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Abstract

Background: In the recent years, machine learning algorithms have been more widely and increasingly applied in biomedical
fields. In particular, their application has been drawing more attention in the field of psychiatry, for instance, as diagnostic
tests/tools for autism spectrum disorder (ASD). However, given their complexity and potential clinical implications, there is an
ongoing need for further research on their accuracy.

Objective: This study aimed to perform a systematic review and meta-analysis to summarize the available evidence for the
accuracy of machine learning algorithms in diagnosing ASD.

Methods: The following databases were searched on November 28, 2018: MEDLINE, EMBASE, CINAHL Complete (with
Open Dissertations), PsycINFO, and Institute of Electrical and Electronics Engineers Xplore Digital Library. Studies that used
a machine learning algorithm partially or fully for distinguishing individuals with ASD from control subjects and provided
accuracy measures were included in our analysis. The bivariate random effects model was applied to the pooled data in a
meta-analysis. A subgroup analysis was used to investigate and resolve the source of heterogeneity between studies. True-positive,
false-positive, false-negative, and true-negative values from individual studies were used to calculate the pooled sensitivity and
specificity values, draw Summary Receiver Operating Characteristics curves, and obtain the area under the curve (AUC) and
partial AUC (pAUC).

Results: A total of 43 studies were included for the final analysis, of which a meta-analysis was performed on 40 studies (53
samples with 12,128 participants). A structural magnetic resonance imaging (sMRI) subgroup meta-analysis (12 samples with
1776 participants) showed a sensitivity of 0.83 (95% CI 0.76-0.89), a specificity of 0.84 (95% CI 0.74-0.91), and AUC/pAUC
of 0.90/0.83. A functional magnetic resonance imaging/deep neural network subgroup meta-analysis (5 samples with 1345
participants) showed a sensitivity of 0.69 (95% CI 0.62-0.75), specificity of 0.66 (95% CI 0.61-0.70), and AUC/pAUC of
0.71/0.67.

Conclusions: The accuracy of machine learning algorithms for diagnosis of ASD was considered acceptable by few accuracy
measures only in cases of sMRI use; however, given the many limitations indicated in our study, further well-designed studies
are warranted to extend the potential use of machine learning algorithms to clinical settings.

Trial Registration: PROSPERO CRD42018117779; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=117779
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Introduction

Background
Autism spectrum disorder (ASD), behaviorally characterized
by a deficit in social communication and rigidity in interest or
behavior by both the Diagnostic and Statistical Manual of
Mental Disorders-5 (DSM-5) and the International Statistical
Classification of Diseases-11 (ICD-11), is believed to be a
product of complex interactions between genetic and
environmental factors [1-3]. The latest prevalence of ASD has
been reported to be 1 in 59 children aged 8 years, based on the
2014 Center for Disease Control and Prevention (CDC)
surveillance data [4], and 1 in 40 children aged 3-17 years, based
on parental reports of the diagnosis in a national survey [5].
Despite the advancement of many biomarkers with potential in
prediction or early detection of ASD (eg, structural magnetic
resonance imaging [sMRI] or functional magnetic resonance
imaging [fMRI]), a diagnosis is not made until the age of 4-5
years, on average [4,6].

Machine learning has been increasingly studied as a novel tool
to enhance the accuracy of diagnosis and early detection of ASD
[7]. Unlike traditional rule-based algorithms that allowed
computers to generate answers with preprogramed rules,
machine learning allows building of an algorithm that can learn,
predict, and improve with experience, based on big data [3,8-10].
Psychiatric decision making is more sophisticated and difficult
to characterize, compared with machine learning, although there
are some common elements. Psychiatrists diagnose patients by
observing their behaviors and registering all collected and
collateral data into their (psychiatrists’) cognitive system as
sensory input values (eg, voice and vision). Similarly, machine
learning requires a series of steps, including preprocessing (eg,
noise removal from data before input into an algorithm),
segmentation, and feature extraction [7]. In particular, machine
learning in the field of ASD diagnostics incorporates big data
(eg, neuroimaging), making the input data immense and complex
[11]. The application of machine learning algorithms in the field
of neuroimaging often requires an extra process, such as feature
selection that extracts key features from a complex dataset. In
other words, key features are selected before the learning
process, which is called feature selection [11].

Objective
Currently, machine learning is widely applied to the field of
bioinformatics, including genetics and imaging, and many
applications require signal recognition and processing [12].
Machine learning algorithms are currently applied to the field
of psychiatry in areas such as genomics, electroencephalogram
(EEG), and neuroimaging. However, owing to the complex
workflows implicated in machine learning itself, the accuracy
of such algorithms is varied [8]. This study aimed to suggest
an integrated estimate of the accuracy for use of machine
learning algorithms in distinguishing individuals with ASD
from control groups through systematic review and
meta-analysis of the available studies.

Methods

Systematic Review
This systematic review and meta-analysis was conducted based
on the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses for Diagnostic test accuracy [13]. The study
protocol was written before initiation of the study and registered
in the Prospective Register of Systematic Reviews database
(trial registration: CRD42018117779).

Data Sources and Search Strategy
MEDLINE, EMBASE, CINAHL Complete (with Open
Dissertations), and PsycINFO were selected as core search
databases, and the Institute of Electrical and Electronics
Engineers (IEEE) Xplore Digital Library was added to maximize
the sensitivity of the search. The IEEE Xplore Digital Library
is a database created by the IEEE, the largest of its kind
worldwide, and includes more than 1800 peer-reviewed
conference proceedings. Default search filters provided by
journals were not used. There was no restriction by publication
type (eg, conference proceedings) or language. The initial search
was conducted on November 28, 2018. The search strategy and
query per search database are listed in Multimedia Appendix
1. The primary consideration for study inclusion was if machine
learning was partially or fully applied in distinguishing
individuals clinically diagnosed with ASD from controls and
assess the accuracy of such applications. Multimedia Appendix
2 lists inclusion/exclusion criteria. An author (SM) retrieved
the initial search results and removed duplicates by using the
command find duplicate via a reference software (Endnote X9,
Clarivate Analytics, Philadelphia, Pennsylvania. Subsequently,
another author (JK) manually searched for and removed any
residual duplicates. Finally, the studies were screened
independently by two authors (SM and JK) by title, abstract,
and keywords, after which the full texts of the selected studies
were screened by two authors (SM and JK) by
inclusion/exclusion criteria. If any discrepancy was found in
the final selection, the two authors reached a consensus via
discussion.

Data Extraction
A data extraction form was created through discussion among
the authors before the extraction process to suggest specific
subgroups and coding processes (categorizing) for a
meta-analysis (Multimedia Appendix 3). The process is provided
in detail in Multimedia Appendix 4. General characteristics
such as author, publication year, sample size, average age,
gender ratio, and data characteristics were extracted from
individual studies. Information regarding the reference standard
used in individual studies and definitions of positive/negative
disease (autism positive/control) and methodologies to
distinguish individuals with autism from control group were
collected. Specific methodologies used to process and classify
data for use in machine learning algorithms were also recorded
(Multimedia Appendices 3 and 4). All accuracy values were
extracted, and true-positive / true-negative / false-positive /
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false-negative (TP/TN/FP/FN) values were calculated from
individual studies for a meta-analysis. If the TP/TN/FP/FN
values could not be calculated from the accuracy values provided
in a study, an email was sent to the corresponding author to
request raw data. If there was no response within 14 days, the
study was not included in the meta-analysis. The extraction was
performed independently by two authors (SM and JK). If there
was any discrepancy in the extracted data, a consensus was
reached by thorough discussion after repeating the same
extraction process.

Quality Assessment
Two authors (SM and JK) independently assessed the quality
of individual studies based on the Quality Assessment of
Diagnostic Accuracy Studies-2 (QUADAS-2). QUADAS-2 is
a validated tool used to evaluate the quality of diagnostic
accuracy studies by patient selection, index test, reference
standard, and risk of bias (RoB) for internal validity and external
validity for applicability concerns of individual studies [14].
There was no disagreement between authors in the assessment
of patient selection and reference standard domain. The index
test, also known as the target tool of our investigation in this
study, is a machine learning algorithm. The target tool, the
machine learning algorithm’s accuracy, is reported through a
process called validation. However, when a study provided no
information about the validation process, low RoB was assumed
if independent datasets were used for training, building a model,
and validation [15]. Otherwise, the level of RoB was determined
by thoroughly reviewing the validation processes.

Evidence Synthesis
In our meta-analysis, a bivariate random effects model was used
to consider both within- and between-subject variability and
threshold effect [16]. A Summary Receiver Operating
Characteristics (SROC) curve was generated based on parameter
estimates extracted from the bivariate random effects model
[17]. The SROC curve was specified by pooled sensitivity,
specificity point, 95% CIs, and prediction region. Area under
the curve (AUC) and partial AUC (pAUC) were calculated
based on the SROC curve [18]. Studies that were visually
deviant from the 95% prediction region on the SROC curve
were considered heterogeneous [19]. Attempts were made to
resolve the heterogeneity by performing a subgroup
analysis—generating individual SROC curves for subgroups
(minimum 5 studies) [20]. If most studies were within the 95%
prediction region on the SROC curves of the subgroups, the
sample was determined to be homogeneous, and integrated
sensitivity, specificity, and SROC curve results were provided.

If any of the TP/FP/TN/FN value was 0, 0.5 was added to
prevent zero cell count problem [21]. The TP/FP/TN/FN values
were extracted or calculated from each independent sample in
a study, and if multiple machine learning algorithms were
applied to the same sample, an algorithm with the best accuracy
(calculated as [TP+TN]/[TP+FP+TN+FN]) was selected for
data extraction.

A meta-analysis was conducted via the mada package in R
(version 3.4.3, R Core Team, Vienna, Austria), and statistical
significance was expressed with 95% CIs. Publication bias was
not assessed in our analysis, as there are currently no statistically
adequate models in the field of meta-analysis of diagnostic test
accuracy [22].

Results

Search, Selection, and General Characteristics
After duplicate removal, of the 280 studies extracted from five
databases and one additional database, 43 studies were selected,
of which 40 studies were included in the meta-analysis. Figure
1 provides details according to the screening stage.

The publication years ranged from 2007 to 2018 for the final
selection of 43 studies, of which 40 were journal articles and 3
were gray literature elements (eg, conference proceedings). A
total of 10 studies used a public database that was available on
the internet and open to anyone, 18 used a private sector
database (eg, clinic and hospital), 3 used both public and private
databases, and the remaining 12 used databases from others.
Regarding the average age of the sample, 5 studies included
adults, 22 studies included school-aged participants, 11 included
preschool-aged participants, and the remaining 5 did not provide
any information. For the machine learning algorithm, 20 studies
used a support vector machine (SVM), 3 used a deep neural
network (DNN), 13 used others, and the remaining 10 used and
compared multiple algorithms. For prediction, 11 studies used
sMRI features, 9 used fMRI features, 9 used behavior traits, 5
used biochemical features, 4 used EEG features, and the
remaining 2 used text or voice features. For reference standards,
24 studies used DSM-IV, DSM-IV - Text Revision, or DSM-5;
10 used the Autism Diagnostic Observation Schedule (ADOS)
or the Autism Diagnostic Interview (ADI); 2 used ICD; and the
remaining 7 did not provide relevant information. For the
validation methodology, 37 studies only used internal validation,
2 only used external validation, and 4 used both. The
abovementioned information is summarized in Table 1, and the
extracted raw data are presented in Multimedia Appendices 5
and 6.
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Figure 1. Flowchart for the literature screening and selection process.
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Table 1. Characteristics of 43 studies for the systematic review and 53 samples for the meta-analysis.

Samples (n)bStudies (n)aCharacteristics

Publication type

5040Journal article

33Letter, report, or conference proceeding

Dataset type

2118Private (hospital or clinic) dataset

1610Public database

03Mixed (private and public) dataset

1612Others or unknown

Mean age of sample (years)

55Adults (≥18)

2722School age (6-18)

1611Preschool age (<6)

55Unknown

Classification algorithm type

2420Support vector machine

63Deep neural network

2313Othersc

010Mixed

Predictor type

1411Structural MRId features

139Functional MRI featurese

149Behavior traits

75Biochemical features

34Electroencephalography features

22Text or voice

Reference standard

2824DSMf-IV (Text Revision) or DSM-5

1210ADOSg or ADIh

22ICDi

117Others or not otherwise specified

Validation method

4636Internal validation

62External validation

04Internal and external validation

11Others or not otherwise specified

aNumber of studies for a given category (N=43 in total).
bNumber of datasets used in studies (N=53 in total).
cProbabilistic neural network, decision tree, regression, ensemble, random forest, and fuzzy.
dMRI: magnetic resonance imaging.
eAll studies used resting-state MRI images (one study used both resting state and task-related MRI images).
fDSM: Diagnostic and Statistical Manual of Mental Disorders.
gADOS: Autism Diagnostic Observation Schedule.
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hADI: Autism Diagnostic Interview.
iICD: International Statistical Classification of Diseases.

Qualitative Assessment
Of the 43 studies in total, more than half were assessed to have
an unclear RoB by patient selection domain (33 studies) and
index test domain (29 studies). More than half were considered
to have a low RoB by the total reference standard (35 studies)
and flow and timing domains (35 studies). For applicability

concern, about half (22 studies) were shown to have unclear or
high-risk RoB by patient selection domain, whereas most were
considered to have a low risk by index test (42 studies) and
reference standard domain (36 studies). Qualitative assessment
for all the individual studies is summarized in Multimedia
Appendix 7, and the distribution is shown in Figure 2.

Figure 2. Risk of bias and applicability concern by domain in Quality Assessment of Diagnostic Accuracy Studies-2. Microsoft Excel was used.

Quantitative Analysis (Meta-Analysis)
Of the final selection of 43 studies, only 40, from which
TP/FP/FN/TN values were extractable, were considered for the
meta-analysis. A total of 53 independent samples were extracted
from the 40 studies and included in the meta-analysis (Table
1). Of the 53 samples, 12,128 participants were inspected in the
meta-analysis, with the total sensitivity and specificity ranging
from 0.55 to 1.00 and 0.56 to 0.99, respectively. TP/FP/FN/TN,
sensitivity, and specificity values for 53 individual samples are
summarized in Multimedia Appendix 8, and visual distribution
is provided as SROC in Figure 3. Of the 53 samples, 12 were
found outside the 95% predictive region of the SROC curve,
and therefore, there was heterogeneity between samples (Figure
3).

In an attempt to resolve this heterogeneity, a subgroup analysis
was conducted with 19 variables that had been predefined and
coded. For replicability, a raw data sheet listing the precodified
variables is available in Multimedia Appendix 9. As a result,
among 19 variables, predictor was the only one by which the
heterogeneity could be partially resolved. Of the 53 samples,

for the sMRI subgroup that used sMRI as predictors, all the 12
samples were found to be within the predictive region of the
SROC curve, thus resolving the heterogeneity (Figure 4).

For the sMRI subgroup, the pooled sensitivity was 0.83 (95%
CI 0.76-0.89), specificity was 0.84 (95% CI 0.74-0.91), and
AUC/pAUC was 0.90/0.83. Meta-analysis was also attempted
for the remaining subgroups, such as fMRI (15 samples),
behavior traits (14 samples), and biochemical features (7
samples) subgroups, but the pooled sensitivity and specificity
could not be provided owing to a significant degree of
heterogeneity between samples: A few samples were shown to
be far off the predictive region of the SROC curves (Multimedia
Appendices 10-12). However, sub-subgroup meta-analysis using
5 samples that used fMRI as a predictor and DNN as a classifier
allowed for the heterogeneity to be resolved and provided the
pooled sensitivity of 0.69 (95% CI 0.62-0.75), specificity of
0.66 (95% CI 0.61-0.70), and AUC/pAUC of 0.71/0.67 (Figure
5).

Similarly, another sub-subgroup meta-analysis of six samples
that used sMRI as a predictor and SVM as a classifier resolved
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the heterogeneity and resulted in a pooled sensitivity of 0.87
(95% CI 0.78-0.93), specificity of 0.87 (95% CI 0.71-0.95), and
AUC/pAUC of 0.92/0.88 (Multimedia Appendix 12). Sensitivity
and specificity values and types of classifiers used for samples
of individual subgroups that used neuroimaging features (sMRI
and fMRI subgroups) as predictors are provided in Table 2, and
a forest plot is provided in Multimedia Appendix 13.

Summary Receiver Operating Characteristics curve for
functional magnetic resonance imaging/deep neural network
sub-subgroup (5 samples). Note that confidence region is the
95% confidence region around the summary sensitivity and
specificity points, and the prediction region is the 95%
prediction of the true sensitivity and specificity interval for

future observations. SROC: Summary Receiver Operating
Characteristics.

The sensitivity and specificity for the behavior traits (14
samples) subgroup ranged from 0.68 to 1.00 and 0.56 to 0.9,
respectively. The sensitivity and specificity for the biochemical
features (7 samples) subgroup ranged from 0.77 to 0.94 and
0.72 to 0.93, respectively. The sensitivity and specificity for
the EEG subgroup (3 samples) ranged from 0.94 to 0.97 and
0.81 to 0.94, respectively. The results are summarized in
Multimedia Appendix 8. Information for other measures not
included in the meta-analysis is provided in Multimedia
Appendix 14.

Figure 3. Summary Receiver Operating Characteristics curve for all 53 samples. Note that the confidence region is the 95% confidence region around
the summary sensitivity and specificity points, and the prediction region is the 95% prediction of the true sensitivity and specificity interval for future
observations. SROC: Summary Receiver Operating Characteristics.
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Figure 4. Summary Receiver Operating Characteristics curve for structural magnetic resonance imaging subgroup (12 samples). Note that the confidence
region is the 95% confidence region around the summary sensitivity and specificity points, and the prediction region is the 95% prediction of the true
sensitivity and specificity interval for future observations. SROC: Summary Receiver Operating Characteristics.
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Figure 5.
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Table 2. Sensitivity and specificity of structural and functional magnetic resonance imaging subgroups.

Specificity (95% CI)Sensitivity (95% CI)Sample size (n)MRIa group

Structural MRI subgroup

0.95 (0.90-0.97)0.87 (0.72-0.95)179Hazlett et al (2017) [23]

0.63 (0.39-0.83)0.70 (0.45-0.87)28Chaddad et al (2017)b [24]

0.62 (0.39-0.81)0.83 (0.63-0.94)36Chaddad et al (2017)c [24]

0.96 (0.88-0.99)0.94 (0.85-0.98)117Wee et al (2014) [25]

0.85 (0.65-0.94)0.85 (0.65-0.94)44Ecker et al (2010)d [26]

0.88 (0.68-0.96)0.88 (0.68-0.96)40Ecker et al (2010)d [27]

0.81 (0.67-0.90)0.80 (0.66-0.89)85Xiao et al (2017) [28]

0.64 (0.59-0.69)0.57 (0.52-0.62)734Katuwal et al (2015) [29]

0.74 (0.50-0.89)0.89 (0.71-0.97)38Jiao et al (2010) [30]

0.82 (0.63-0.92)0.84 (0.68-0.93)57Neeley et al (2007) [31]

0.96 (0.90-0.98)0.84 (0.75-0.91)182Kong et al (2019) [32]

0.65 (0.54-0.74)0.83 (0.77-0.88)236Shen et al (2018) [33]

0.62-0.96; 0.84 (0.74-0.91)0.57-0.94; 0.83 (0.76-0.89)1776Subtotal by range and pooled estimate from meta-
analysis

Functional MRI subgroup

0.67 (0.55-0.78)0.68 (0.54-0.80)113Li et al (2018)b [34]

0.69 (0.53-0.81)0.55 (0.40-0.70)75Li et al (2018)e [34]

0.65 (0.45-0.80)0.73 (0.58-0.84)61Li et al (2018)f [34]

0.70 (0.54-0.83)0.66 (0.48-0.81)61Li et al (2018)g [34]

0.63 (0.59-0.67)0.74 (0.70-0.78)1035Heinsfeld et al (2018) [35]

0.88 (0.82-0.92)0.90 (0.83-0.94)283Dekhil et al (2018) [36]

0.81 (0.54-0.94)0.89 (0.62-0.97)30Bernas et al (2018)g [37]

0.88 (0.71-0.95)0.73 (0.55-0.86)54Mastrovito et al (2018) [38]

0.99 (0.91-1.00)0.82 (0.56-0.94)59Emerson et al (2017) [39]

0.92 (0.77-0.98)0.86 (0.69-0.94)60Price et al (2014) [40]

0.79 (0.57-0.91)0.74 (0.53-0.88)40Uddin et al (2013)h [41]

0.97 (0.76-1.00)0.66 (0.42-0.84)30Uddin et al (2013)i [41]

0.82 (0.65-0.92)0.82 (0.65-0.92)58Wang et al (2012) [42]

0.87 (0.66-0.96)0.81 (0.54-0.94)24Bernas et al (2018)i [37]

0.88 (0.84-0.91)0.92 (0.89-0.95)640Lidaka (2015) [43]

0.63-0.990.55-0.922623Subtotal

0.62-0.990.55-0.944399Overall (sMRIj+fMRIk)

aMRI: magnetic resonance imaging.
bAutism Brain Imaging Data Exchange-University of Michigan sample.
cAutism Brain Imaging Data Exchange-University of Pittsburgh sample.
dSame author years but different (independent) studies.
eAutism Brain Imaging Data Exchange-University of California Los Angeles sample.
fAutism Brain Imaging Data Exchange-University of Utah School of Medicine.
gAutism Brain Imaging Data Exchange-Katholieke Universiteit Leuven.
hNational Database for Autism Research sample.
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iClinic sample.
jsMRI: structural magnetic resonance imaging.
kfMRI: functional magnetic resonance imaging.

Discussion

Principal Findings
On the basis of the meta-analysis in this study, the summary
sensitivity and specificity of the accuracy for use of machine
learning algorithms in ASD diagnosis are 0.83 (95% CI
0.76-0.89) and 0.84 (0.74-0.91), respectively, whereas the
accuracy value based on AUC/pAUC is 0.90/0.83. On the basis
of the opinion that the AUC/pAUC value is considered
acceptable when above 0.7, both the AUC/pAUC values can
be thought to be acceptable for the sMRI subgroup [44].
However, given the wide confidence interval for each summary
sensitivity and specificity, the clinical usefulness of those values
can be difficult to determine. In addition, precaution is warranted
for interpreting the accuracy results, as the 95% predictive
region is larger than the 95% CI region on the SROC curve,
indicating a high degree of uncertainty for the pooled sensitivity
and specificity calculated [19]. In addition, only one sample
from the sMRI subgroup utilized an external validation method,
where demographic characteristics of the training dataset were
independent of those of the validation dataset. In other words,
the rest of the samples in the sMRI subgroup built their
validation datasets from participants who were similar to or the
same as those recruited in the training datasets. Hence, those
samples are believed to have high risks of overfitting,
compromising the generalizability of machine learning models
and overestimating the results of the meta-analysis of the sMRI
subgroup [15].

Machine learning algorithms can be divided into supervised,
unsupervised, or reinforcement learning by learning pattern [9].
SVM, for which subgroup analysis was performed for sMRI,
is the oldest method of supervised learning, whereas DNN, for
which subgroup analysis was conducted for fMRI, is the most
advanced of the neural network methods (supervised learning),
modeled after the mechanism of neurons [9]. On the contrary,
the accuracy values for the fMRI subgroup using one of the
latest machine learning algorithms, DNN, were found to be
lower than those for the sMRI subgroup. This may, in part, be
attributable to possible overestimation secondary to the
overfitting in the sMRI subgroup. In addition, one of the studies
in the fMRI/DNN sub-subgroup composed their dataset by
recruiting over 1000 participants from various sites to minimize
limitations such as overfitting in their analysis.

Limitations
Our study has several limitations. Of the final selection of 43
studies, 33 did not provide clear information regarding the
process of obtaining an original database or a recruiting
training/validation dataset from the real clinical world, or raw
data such as basic demographic characteristics of the participants
before the input process, thus increasing the RoB in the patient
selection processes. For example, more than half the finally
selected studies did not match the samples for age or gender,
and the number of images or signals per participant was not

specified in most of the neuroimaging and EEG studies.
Subgroups other than the sMRI subgroup included studies that
used the same database, thus raising concerns for possible
sample overlap, which was challenging to process statistically
owing to the lack or absence of information on the patient
selection process. If datasets overlapped and lowered the
accuracy, the subgroup meta-analysis would have been
underestimated and vice versa. In addition, behavior, EEG, and
voice/text subgroups did not consist of enough studies to attempt
to resolve the heterogeneity and provide pooled accuracy values.
Furthermore, owing to the heterogeneity, summary accuracy
values could not be obtained for adult (aged over 18 years),
school-age (between 6 and 18 years), and preschool-age (less
than 6 years) subgroups, thus limiting the ability to draw a
conclusion on accuracy by age groups. Corresponding authors
for individual studies with small and high TP values (ie, 100%
accurate machine learning test) were reached out to, and one
responded. Even if more had responded, to our knowledge, there
would not have been any way to perform the aggregation.

Comparison With Prior Work
To our knowledge, there is currently no study that has performed
a systematic review and/or a meta-analysis on diagnostic test
accuracy for the use of machine learning in diagnosing ASD
and suggested its pooled estimate accuracies. In this analysis,
many individual studies reported small TP and high TP (ie,
100% accurate machine learning test) and caused significant
heterogeneity for a meta-analysis (see Figure 3). Authors
resolved the heterogeneity by using subgroup analyses. As a
result, individual studies with small and high TP values (ie,
100% accurate machine learning test) were barely included in
fMRI and sMRI subgroup analyses, thereby resolving the
heterogeneity and allowing conduct of the meta-analysis.
Nevertheless, recommendations from our results may improve
the quality of prospective studies using machine learning
algorithms in ASD diagnosis. First, Standards for Reporting of
Diagnostic Accuracy Studies (STARD) can guide machine
learning diagnostic studies to enhance the reporting of patient
selection processes. In addition, there is the comprehensive
guideline for algorithm developers in terms of choosing an
adequate predictive model for a target sample; setting the
parameters, definition, or threshold; and minimizing errors such
as overfitting and perfect separation [45]. Use of the STARD
and other guidelines [45] would facilitate more transparent and
comprehensive work in this space. Although not discussed in
the studies included in our analysis, decision or running time
for a machine learning algorithm in ASD diagnosis could
become an important quality measure in the near future when
these algorithms might be employed in a busy daily clinical
practice.

Conclusions
The accuracy of diagnosing ASD by machine learning
algorithms was found to be acceptable by select accuracy
measures only in studies that utilized sMRI. However, because
of the high heterogeneity in the analyzed studies, it is impossible
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to draw a conclusion on any subgroups that used behavior traits
or biochemical markers as predictors. There is a clear need for

new studies with more comprehensive reporting of the selection
process and dataset to draw a more accurate conclusion.
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