the NN2 (mean 56.67%, SD
18.79), but both NNs again perform better than the kNN (mean
48.14%, SD 16.52).

However, it should be noted that, for all the models, the
confusion matrices for the thermal case (Figure 10, Thermal)
show a clear bias toward the no-stress class. Given this bias and
the fact that thermal data from the Rest 1 sessions appeared to
be affected by the large variation in temperature between the
waiting space and the experiment room (in addition, some
participants had just arrived from the outside while others had
already been indoor for sometimes), we reran the models,
discarding the data from the Rest 1 sessions. Although the
overall performance over this modality did not largely change
(NN1: mean 58.14%, SD 23.33; NN2: mean 58.14%, SD 21.59;
kNN: mean 55.88%, SD 22.38) and NN1 and NN2 still perform
better than the kNN with hand-engineered features, all the
confusion matrices (Figure 10 bottom) show more balanced
results and a better prediction of the stress class overall.
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Figure 10. Summary of (a) mean inference accuracy results across 17 folds, (b) accumulated (from 17 LOSO folds) confusion matrices for the 3
classifiers NN1, NN2, and kNN along with each set of modalities (Multimodal: PRV+Thermal, Unimodal: Thermal, PRV), (c) confusion matrices for
the temperature-based unimodal approach built without the Rest 1 data. Each number in the confusion matrices refers to the number of instances. kNN:
k-Nearest Neighbor; NN: neural network.

A repeated measures analysis of variance was carried out on
results from the 17 folds (including the Rest 1 data) to compare
the 2 NN modeling approaches (that use our proposed low-level
features) with the kNN (that uses hand-engineered metrics) to
determine whether there was a statistical mean difference in
performance. The results show significant differences between
the methods for the multi  and the PRV

modalities—PRV+Thermal: F2,32=3.763, P=.034, ηp
2=.190;

PRV: F2,32=6.001, P=.006, ηp
2=.273. No differences were found

for the thermal case—Thermal: F2,32=2.304, P=.116, ηp
2=.126.

Posthoc paired t test with Bonferroni correction (see Figure 11)
showed that NN2 performed significantly better than kNN for
the unimodal PRV case (PRV: P=.023). For the multimodal
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case, NN2 approached significantly better performance than
kNN (PRV+Thermal: P=.064) and NN1 (PRV+Thermal:
P=.052). NN1 did not significantly perform better than kNN;
however, it presented a positive trend in the unimodal PRV case
(PRV: P=.091). Even if no significance differences were found
over the unimodal thermal case, the graphs in Figure 11 show
how the 2 NN models performed slightly better than the kNN
for all cases including the thermal one. It could be expected that
in the case of deployment, a larger sample of data for each class
could indeed lead to statistical significance.

Lastly, we investigated the effect of the normalization and
K-means clustering of self-reported scores in inferring the
perceived stress levels. For this part of the study, we removed
the Rest 1 data. There were 2 reasons for this. First, we wanted
to avoid the noise from the set of data affecting the comparison
among the labeling methods. Second, this was also to obtain a
more balanced number of instances in each class for testing
different labeling methods, less biasing the learning process.
The comparison of models over the different labeling techniques
did not aim to obtain better performance but to understand how
normalization and different clustering approaches could affect
the modeling by acting on class separation and interperson
variability in subjective self-reports. We were also interested

in understanding how sensitive the system was in separating
stress scores by using the same dataset and merging the
intermediate levels with 1 of the 2 classes (L1 and L2).

We tested the 3 models (NN1, NN2, and kNN) for the
multimodal approach with the different labeling strategies
(L2-L4, introduced in the previous section). Figure 12
summarizes the accuracy results for 4 different strategies—L1:
the main method, L2: K-means with k=3, but combining
no-stress and moderate level stress scores as 1 group, L3:
K-means with k=2, dissecting the moderate level scores into
no-stress and stress, and L4: original scores divided by a point
between no-stress and moderate levels (ie, 3.334 of 10, see
Figure 5c). The results showed that the L1 performed best in
separating the bimodal distribution of normalized self-reported
scores and helped address the interpersonal variability issue.
Indeed, all 3 models obtained the best accuracy with L1 and the
worst performance for L3 and L4 with L4 being marginally
better than L3. Finally, it should be noted that in the case of L3
and L4, the best performance was obtained with NN2 rather
than NN1. This may indicate that mapping feature values to
perceived stress scores may benefit from a larger hidden layer
to capture the complexity of the relation.

Figure 11. Differences in performance over each fold (ie, LOSO=for each tested participant data) between the three models over the three modalities.
They show how NN2 and to a certain extent NN1 generalize to unseen participants better than kNN. LOSO: leave-one-subject-out; kNN: k-Nearest
Neighbor; NN: neural network.
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Figure 12. Summary of (a) inference accuracy along with (b) different labelling approaches (L1: K-means with k=3 and combining moderate and high
stress scores, L2: K-means with k=3 and combining no-stress and moderate level stress scores, L3: K-means with k=2, L4: original scores divided by
the border between no-stress and moderate levels). NN: neural network; kNN: k-Nearest Neighbor.

Discussion

This paper contributed to the body of work that aims to make
mobile measurements of mental stress more feasible and robust.
We focused on 2 stress-related cardiovascular signals: BVP and
vasoconstriction/dilation-related nose tip temperature. They
have been widely investigated in both the mental health and
computing literature [22,39,41,47,75], but their applicability
together with low-cost sensing offered by mobile devices has
not been explored. Our work makes 4 key contributions: (1) a
set of methods to improve the quality of the sensed signal, (2)
a demonstration of the limited capability of typically used
engineered features in the context of very short-term (instant)
measurements, (3) a new set of low-level features to capture
the dynamical variability of the 2 signals, and (4) the feasibility
of using 20-second measurements to discriminate between
no-stress and stress responses. Finally, we report on the lesson
learned from the analysis of different labeling methods and their
effect on the modeling process. Below are detailed discussions
of these contributions.

Toward Smartphones as Reliable Cardiovascular
Measures
Our first contribution is to develop a new set of preprocessing
techniques to enhance the quality of the signal extracted from
either the PPG channel, which detects blood pulse variability,

or the thermal camera, which detects vasoconstriction/dilation
induced nasal temperature variability. This is particularly
important in mobile, ubiquitous settings where physiological
sensing setups are still of lower quality and have to be less
controlled in comparison with the ones generally used in medical
environments.

With the data collected from our stress-inducing tasks, we
wanted to test the possibility of building algorithms that can
reliably and continuously capture (1) a person’s BVP pattern
from the smartphone camera and (2) nose tip temperature
sequence from the add-on thermal camera. Reliable BVP
recording is critical, particularly for short-term measurements
[26,47]. The conducted signal quality test with the pSQI showed
that our method produced higher quality BVP signals than the
ones obtained with traditional camera-based PPG approaches
[6,7,9] (see Figure 6). In addition, we found that a person’s
respiratory cycles interfered with capturing thermal variations
accurately from a person’s nasal area (Figure 7). Hence, we
built a new technique to minimize such effects and gather a
more reliable nose tip thermal signature. This was achieved
through the use of an advanced thermal ROI tracking [11] and
signal processing techniques to filter out breathing cyclic events
(Figure 4) on measured temperatures from the nose area.

However, it should be noted that despite the use of the
quantization approach that helps handle environmental
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temperature changes [11], thermal data during Rest 1 was
affected by the difference in temperature between the waiting
area and experiment area. This effect was further enhanced
when the participants just arrived from outdoors with body
temperature being strongly influenced by the cold weather
outdoors (winter season). This is important because if the system
has to be used, it is crucial for the person to use it in the same
environment where stressful events occur. It should also be
tested in future studies if a decrease in nose tip temperature may
be saturated by very cold environments and therefore be less
informative in such situations for automatically detecting mental
stress.

Traditional Cardiovascular Metrics Do Not Capture
Stress-Related Variability From an Instant
Measurement
We found that the capability of the HRV metrics, used as
high-level features in the literature [18,20,25], in instantly
quantifying stress was very limited (see Table 1). This is
important as despite their general use (eg, literature in
psychology or affective computing), there have still been
arguments of such metrics with regard to the possibility of
oversimplifying physiological responses [33-35]. It should be
noted that although we used PPG-derived metrics rather than
the more investigated ECG-derived metrics, strong correlations
have been found between the 2 signal metrics in the case of
healthy participants and limited physical movement [29,45].
Stressors in general affect cardiac pulse–related events even if
the 2 types of events (heart rate and BVP) may be differently
affected within nonhealthy or elderly population and extreme
situations (hot temperature) [75-77]. It should also be noted that
although mathematically, a shorter measurement period could
lead to a lower resolution of data in the frequency domain
resulting in a lower accuracy in computing metrics such as
LF/HF [21], recent studies have validated the use of them with
very short measurements, from 10 seconds to 30 seconds [47].

Similarly, the metrics applied to short-term nasal thermal data
(eg, TD: Temperature Difference) did also weakly contribute
to stress quantification. This may explain inconsistent findings
in the literature where such metrics have been used to capture
thermal responses to stressful events [41,78]. All in all, the
results suggested the need to develop a novel way that describes
dynamical information of BVP and vasoconstriction/
dilation-related nasal temperature to help improve the
understanding and capturing of their complex phenomenon.

Overcoming Limitations to Mobile Automatic Stress
Inference
On the basis of the low correlation between perceived mental
stress levels and typically engineered metrics for these 2 signals,
we proposed to use thermal variability and PP interval sequences
as a novel set of low-level features to capture stress responses
of cardiovascular activities. With this, we investigated how to
benefit from automatic feature learning capabilities of machine
learning classifiers (ie, NNs) in instantly inferencing mental
stress. The results showed clear improvements in performance.
Indeed, our proposed method with the 2 cardiovascular signals
achieved 78.33% correct recognition accuracy with the NN2,
whereas only 60.59% from the kNN with the hand-engineered

features. Similarly, using the HRV-related features only, there
was an improvement by 18.33% with respect to the traditional
approach (50.20%). The improvement on the thermal channel
was smaller but still evident from the results.

In addition, 2 further contributions can be highlighted from our
approach to the modeling of automatic stress inference: instant
measurements and no need for baseline. First, previous work
required relatively long-term measurements of between 2
minutes and 5 minutes [25,41,54]. Indeed, our results
demonstrated the possibility to use just a 20-second
measurement to automatically discriminate between stress and
nonstress moments. This approach achieved state-of-the-art
performance when compared with approaches using much longer
measurements, up to around 70%-80% correct recognition from
LOSO cross-validation [70]. This is very important given that
stillness is critical during PPG measurements and for thermal
imaging to a certain extent. In fact, even if automatic
ROI-tracking methods may help with thermal measurements,
people tend to easily move away from the camera or cover their
nose with their hands (5 participants did so at least once even
for 20 seconds).

Second, our approach (more reliable signal and richer features)
led to state-of-the-art results without the use of a baseline. This
is critical to everyday life settings as in everyday life, such
baselines may be difficult to establish. Resting periods just
before a stressful event cannot be planned, and continuously
gathering such measures can be costly, whereas at the same
time, nonstressful resting periods would also need to be
automatically detected. In addition, our data from resting periods
show that such a gold standard resting situation does not exist
and environment temperature may change drastically, affecting
skin temperature. This could have been because of a lab effect
but general everyday life may also have specific effects on the
data. Even when using differential features (eg, temperature
differences between 2 areas of the face-forehead and nose tip),
a baseline period was used [42]. The lack of a baseline is
overcome here by proposing richer features capturing
informative physiological variations over time.

How Do We Define the Ground Truth: What is the
Best Approach?
Setting the ground truth is a difficult process when dealing with
subjective reports. How to use self-reports to label the data is
a critical issue in the field because of their subjectivity.
Interpersonal variability has been repeatedly reported as a
critical barrier for building stress inference or quantification
systems that can generalize across people [24,70]. The
intersubjectivity of self-reports and the need to reduce the
number of classes along with types of applications or the size
of the dataset require some decisions on how to refine the labels
to be taken. In doing so, there is the danger to add noise to the
dataset and hence to the modeling process. We explored how
different labeling techniques may affect the modeling process.

We proposed to address this problem. The first step was to use
a standard normalization technique to take into account personal
score ranges over all tasks that aimed to induce a wide range of
stress levels (from none to medium to quite high). This
transformation led to a bimodal distribution highlighting at least
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2 opposite levels of stress (low and high), whereas it still
maintained its strong correlation with the original scores (r=.752,
P<.001). The bimodal distribution is interesting as, given the
low number of participants, it suggests the moderate level of
stress is not well separated from the other 2 classes. A binary
classification was hence a sensible approach to take in this
paper; however, with larger datasets, a more refined analysis
and modeling should be carried out. Second, we used a machine
learning clustering technique, K-means, to improve separation
of the scores into 2 classes of stress. The results obtained from
the comparison of our approach (L1) with its variation (L2) and
the more typically used approaches (L3 and L4) led to an
interesting lesson on how to create a more reliable ground truth
rather than increase noise in labeling.

Then, how should the data be clustered? According to the
number of stress levels to be recognized or according to the
number of stress levels the data collection experiment was set
to induce? The latter approach appeared to be more successful.
All labeling methods using K=3 (L1, L2, and to a certain extent
L4) performed better than L3 using K=2. This suggests that
directly clustering according to the number of classes to be
recognized (2 in our case) may spread instances with similar
stress-level responses (in this case, medium responses) across
classes introducing noise rather than overcoming the problems
of intersubjectivity. However, it should be noted that the
normalization step was important. Indeed, the models built on
either L1 and L2 using the normalized scores performed better
than L4 where the original scores were used instead.

Another important issue to be addressed is how should the data
be grouped when the number of classes to be detected is smaller
than the number of levels induced? This decision could be
needed either because there were no sufficient instances for a
more refined inference or because the application at hand did
not require such level of granularity (at the risk of introducing
noise because of intersubjective variability). The results showed
that L1, collapsing the moderate level into the high-level class,
led to better performance than L2, where medium and no/low
stress scores were instead combined. This may suggest that
unless the stress level is very low, stress responses share more
similarities than with no-stress responses. A more in-depth
analysis of this aspect could be part of a future work and it may
require an in-depth analysis of individual responses and
validations over other datasets.

Although the results provide some interesting insights on how
to cluster data from experiments, a question remains on how to
deal with data from real-life situations. It is expected that in
real-life situations, larger datasets may enable finer levels of
discrimination personalized to a specific person. In such
situations, as the dataset grows, parameters for labeling may
need to be adapted to optimize the personalization. However,
such rules we used could be helpful to bootstrap models on the
basis of experimental datasets or well-structured initial real-life
data collections. The bootstrapped models could then be
personalized to specific users and recognition levels as data
would be continuously collected by the person.

Limitations and Future Directions
Despite the findings and contributions described above, there
is still space for improvement. First, our proposed approach did
not perform properly on multiple levels of stress (labeling the
data using perceived self-scores). As discussed, this was most
probably because of the limited size of the dataset, especially
for the medium level of stress (out of 3 levels). Deploying built
software in real life could be a way to build a larger dataset.
With a function to collect self-reported person’s perceived stress
scores (eg, digitalized VAS sliding bar in an app), this data
collection in the wild could produce a sufficient size of
cardiovascular signal sets to support more reliable performance
in inferencing multiple levels. In addition, it would be interesting
to investigate how the transformation of the self-reported scores
could be used to support multiclass classification.

Second, this work focused on sedentary situations (but without
constraining one’s mobility) and did not include physical activity
(eg, walking). It is well-known that physical activity induces
cardiovascular changes, in turn affecting stress inference
performance [58]. Hence, it would be interesting to test the
instant stress inference ability of our system in situations where
there is a considerable amount of physical activity, for example,
industrial factory work floor.

Finally, investigating the reliability of mobile sensing
technologies themselves was outside the scope of this
paper—see reviews on this topic [79]. We aimed to contribute
a better stress inference method that can be used independently
regardless of what sensing technology is used. This may be
even more crucial when the sensing technology may not be as
accurate and fine-grain as more expensive and medically
approved technology.

Conclusions
With the long-term aim of building a stress monitoring system
for mobile, everyday use, this paper focuses on the use of
smartphone-based imaging capabilities: PPG and thermal
imaging. To overcome the difficulties in using smartphone
imaging for long period measurements, we propose a novel
method that quickly infers a person's perceived level of stress
from instant physiological measurements. This is achieved by
(1) developing a more reliable PPG-sensing technique to extract
a person’s BVP and its variability, (2) building a thermal
imaging–based vasoconstriction monitoring system, (3)
investigating the performance of widely used high-level features
from PPG and nasal temperature in instant stress inference tasks,
(4) proposing novel low-level features to represent HRV and
thermal variability, (5) building an automatic feature
learning–based multimodal perceived stress recognizer, and (6)
investigating effects of clustering self-report scores to take into
account the subjectivity of self-reports and ensure clear
separation among the levels of stress to be modeled.

Through the data collection study with 17 participants and a
series of stress-inducing tasks with different levels, we
demonstrated how this system was able to achieve
state-of-the-art performance using 20 seconds of data, rather
than 2 to 5 minutes typically required by existing methods. This
work makes smartphone imaging–based physiological
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computing capabilities more feasible for real-life applications,
opening new possibilities for the development of mental-stress

support apps and research.
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Abbreviations
BVP: blood volume pulse
ECG: electrocardiogram
HF: High Frequency
HRV: heart rate variability
kNN: k-Nearest Neighbor
LED: light-emitting diode
LF: Low Frequency
LOSO: leave-one-subject-out
NN: neural network
PPG: photoplethysmography
pPP50: Proportion of the number of the successive differences of PP intervals greater than 50 ms of the total
number of the intervals
PRV: pulse rate variability
PSNS: parasympathetic nervous system
pSQI: power Signal Quality Index
RMSSD: root mean square of the successive differences of PP intervals
ROI: region of interest
SDPP: standard deviation of PP intervals
SDSTV: standard deviation of the successive differences of the thermal variability
SDTV: standard deviation of the thermal variability sequence
SNS: sympathetic nervous system
TD: temperature difference
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