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Abstract

Background: Research in psychology has shown that the way a person walks reflects that person’s current mood (or emotional
state). Recent studies have used mobile phones to detect emotional states from movement data.

Objective: The objective of our study was to investigate the use of movement sensor data from a smart watch to infer an
individual’s emotional state. We present our findings of a user study with 50 participants.

Methods: The experimental design is a mixed-design study: within-subjects (emotions: happy, sad, and neutral) and
between-subjects (stimulus type: audiovisual “movie clips” and audio “music clips”). Each participant experienced both emotions
in a single stimulus type. All participants walked 250 m while wearing a smart watch on one wrist and a heart rate monitor strap
on the chest. They also had to answer a short questionnaire (20 items; Positive Affect and Negative Affect Schedule, PANAS)
before and after experiencing each emotion. The data obtained from the heart rate monitor served as supplementary information
to our data. We performed time series analysis on data from the smart watch and a t test on questionnaire items to measure the
change in emotional state. Heart rate data was analyzed using one-way analysis of variance. We extracted features from the time
series using sliding windows and used features to train and validate classifiers that determined an individual’s emotion.

Results: Overall, 50 young adults participated in our study; of them, 49 were included for the affective PANAS questionnaire
and 44 for the feature extraction and building of personal models. Participants reported feeling less negative affect after watching
sad videos or after listening to sad music, P<.006. For the task of emotion recognition using classifiers, our results showed that
personal models outperformed personal baselines and achieved median accuracies higher than 78% for all conditions of the design
study for binary classification of happiness versus sadness.

Conclusions: Our findings show that we are able to detect changes in the emotional state as well as in behavioral responses
with data obtained from the smartwatch. Together with high accuracies achieved across all users for classification of happy versus
sad emotional states, this is further evidence for the hypothesis that movement sensor data can be used for emotion recognition.

(JMIR Ment Health 2018;5(3):e10153) doi: 10.2196/10153
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Introduction

Our emotional state is often expressed in a variety of means,
such as face, voice, body posture, and walking gait [1,2]. Many
studies are conducted in strict laboratory settings, which may
impede the overall ecological validity of the findings. Having
a strong ecological validity is important because emotional
expression or display in any modality is not entirely dependent
on conscious action or function. Instead, emotional expressions
are essentially a response to a particular affective stimulus or
experience, and this response might be reduced in a laboratory
as a result of social desirability.

Speech, video, and physiological data have been analyzed to
determine the emotional state of a person [3,4], but these
analyses usually rely on recordings obtained in laboratory
environments with limited ecological validity. To formulate
theoretical models of emotions and affective health that take
into account the richness of everyday life, we need to measure
affective states unobtrusively. Mobile phones include sensors,
such as accelerometers, that have the potential to be sensitive
to changes in people’s affective states and thus could provide
rich and accessible information in this respect; for example, we
know that the way we walk reflects whether we feel happy or
sad [2]. This paper analyzes movement sensor data recorded
via a smart watch in relation to changes in emotions.

Prior work on emotion detection from mobile phone data
includes analysis of typing behavior on a mobile phone [5,6]
and mobile phone usage [7,8]. The EmotionSense system
performed emotion detection directly on mobile phones via
analysis of speech with additional sensors collecting information
about the user and the environment [9]. However, there are
some indications that movement sensor data collected by mobile
phones could be a viable solution for inferring emotion, as
opposed to inferring movement or physical activities. Cui et al
attempted to record participants’movements with mobile phones

strapped to their ankles and wrists, thus impairing ecological
validity [10]. Happiness and anger were elicited with video
stimuli, and emotional state classifiers were trained with
accelerometer data [10]. Zhang et al also focused on happiness
and anger, but they recorded movement data with smart bracelets
[11]. Accuracies in detecting these emotions ranged from 60%
to 91.3% across all subjects using 10-fold cross-validation [11].

These cases have motivated further research on tracking and
analysis of sensor data from mobile phones and wearables with
the goal of monitoring and intervening for patients suffering
from mental illnesses or substance abuse [12,13]. Further
validation is needed for the hypothesis that movement sensor
data can be used to recognize emotional states. Movement data
are of particular interest because accelerometers and gyroscopes
are standard sensors in mobile phones, wearables, and fitness
trackers. Movement data collection is unobtrusive, and it
requires no user input [14], which gives us reliable data in the
real world without the possibility of having social desirability
responses.

Toward the end, we make the following contributions. First,
we conducted a mixed-design study, as seen in Figure 1, with
50 participants to test two types of stimuli, audiovisual and
audio, for eliciting emotional responses from participants.
Participants wore a smart watch on the wrist and a heart rate
strap on the chest. The heart rate strap was included to
supplement data collected from Positive Affect and Negative
Affect Schedule (PANAS) scores [15]. After or while watching
emotional stimuli, participants walked, and the process was
repeated three times, for each of the following emotions: happy,
neutral, and sad. We extracted features from sensor data and
built classifiers (personal models) that recognized the emotional
state of the user. Our results show that personal models
outperformed personal baselines and achieved median accuracies
higher than 78% for all conditions of the design study for binary
classification of happiness versus sadness. This paper is an
extended version of preliminary findings published [16].
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Figure 1. Mixed-design study with three conditions. The three conditions were used to determine the stimulus that would better induce the target
emotional states on participants. PANAS: Positive Affect and Negative Affect Schedule.
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Methods

Participants
In total, 50 young adults participated in this study (43 females;
mean age 23.18 [SD 4.87] years). All participants were recruited
in a university campus (North-West UK) via announcements
on notice boards and by word of mouth. Each participant was
given £7 for participation. None of the participants reported any
vision or hearing difficulties and could walk unassisted.

Ethics Approval
We obtained ethical approval from Sunway University Ethics
Board (SUREC 2016/05) and had it validated by Lancaster
University to conduct both validation and the actual main study
experiment.

Materials
The study included the following two types of stimuli: a)
audiovisual and b) audio.

Audiovisual
Audiovisual clips were selected from commercial movies with
the potential of being perceived as having emotional meaning
(ie, sadness and happiness) and able to elicit emotional
responses. Commercial movies were selected from Gross and
Levenson [17], Bartollini [18], Schaefer et al [19], and from 5
young adults (4 females; mean age 21.50 years). Another 5
participants (3 females; mean age 22.80 [SD 1.30] years) were
asked to identify each of these clips in terms of the emotion

they felt while watching, and the intensity of the emotion they
felt using a 0-to-10 Likert scale (0: hardly; 10: very much
likely). They were also asked if they had watched that movie
before. On average, only one participant had seen that movie
before. Participants reported that they felt the emotion intended
for all clips (100% accuracy) and the intensity experienced
ranged between 5.0 to 6.5 for happy and sad clips, respectively.
Table 1 includes the movie clips used in our study.

Audio
For audio stimuli, pieces of classical music known to elicit
happy, sad, and emotionally neutral states were chosen [20].
Table 2 includes selected clips.

Procedure
All participants were presented with happy, sad, and neutral
stimuli. A third of the participants (n=18) were presented with
audiovisual stimuli (ie, videos), whereas the other participants
(n=32) were presented with audio stimuli (ie, classical music).
Half the participants (n=16), who were assigned to audio stimuli,
listened to them prior to walking, whereas the other half (n=16)
listened to stimuli while they were walking. Eighteen
participants (n=18) who were assigned to watch emotional
videos watched them prior to walking. Assignment to each
condition was random. To counter possible order effects, half
the participants were presented with sad stimuli first, whereas
the other half were presented with happy stimuli first. Each
participant was tested individually, and the task took
approximately 20 minutes to complete. All data was collected
between 17:00 and 19:00 h to account for peak foot traffic.

Table 1. Movies used to induce happy and sad emotions.

SceneEmotion and movie

Happy

Patrick serenades Katarina in stadium10 Things I Hate About You (1999)

Discussion of orgasms in cafeWhen Harry Met Sally (1989)

Mary hair gel sceneThere’s Something about Mary (1998)

Black Knight fights King ArthurMonty Python (1975)

Factory worker in assembly lineModern Times (1936)

Arrival halls scene in Heathrow airportLove Actually (2003)

EVA kisses Wall-EWall-E (2008)

Sam roll dance in dinerBenny & Joon (1993)

Sad

Cooper watches video messages sent by his childrenInterstellar (2014)

Michael rewinds his past to recall not saying goodbye to his fatherClick (2006)

Hachiko waits at the train stationHachi (2009)

Death of BrooksShawshank Redemption (1994)

Mother is informed of the deaths of all of Private Ryan’s brothersSaving Private Ryan (1998)

Marley is euthanized in the veterinarian clinicMarley & Me (2008)

Boy cries at father’s deathThe Champ (1979)

Thomas’s funeralMy Girl (1991)
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Table 2. Musical pieces used to induce happy and sad emotions and neutral ones.

ComposerEmotion and piece

Happy

BizetCarmen: “Chanson du Toreador”

Mozart“Allegro”—A Little Night Music

Mozart“Rondo Allegro”—A Little Night Music

Strauss“Blue Danube”

Strauss“Radetzky March”

Sad

AlbinoniAdagio in Sol Minor

Bruch“Kol Nidrei”

Grieg“Solveig’s song”—Peer Gynt

RodrigoConcierto de Aranjuez

SindingSuite for violin & orchestra in A minor

Neutral

Schumann“L’oiseau prophete”

Beethoven“Au Clair de lune”

Debussy“Clair de lune”

MahlerSymphony no. 2 in C minor

VerdiLa Traviata

MussorgskyPictures at an Exhibition

Handel“Water Music Suite: 5. Passepied”

Beethoven“Violin Romance no. 2 in F major”

Handel“Water Music”—minuet

HolstThe Planets —“Venus”

The three conditions of the mixed-design study are presented
in Figure 1 and are as follows: Condition 1—watching the movie
clip prior to walking; Condition 2—listening to the music prior
to walking; and Condition 3—listening to the music while
walking.

Each participant was first greeted by the experimenter at one
end of the corridor and was helped to put on various items. First,
the participant had the heart rate sensor (Polar H7) strapped
snugly around the chest. The corresponding watch (Polar M400)
was strapped onto the experimenter’s wrist. The watch was set
to the “other indoor” sport profile. Second, the participant
strapped a smart watch (Samsung Gear 2) on the left wrist.
Participants wore sensors for the entire duration of the
experiment. The smart watch included a triaxial accelerometer
and a triaxial gyroscope. The sampling rate of the smart watch
is advertised as 25 Hz, but our results show that the actual
sampling rate on average was 23.8 Hz. For the smart watch, we
developed a Tizen app that recorded accelerometer and
gyroscope sensor data.

Participants rated their current mood state using PANAS [21]
on a 7-inch tablet. PANAS contains 10 adjectives for positive
(eg, joy) and 10 adjectives for negative feelings (eg, anxiety).
Scores can range from 10 to 50 with higher scores representing

higher levels of affect. The heart rate sensor was used in the
study to supplement data collected from PANAS scores [15].

For Conditions 1 and 2, in which the stimulus presentation
occurred before walking, participants wore a pair of headphones
to listen or watch the assigned stimuli (eg, sad music or happy
movie) while at the start of a walking route. At the end of the
stimulus, the participant walked to the end of the route and back
to the starting point. Participants were reminded not to make
any stops in between. The route was represented by a 250 m
S-shaped corridor located on the ground floor of a university
building. The experimenter discreetly followed the participant
at a 125 m distance to observe the behavior and to ensure that
heart rate monitoring was captured by the watch. Upon return,
participants rated their mood using the same PANAS scales.
Because of the initial mood induction, we always had a neutral
condition between happy and sad conditions to allow return to
the baseline calm state. For all participants, the neutral stimulus
was classical music for the audio type or a movie with classical
music playing in the background and depicting an everyday
scene. The same procedure above, rating their initial mood using
PANAS, watching or listening to a stimulus, walking along the
corridor and back, and rating their mood, was applied to the
neutral and second emotion.
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In Condition 3, which included listening while walking, the
procedure was similar as above, except that the participant was
listening to the assigned music while walking, and participants
reported PANAS scores after walking.

Feature Extraction
During the experiment, the experimenter recorded the time each
participant started and stopped walking. These times were used
to identify sensor data that corresponded to the actual walking
time. We discarded sensor data when participants were briefed
and when participants watched or listened to the stimulus prior
to walking.

The walking times were labeled according to the corresponding
emotional stimulus presented before walking; for example, if
the participant viewed a movie clip known to induce happiness,
all of the features extracted from the subsequent walking data
were labeled as happy. These labels were used to train classifiers
for the recognition of happiness versus sadness. We present
classifier results for the two-class problem of detecting happy
versus sad emotions and for the three-class problem of detecting
happy versus sad versus neutral emotions.

We first filtered raw accelerometer data with a mean filter
(window=3). Features were extracted from sliding windows
with a size of one second (24 samples) with 50% overlap. Our
feature extraction approach is similar to that used for activity
recognition from mobile phone accelerometer data [22,23], that
is, each window is treated as an independent sample (feature
vector). We address neighborhood bias when building models
from accelerometer sliding windows in the results section [24].

For each window of the triaxial accelerometer and triaxial
gyroscope data, we extracted 17 features [23]: (1) mean, (2)
SD, (3) maximum, (4) minimum, (5) energy, (6) kurtosis, (7)
skewness, (8) root mean square, (9) root sum square, (10) sum,
(11) sum of absolute values, (12) mean of absolute values, (13)
range, (14) median, (15) upper quartile, (16) lower quartile, and
(17) median absolute deviation. These 17 features were extracted
from each of the 3 axes of the accelerometer data and each of
the 3 axes of the gyroscope data, resulting in 102 features. We
also calculated the angle between the signal mean (within a
window) and the x-axis, y-axis, and z-axis (3 features); SD of
signal magnitude (one feature); and the heart rate (one feature)
for a total of 107 features for the feature vector of a window.
Unless stated otherwise, we used all 107 features for
classification. However, we do explore classification
performance based on features corresponding to certain sensors:
accelerometer, gyroscope, and heart rate; accelerometer and
heart rate; and accelerometer.

We divided data by condition and built personal models with
features extracted from each window [25]. In personal models,
training and testing data come from a single user. In our case,
we built 44 personal models (data from 6 participants were
discarded because of missing data and other recording errors)
with each model evaluated using stratified 10-fold
cross-validation that was repeated 10 times. For each participant,
we obtained a mean of 403.29 (55.62) samples labeled as happy,
403.67 (51.46) samples labeled as sad, and 402.93 (50.24)
samples labeled as neutral. Of the 44 personal models built, 16

were from Condition 1 (watch movie and then walk), 14 were
from Condition 2 (listen to music and then walk), and 14 were
from Condition 3 (listen to music and then walk).

We compared random forest models, with 100 estimators and
logistic regression, with L2 regularization and a baseline
classifier that picked the majority class as the prediction. The
python scikit-learn library was used for training and testing
these classifiers. Because the number of samples labeled as
happy versus sad for each participant was approximately the
same, the baseline classifier predicted each window as happy
versus sad with about a 50% probability (ie, all samples for user
i were classified as happy, resulting in about 50% accuracy).
For binary classification of happy versus sad, we use the
accuracy, the F1 score, and the area under the receiver operating
characteristic curve (ROC AUC) to assess classification
performance. For multiclass classification of happy versus sad
versus neutral, we use the accuracy and the F1 score.

Results

Ecological Validity Checks
When asked about their experience in using a smart gadget,
most participants were familiar and comfortable with the smart
watch but not with the Polar heart rate monitor. They did not
notice anything unusual about the study that might have
influenced their walking gait and behavioral response.

Behavioral Response to Stimuli (Positive Affect and
Negative Affect Schedule Outcomes)
We analyzed PANAS responses for all conditions on the happy
versus sad stimuli. One participant’s data was excluded for
being incomplete, thus leaving 49 for analyses (15 for Condition
1, 18 for Condition 2, and 16 for Condition 3). We first reviewed
normality and found that data was normally distributed for
Conditions 1 and 2 but not for Condition 3 (visual histograms
were skewed and Shapiro-Wilk P<.01). See Multimedia
Appendix 1 for PANAS scores for each emotion.

Condition 1: Watch Movie and Then Walk
Participants reported a reduced negative affect after watching
a sad movie clip (mean 14.94 [SD 6.79]) compared with that
before watching it (mean 19.00 [SD 7.20], t16=3.16, P=.006).
There was no significant difference for the positive affect for
the sad movie (t16=.08, P=.94) and for both affects with respect
to the other two emotions (happiness and neutral), all P values
were >.10.

Condition 2: Listen to Music and Then Walk
For sad music, participants reported an increased positive effect
after the walk (mean 24.00 [SD 5.33]) compared with that before
watching it (mean 20.31 [SD 5.79], t15=2.96, P=.01) and reduced
negative affect after (mean 11.69 [SD 3.34]) compared with
that before watching (mean 13.63, [SD 5.12], t15=2.78, P=.014).
Participants reported reduced positive affect after listening to
happy music (mean 26.38 [SD 6.96]) compared with that before
watching it (mean 29.56 [SD 5.17], t15=2.62, P=.02), but no
significant difference for negative affect (t15=1.60, P=.13). There
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was no significant difference for neutral music for both affects,
both P values were >.76.

Condition 3: Listen to Music While Walking
Participants reported an increased negative affect while walking
and listening to happy music (mean 13.31 [SD 4.88]) compared
with neutral (mean 15.00 [SD 5.44]) music (Z=2.64, P=.08).
No other significant differences were observed, all P values
were >.13.

Heart Rate
We planned to verify data obtained from PANAS and determine
whether our participants experienced accelerated or decelerated
heart rate as a result of emotional stimuli [15]. From the 50
participants, we had some data loss due to technical faults (n=9;
3 from Condition 1, 3 from Condition 2, and 3 from Condition
3), leaving us with data obtained from 41 participants. We first
reviewed descriptive statistics and found that data was normally

distributed. A one-way between-subjects analysis of variance
was conducted to compare the effect of emotion (happy, sad,
and neutral) on participants’ heart rates. We did not find any
significant effect of emotion on their heart rate for the 3
conditions (F2,120=0.13, P=.88; see Table 3 for means and SD).

Emotion Recognition

Happy Versus Sad
Figure 2 illustrates 3 boxplot sets, one for each condition,
showing distribution of accuracies for the personal model of
each participant. For all 3 conditions, personal baselines have
accuracies in the range 50%-54%. For all conditions, both
random forest model and logistic regression outperformed the
baseline with accuracies in the range 62%-99%. Condition 1
(movie) and Condition 3 (music while walking) resulted in the
highest classification accuracies with median accuracies over
82%.

Table 3. Mean heart rate and SD in brackets for all 3 emotions.

Mean (SD)Emotions

104.43 (14.55)Happy

91.68 (16.31)Sad

105.77 (14.50)Neutral

Figure 2. Boxplot of classification accuracies for participants divided by conditions. Algorithms tested were baseline (pick majority), random forests,
and logistic regression. Outliers are indicated by +. The highest classification accuracies were achieved with Condition 1 (movie) and Condition 3
(music while walking). For all conditions, the models achieved accuracies greater than 78% for over half the users. RF: random forest.
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Table 4. Average user lift and average personal model accuracy per condition.

P valueUser liftAccuracy (SD)F1 score (SD)AUCa (SD)Features and model

Accelerometer, gyroscope, heart rate

Condition 1: Watch movie, then walk

0.513 (0.015)0.348 (0.017)0.500 (0.000)Baseline

<.0010.3050.818 (0.089)0.817 (0.089)0.876 (0.085)Logistic regression

<.0010.3420.854 (0.073)0.854 (0.073)0.923 (0.059)Random forest

Condition 2: Listen to music, then walk

0.508 (0.006)0.342 (0.007)0.500 (0.000)Baseline

<.0010.2400.748 (0.071)0.748 (0.071)0.812 (0.081)Logistic regression

<.0010.2980.806 (0.047)0.806 (0.047)0.887 (0.046)Random forest

Condition 3: Listen to music while walking

0.520 (0.027)0.356 (0.031)0.500 (0.000)Baseline

<.0010.3290.849 (0.107)0.849 (0.107)0.900 (0.096)Logistic regression

<.0010.3710.891 (0.080)0.890 (0.081)0.948 (0.057)Random forest

Accelerometer, heart rate

Condition 1: Watch movie, then walk

0.513 (0.015)0.348 (0.017)0.500 (0.000)Baseline

<.0010.2400.753 (0.099)0.752 (0.099)0.809 (0.105)Logistic regression

<.0010.3090.822 (0.089)0.821 (0.090)0.891 (0.081)Random forest

Condition 2: Listen to music, then walk

0.508 (0.006)0.342 (0.007)0.500 (0.000)Baseline

<.0010.1670.675 (0.055)0.674 (0.055)0.729 (0.070)Logistic regression

<.0010.2610.769 (0.045)0.768 (0.045)0.847 (0.046)Random forest

Condition 3: Listen to music while walking

0.520 (0.027)0.356 (0.031)0.500 (0.000)Baseline

<.0010.3010.821 (0.106)0.821 (0.106)0.876 (0.095)Logistic regression

<.0010.3510.871 (0.088)0.871 (0.088)0.933 (0.067)Random forest

Accelerometer

Condition 1: Watch movie, then walk

0.513 (0.015)0.348 (0.017)0.500 (0.000)Baseline

<.0010.2150.727 (0.089)0.726 (0.089)0.786 (0.097)Logistic regression

<.0010.2610.774 (0.077)0.773 (0.077)0.847 (0.076)Random forest

Condition 2: Listen to music, then walk

0.508 (0.006)0.342 (0.007)0.500 (0.000)Baseline

<.0010.1500.658 (0.047)0.657 (0.047)0.708 (0.056)Logistic regression

<.0010.2050.713 (0.042)0.712 (0.042)0.783 (0.051)Random forest

Condition 3: Listen to music while walking

0.520 (0.027)0.356 (0.031)0.500 (0.000)Baseline

<.0010.2690.790 (0.095)0.789 (0.096)0.848 (0.086)Logistic regression

<.0010.3050.825 (0.079)0.825 (0.080)0.899 (0.066)Random forest

aAUC: area under the curve.
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We used the user lift framework to quantify whether a personal
model was better than a personal baseline for each user [26].
We calculated the user lift as the difference in the accuracy of
the personal classifier and the personal baseline (classifier
accuracy–personal baseline accuracy). We used the
nonparametric permutation test to determine whether user lifts
had a mean greater than 0 (see Table 4). Figure 3 shows the
calculated user lift for each participant using random forest
model and logistic regression. We included this figure because
average user lift can obscure the presence of negative user lift
for some participants. Using features extracted from the
accelerometer, gyroscope, and heart rate data resulted in the
highest accuracies. Using only features from accelerometer data
resulted in lower accuracies. Overall for the personal models,
the average user lift was greater than 0 for all conditions,
indicating that the trained personal models outperformed the
baseline.

Happy Versus Neutral Versus Sad
Figure 4 shows the distribution of accuracies of personal models
for the three-class classification task of predicting
happy-neutral-sad emotional states. We used all features
(acceleration, angular velocity, and heart rate) for classification.
Although personal models on average outperformed the baseline,
accuracies are lower than those achieved when predicting only

happy versus sad. Because the number of samples for each class
is approximately the same, the baseline predicting the majority
class is able to classify correctly only about a third of testing
samples. See Table 5 for user lift results. Personal models
outperformed personal baselines, but overall accuracy was lower
than binary classification of happy versus sad.

Emotion Cross-Validation
We conducted an experiment to assess the effect of
neighborhood bias in evaluation of our models using random
cross-validation. In this experiment, we conducted 10-fold
cross-validation for each personal model, but the testing fold
that was held out during each iteration held out a contiguous
happy data block or a contiguous sad data block. The goal was
to determine with higher confidence whether classifiers were
learning patterns associated with emotions, as opposed to just
learning to distinguish between different walking periods. In
addition, this type of validation takes into consideration
neighborhood bias, which can lead to overly optimistic
performance estimates [24]. Results (see Figure 5 and Table 6)
show that accuracies across all conditions dropped compared
with accuracies when using random cross-validation. Personal
models outperformed personal baselines but overall accuracy
was poor.

Figure 3. The user lift for personal models per condition. The random forest user lift is calculated as (random forest accuracy – baseline accuracy) and
the logistic regression user lift is calculated as (logit accuracy – baseline accuracy). The personal models achieve higher accuracies than the personal
baseline models.
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Figure 4. Classification accuracies for participants divided by conditions for the recognition of happiness, sadness, and neutral emotional states. The
lower accuracies when recognizing the neutral emotional state indicates that the neutral walking data does have more similarities to the happy and sad
walking data, which may indicate the need for additional features. RF: random forest.

Table 5. Average user lift and average personal model accuracy per condition for the three-class classification task of predicting happy-neutral-sad.

P valueUser liftAccuracy (SD)F1 score (SD)Model

Condition 1: Watch movie, then walk

0.343 (0.011)0.175 (0.010)Baseline

<.0010.2920.635 (0.103)0.632 (0.103)Logistic regression

<.0010.3800.723 (0.090)0.722 (0.090)Random forest

Condition 2: Listen to music, then walk

0.340 (0.004)0.173 (0.004)Baseline

<.0010.2540.594 (0.061)0.591 (0.062)Logistic regression

<.0010.3450.685 (0.047)0.684 (0.048)Random forest

Condition 3: Listen to music while walking

0.348 (0.015)0.180 (0.014)Baseline

<.0010.3630.711 (0.113)0.709 (0.113)Logistic regression

<.0010.4340.782 (0.087)0.781 (0.087)Random forest
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Figure 5. Boxplot of classification accuracies for participants divided by conditions. The results are for 10-fold cross-validation, with each fold in the
training data consisting of contiguous windows from both happy and walking data, and the held-out test fold consisting of contiguous windows from
either the happy or the sad walking data. RF: random forest.

Table 6. Average user lift and average personal model accuracy per condition.

P valueUser LiftAccuracy (SD)F1 score (SD)Model

Condition 1: Watch movie, then walk

0.031 (0.121)0.031 (0.121)Baseline

<.0010.6500.682 (0.139)0.787 (0.104)Logistic regression

<.0010.6200.651 (0.146)0.763 (0.112)Random forests

Condition 2: Listen to music, then walk

0.000 (0.000)0.000 (0.000)Baseline

<.0010.5750.575 (0.115)0.705 (0.099)Logistic regression

<.0010.5430.543 (0.118)0.678 (0.105)Random forests

Condition 3: Listen to music while walking

0.036 (0.129)0.036 (0.129)Baseline

<.0010.6880.723 (0.179)0.812 (0.140)Logistic regression

<.0010.6950.731 (0.185)0.815 (0.148)Random forests
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Table 7. Accuracy scores for leave-one-user-out cross-validation.

AccuracyF1 score (SD)AUCa (SD)Model

Condition 1: Watch movie, then walk

0.508 (0.018)0.342 (0.021)0.500 (0.000)Baseline

0.515 (0.090)0.461 (0.112)0.539 (0.137)Logistic regression

Condition 2: Listen to music, then walk

0.499 (0.010)0.332 (0.011)0.500 (0.000)Baseline

0.519 (0.059)0.467 (0.061)0.539 (0.084)Logistic regression

Condition 3: Listen to music while walking

0.490 (0.032)0.323 (0.034)0.500 (0.000)Baseline

0.505 (0.082)0.476 (0.092)0.510 (0.173)Logistic regression

aAUC: area under the curve.

However, the performance of models remains higher than
personal baselines with the exception of a few users. Only a
quarter of baseline models under Condition 1 and Condition 3
achieved accuracies ranging from 0 to 0.5; the rest have
accuracies of 0. This is expected because a baseline model
predicted on the majority class will achieve an accuracy of 0
when tested on a contiguous block of the opposite class.

We conclude that for at least half the participants in Condition
1 (movie) and Condition 3 (music while walking), models are
likely learning patterns associated with sad and happy emotions.
In addition, high accuracies indicate that model performance is
not a result of neighborhood bias [24].

Generalizing Across Users
We conducted leave-one-user-out cross-validation to assess
how well a model trained on data from certain users would be
able to generalize to a user for whom no data are available. We
compared both the logistic regression and random forest model.
However, random forest models performed similarly or worse
than logistic regression; therefore, we only discussed results of
the best performing logistic regression compared against the
baseline (see Table 7). Logistic regression performed poorly
across all conditions, showing that using data from different
users to do emotion recognition on a different user is not
possible with current features and logistic regression. Low
accuracies across all conditions show that the behavior from
user to user varies considerably, even when performing a similar
action. Owing to the small number of users per condition (<18),
data may not be enough to make accurate predictions for users
not included in the training set [24]. However, it also highlights
a limitation in our modeling approach, in that different features
or more advanced models may be necessary to generalize across
users. Ideally, deployment of an app should include an initial

data collection and calibration phase, which can be used to build
a high accuracy personal model for each user.

Model Interpretability
We address model interpretability, that is, how models are able
to differentiate between emotions, by examining information
gain of features. Random forest models can be interpreted by
examining feature importances, and logistic regression can be
interpreted by the sign and value of the coefficients. Random
forest models outperformed logistic regression in our results;
therefore, we limit our analysis to feature importances of random
forest models.

Because we are building personal models, features that might
be important for one user may be less important for another
user. To show this, we plotted the distribution of feature
importance values for each feature across all users using
boxplots, as seen in Figure 6. Boxplots are sorted by median
and we included only the top 30 features for visibility with the
trend of the remaining features being about the same. To obtain
feature importances for each user, we computed the mean feature
importance for each feature in cross-validation folds and divided
each feature by the maximum feature importance value. Thus,
a value of 1.0 indicates that a feature was the most important
among all the features.

A compact boxplot indicates that the feature has similar
importance across all users. On the other hand, a boxplot with
a large spread indicates that the feature is important for some
users but less important for other users. For all conditions, heart
rate was the most important feature. In fact, for Condition 1
(movie), heart rate was the most important feature for at least
half of users (median=1.0). The rest of the features have
distributions with smoothly decreasing medians but with heart
rate being the only feature with a clear difference from other
features.
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Figure 6. Distribution of feature importances per feature for all personal models. Acc: accelerometer; Gyro: gyroscope.

Discussion

Behavioral Response to Stimuli
Participants reported feeling less negative affect after watching
sad videos or after listening to sad music. This is contrary to
the other condition (listening to music while walking) in which
participants reported feeling more negative during happy stimuli
compared with the neutral ones. Our findings suggest that the
walking activity after experiencing a stimulus is useful to
alleviate negative mood, similar to that reported [27,28], but
not while experiencing stimuli. One reason for this is that
participants were focused on the song, and possibly, the change
between music types creates resentment or unhappiness. Some
studies suggest that people may prefer sad music [29,30], which
may influence participants’ response toward stimuli. However,
a subset of 10 participants reported liking the sad stimulus the
least compared with happy and neutral stimuli, suggesting that

this is not a case of liking sad music more than others. This
personal preference self-report further adds credence to PANAS
results that walking is useful in alleviating negative mood.

From heart rate data, our participants did not experience any
significant difference in heart rate between emotions. One
possible explanation is that walking itself is a vigorous activity
compared with standing still; thus, the brief exposure to
emotional stimulus may not have been captured holistically.
The other possible explanation is that both emotions were
equally successful in evoking their emotional states; therefore,
there was a nonsignificant difference between them.
Nonetheless, data from PANAS suggest that it is likely the latter
because participants reported experiencing a difference between
positive and negative states.

Classifiers for Emotion Recognition
High accuracies achieved across all users for classification of
happy versus sad emotional states provide further evidence for
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the hypothesis that movement sensor data can be used for
emotion recognition. To build personal models, we used
statistical features that are computationally cheap, which would
make it feasible to deploy a smart watch or a mobile phone app
that can track emotions from movement sensor data without
taxing the smart watch or mobile phone processor.

Using only accelerometer data for emotion recognition resulted
in mean AUC values of at least 71% for all conditions. The
combination of accelerometer data features and heart increased
the overall performance of models to a mean AUC of 73%. The
use of accelerometer, heart rate, and gyroscope features
increased the mean AUC to 81%. This provides a strong
motivation to use gyroscope and heart rate data in applications
attempting to infer emotional states from movement data,
especially given that application programming interfaces of
mobile phones and smart watches make it easy to retrieve
gyroscope and heart rate. In addition, the high importance of
the heart rate feature in random forest models ought to
encourage developers to use heart rate data from a smart watch
for emotion recognition.

When comparing the classification results using features
extracted from all sensor data on classification of happy versus
sad emotions, we achieved high-fidelity emotion recognition
models with an accuracy of ≥80% for 62.5% (55/88) of the
personal models, average-fidelity models with an accuracy
between 70% and 80% for 27.3% (24/88) of the personal
models, and low-fidelity models with an accuracy of <70% for
10.2% (9/88) of the personal models. These results are
encouraging. However, they also indicate that further work is
needed to achieve consistent results across different users and
accuracies closer to 100%. For example, this could be achieved
by extracting additional features, using a more complex
classifier, or by collecting more data for training and testing
personal models. Lastly, our results on emotion cross-validation
highlight that personal models for about half the participants
are learning features that capture emotions.

Limitations
Previous studies have utilized a contrast experimental paradigm
to manipulate the following participants’moods: positive versus
negative mood [2]; negative or neutral [31]; positive, negative,
and neutral [32,33] using music or avatars. Past research findings
indicate that negative moods tend to reduce mood recovery and
a slower response for accurately identifying other emotional
expressions [20,31]. Although these user studies did not apply
to emotion recognition from sensor data obtained from a smart
watch, we did not address issues, such as reduced mood
recovery, for participants who were shown the sad stimulus
first; however, we did perform counterbalancing for our stimuli
on our participants.

The integrity of sensor data is a concern. For Conditions 1 and
2, participants were primed with audio and audiovisual stimuli
for a few minutes, but beyond PANAS scores, we do not have
other means to indicate that the stimulus had the intended effect.
Furthermore, the effect of the stimulus on participants is
questionable given that participants were not emotionally
invested in movie and music clips that were shown. Personal
models do distinguish at high accuracies between features

extracted from happy, sad, and neutral emotions, but we do not
know for certain that happy data is truly associated with a
“happy” emotional state in users. In general, given that the
mixed-design study consisted of 3 conditions, 50 participants
is a small sample size.

From a modeling and data analysis point of view, the amount
of data collected was small. Hence, this limits the training and
validation of classifiers. Although personal models yielded high
accuracies for many users, for other users, the results were
slightly better than random guessing. Finally, we did not
consider more flexible modeling approaches, such as using a
time-aware model or using a neural network trained on raw
sensor data, instead of extracting features from sliding windows.

The personal models we built are naïve, in that each window is
an independent sample. Therefore, a model could potentially
predict happy-sad-happy for 3 consecutive one-second windows,
which is unrealistic as a user is not likely to go from happy to
sad and back to happy in a matter of 3 seconds. This limitation
of our modeling approach will be addressed in future work.

Comparison With Prior Work
Our work is closest to the work reported previously [10,11]. In
[10], the details of the design study are omitted, including the
choice of videos and procedures. A limitation in a previous
study [10] is that data was collected from two mobile phones,
one strapped to the wrist and one strapped to the ankle of
participants. In a previous study [11], 123 participants were
recruited (twice the size of our sample), and smart bracelets
were used for data collection with participants wearing a smart
bracelet on the wrist and another smart bracelet on the ankle
(with the latter violating ecological validity). We achieved
accuracies comparable to those reported in another study [11],
using only data from one smart watch on participants’ wrists
and without relying on data from other body locations. Our
work also differs in that we focus on happy and sad emotional
states, whereas in a study [11], researchers focused on happy
and angry emotional states. In contrast to prior work, we
performed more rigorous testing by including emotion
cross-validation and by extracting features from an
accelerometer, a gyroscope, and heart rate sensors.

In contrast to emotion prediction based on typing behavior [5,6],
mobile phone usage [7,8], and mobile phone speech recordings
[9], we focused on movement data and heart rate data. The
EmotionSense system does use accelerometer data to determine
whether a user is moving but not for emotion recognition [9].

Conclusions and Future Work
Our findings suggest that emotional expression is transparent
even in automatic functions such as walking gait. This finding
is interesting in that healthy young adults typically do not report
large differences in their emotional state, unlike some clinical
groups [34]. These findings also validate our methodological
approach with respect to priming the emotional state and the
subsequent modeling using machine-learning algorithms.

Many studies have focused on face and voice modalities, but
recent studies have shown that we tend to adopt different body
postures and gaits as a reflection of our emotions and that these
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postures and gaits are just as easily recognized by others,
indicating that walking gait is a form of social signal. However,
the emotional behavioral response is only evident after
experiencing the stimulus on its own or while experiencing both
together (eg, listening to music while walking). Nonetheless,
our findings provide further knowledge in the field of social
communication, particularly in specific clinical conditions. The
unobtrusive wearable is a good complement for collecting data
and for providing biofeedback and interventions for emotional
regulation. Recent studies have started analyzing the possibility
of using wearables to provide more readily available treatment
for patients and provide feedback to clinicians to cater to their
needs [34-36]. Benefits of using these wearables, particularly

in identifying emotional states, are useful for diagnosis or
monitoring specific clinical conditions, such as social anxiety
and borderline personality disorder. Although most research is
focused on getting patients to self-rate their moods, having
actigraph data and walking patterns will complement the
information necessary for clinicians. Other than for a clinical
population, this type of information is also useful for vulnerable
populations (eg, older adults) experiencing some emotional
distress and social isolation [37]. Future studies should look
into the duration of having on such wearables (over 24-hour
cycles) and duration in experiencing stimuli (acute or chronic
experiences).
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